A UNIVERSAL 5-MANIFOLD WITH RESPECT TO SIMPLICIAL TRIANGULATIONS

D. Galewski

Department of Mathematics University of Georgia Athens, Georgia

R. Stern

Department of Mathematics University of Utah Salt Lake City, Utah

I. INTRODUCTION

One of the most important questions in geometric topology is whether or not every topological manifold has a locally finite simplicial triangulation. We first recall some results in this direction.

Let θ_3^H be the abelian group obtained from the set of oriented PL homology 3-spheres, under the operation of connected sum, modulo those which bound PL acyclic 4-manifolds. Also let $\mu:\theta_3^H+\mathbb{Z}_2$ be the Kervaire-Milnor-Rohlin map given by $\mu[H^3]=I(W)/8$ mod 2 where I(W) is the index of any parallelizable PL 4-manifold W which H^3 bounds. We note that μ is well defined and surjective.

Copyright © 1979 by Academic Press, Inc. All rights of reproduction in any form reserved. ISBN 0-12-158860-2

ŞĪ.

THEOREM 1.2. (Galewski-Stern [4]). If $\sigma_M \in \operatorname{H}^4(M, \partial M; \mathbb{Z}_2)$ is the Kirby-Siebermann obstruction [5] to a PL triangulation of M rel ∂M then $\beta(\sigma_M) = t_M$ where β is the Bockstein associated with the exact sequence

$$\theta$$
 + ker μ + θ_3^H $\stackrel{\mu}{\rightarrow}$ \mathbb{Z}_2 + θ .

THEOREM 1.3. (Galewski-Stern [3],[4]; T. Matumoto [7]]. If there exists an element $x \in \theta_3^H$ with $\mu(x) = 1$ and 2x = 0, then all compact topological n-manifolds with $n \geq 6$ ($n \geq 5$ if 3M simplicially triangulated) have a simplicial triangulation.

Our original classification theorem in [3] had two possibly non-zero obstructions. However, the solution of the double suspension conjecture ([1],[2]) implies that one of these obstructions vanish.

In this paper we give a geometric construction of a closed non-orientable topological 5-manifold N^5 with the property that N^5 has a simplicial triangulation if and only if every compact topological n-manifold M^n $n \geq 6$ $(n \geq 5)$ if 2M simplicially triangulated) has a simplicial triangulation. Note that Siebenmann's Theorem B of [9] and the double suspension theorem ([1],[2]) show

that all open or oriented closed 5-manifolds can be simplicially triangulated.

We would like to thank R. D. Edwards for suggesting the problem and for some helpful conversations.

II. PRELIMINARY RESULTS

Recall $\boldsymbol{\mathcal{S}}_{q}^{1}$ is the Bockstein associated with the short exact sequence

$$0 \longrightarrow \mathbb{Z}_2 \xrightarrow{\mathbf{x2}} \mathbb{Z}_4 \xrightarrow{\mathbf{r}} \mathbb{Z}_2 \longrightarrow 0.$$

THEOREM 2.1. If there exists a closed simplicially triangulated topological n-manifold Nⁿ for any $n \geq 5$ with $S_1^1 \sigma_N \neq 0$ where σ_N is the Kirby-Siebenmann obstruction then <u>all</u> compact topological m-manifolds N^m with $m \geq 6$ ($m \geq 5$ if M simplicially triangulated) have a simplicial triangulation.

Proof. Let N^n be a closed simplicially triangulated topological n-manifold with $n \geq 5$ and assume that there exists a compact m-manifold M^m with $m \geq 6$ ($m \geq 5$ if ∂M simplicially triangulated) that does not have a simplicial triangulation. They by 1.3 there does not exist an element $x \in \theta^H_3$ with $\mu(x) = 1$ and 2x = 0. Let θ be the finitely generated subgroup of θ^H_3 generated by the 3-dimensional links of a triangulation of N^m . We now construct a homeomorphism $\gamma: \theta \to \mathbb{Z}_4$ so that the following diagram commutes

where r is reduction mod 2. By the fundamental theorem for finitely generated abelian groups there exists elements x_1, x_2, \ldots, x_k

of θ such that $\theta \approx \langle x_1 \rangle \oplus \langle x_2 \rangle \oplus \ldots \oplus \langle x_k \rangle$ where $\langle x_i \rangle$ is the cyclic group generated by $\langle x_i \rangle$. If $\mu(x_i) = 0$, define $\gamma(x_i) = 0$; if $\mu(x_i) = 1$ and $\langle x_i \rangle \approx \mathbb{Z}$, define $\gamma(x_i) = 1$; and if $\mu(x_i) = 1$ and $\langle x_i \rangle \approx \mathbb{Z}_2 j_p$ then $j \geq 2$ by our assumption, so define $\gamma(x_i) = 1$. It is easy to check that γ is well defined and that $\mu i = r \gamma$.

Note that N with its triangulation is a homology manifold so there exists an obstruction [6] $\tilde{\sigma}_N \in H^4(N; \, \theta_3^H)$ to resolving N to a PL manifold. Now $\tilde{\sigma}_m$ assigns to every 4-dimensional dual cell of N, its boundary, which is PL homeomorphic to a 3-dimensional link in N and hence in θ . So there exists a $\tilde{\sigma}_N \in H^4(N; \, \theta)$ so that $i_* \tilde{\sigma}_N = \tilde{\sigma}_N$. Also by [4] $\mu_* \tilde{\sigma}_N = \sigma_N$. Hence $S_q^1 \sigma_N = S_q^1 \mu_* \tilde{\sigma}_N = S_q^1 \mu_* \tilde{\sigma}_N = S_q^1 \mu_* \tilde{\sigma}_N = 0$ since $S_q^1 r_* = 0$. A contradiction to the assumption that there exists a manifold M^m , $m \geq 6$ ($m \geq 5$ if ∂M has a simplicial triangulation) which is not trianguable. Thus the theorem follows.

We note that Siebenmann [8] has shown the existence of a topological 5-manifold N with $S_q^I \sigma_N \neq 0$. In the next section we will explicitly construct such a manifold.

III. THE CONSTRUCTION

We first recall theorem 1.4 of [4].

THEOREM 3.1. A homology manifold H^n with $H = \emptyset$ and $n \ge 5$ is a topological n-manifold if and only if the links of vertices are 1-connected.

We note this theorem was a consequence of the double suspension conjecture recently proved by J. Cannon [1] and R. D. Edwards [2].

Now we use this result to geometrically construct a closed topological 5-manifold N with $S_q^1 \sigma_N \neq 0$. Thus if there existed a simplicial triangulation of N, all compact topological m-manifolds with $m \geq 6$ ($m \geq 5$ if ∂M simplicially triangulated) would be simplicially triangulable!

Let H^3 be any oriented PL homology 3-sphere that bounds an oriented parallelizable PL 4-manifold W with index 8. Let $X = W \cup_H c(H)$ where c(H) is the cone on H and x the cone point of c(H). Attach a PL 1-handle $D^3 \times [0,1]$ to $c(H) \times 0 \cup c(H) \times 1 \subset X \times [0,1]$ so that $\partial S = H \# H$ (not H # - H) where $S = c(H) \times 0 \cup_{D^3 \subset H^3} D^3 \times I \cup_{D^3 \subset H^3} c(H) \times 1$. Let $Y = X \times I \cup_{D^3 \subset H^3} C(H \oplus H)$ where z is the cone point of $c(H \oplus H)$. Note that the polyhedron Y contains the sub polyhedron $T = S \cup_{H \# H} c(H \oplus H)$ and is a homology 4-manifold with the same homotopy type as S^4 . Let $P = Y \cup_T c(T)$ where y is the cone point of c(T). Now P is a homology 5-manifold with $\partial P PL$ homeomorphic to $W \cup C(H \oplus H)$, where y denotes connected sum along the boundary. Note that all of the Steiefel-Whitney numbers of ∂P are zero. Next add an exterior collar $C = \partial P \times [0,1)$ to P along ∂P and call the resulting homology 5-manifold Q.

We first observe that the only 4-dimensional links i.e. $z,y,x \times 0$ and $x \times 1$, which are not PL homeomorphic to S^3 are simply connected, hence by 3.1 Q is a simplicially triangulated 5-manifold.

We next observe that the only 3-dimensional links of Q which are not PL homeomorphic to S^3 occur as links of the subpolyhedron L=x x [0,1] \cup y*(x x [0,1]) $\overset{PL}{=}$ S^1 and $M=y*z \cup z$ x [0,1] $\overset{PL}{=}$ [0,1) of Q. The links of 1-simplexes of L are PL homeomorphic to H and the links of 1-simplexes of M are PL homeomorphic to H#H. Thus by Theorem C of [9] there exists a PL structure Σ of Q-L since $\mu[H\#H]=0$. Note that Σ does not agree with the polyhedral structure of Q.

We can now use PL transversality with respect to $\Sigma \big|_{\partial P \times (0,1)}$ to get a compact connected orientable 4-dimensional submanifold V in $\partial P \times (0,1)$, with trivial normal bundle, which separates $\partial P \times [0,1)$ into two components A and B, with the closure of one of them, say A, containing ∂P . Now $P \cup \mathcal{C}[A]$ is a topological manifold with $\partial (Q \cup \mathcal{C}[A]) = V$. Since all of the Stiefel-Whitney numbers of V are zero, V bounds a PL 5-manifold \overline{W} . Finally define $N^5 = P \cup_{D} \mathcal{C}[A] \cup_{V} \overline{W}$.

Now since N-L is a PL manifold it is clear that the Poincare dual of σ_N is represented by L. Also the Poincare dual of the first Stiefel-Whitney class of N, $\omega_1(N)$, restricted to P is represented by $X \times \frac{1}{2}$. Therefore by the W_{μ} formula, $S_q^1 \sigma_N = W_1(N) \cup \sigma_N = \text{intersection number of } L$ and $X \times \frac{1}{2}$ which is non-zero. Therefore N is the desired 5-manifold.

REFERENCES

 Cannon, J., Shrinking cell-like decompositions of manifolds: Codimension three, preprint.

2. Edwards, R. D., Shrinking cell-like decompositions of mani-

folds, to appear.

 Galewiski, D., and Stern, R., Classification of simplicial triangulations of topological manifolds, <u>Bull. Amer. Math.</u> Soc. 82 (1976), pp. 916-918.

4. ______, Classification of simplicial triangulations of topological manifolds, (to appear).

- Kirby, R., and Siebenmann, L., Foundational essays on topological manifolds, smoothings, and triangulations, Annals of Math Studies, No. 88, Princeton Univ. Press, 1977.
- Martin, N., On the differences between homology and piecewise linear block bundles, J. London Math. Soc. 6 (1973), pp. 197-204.
- 7. Matumoto, T., Variétés simplicales d'homologie et variétés topologiques metrisables, Thesis, University de, Paris-Sud, 91405 Orsay, 1976.
- 8. Siebenmann, L., Topological manifolds, Proc. I.C.M. Nice (1970), Vol. 2, pp. 143-163, Gunthier-Villars, 1971.
- 9. Siebenmann, L., Are non-trianguable manifolds trianguable?, pp. 77-84 in Topology of Manifolds, ed. by J. C. Cantrell and C. E. Ewards, Markham Chicago, 1970.