ANOTHER CONSTRUCTION OF AN EXOTIC $s^1 \times s^3 * s^2 \times s^2$

Ronald Fintushel 1 and Ronald J. Stern 2

This note was motivated by Selman Akbulut's talk at this conference. (See [A].) As Akbulut pointed out, if one could construct an exotic twisted s^3 -bundle over s^1 , with a homotopy equivalence $g\colon N^4+s^1\times s^3$, then if a transverse preimage of an s^3 -fiber is a homology sphere H^3 , we must have $\mu(H^3)\neq 0$. But splitting N^4 along H^3 yields an acyclic 4-manifold whose boundary is $H^3 \# H^3$. Thus searching for an exotic $s^1\times s^3$ is an approach toward finding the long sought after element of order 2 in θ_n^3 .

Akbulut's construction is suggested by the fact that the complement of a tubular neighborhood $E(\mathbb{RP}^2)$ of \mathbb{RP}^2 in \mathbb{RP}^4 is $S^1 \times B^3$. His idea was to look for an \mathbb{RP}^2 in \mathbb{Q}^4 , Cappell and Shaneson's exotic \mathbb{RP}^4 ([CS]), such that $\pi_1(\mathbb{Q}^4-\mathbb{RP}^2)=\mathbb{Z}$, and then form $\mathbb{Q}^4-E(\mathbb{RP}^2)\cup S^1\times B^3$. Unable to find such an \mathbb{RP}^2 embedded in \mathbb{Q}^4 , Akbulut was nonetheless able to find an \mathbb{RP}^2 in $\mathbb{Q}^4+S^2\times S^2$ with $\pi_1(\mathbb{Q}^4+S^2\times S^2-\mathbb{RP}^2)=\mathbb{Z}$ and he was then able to form $\mathbb{Q}^4+S^2\times S^2-E(\mathbb{RP}^2)\cup S^1\times B^3$ an exotic $S^1\times S^3+S^2\times S^2$.

After seeing Akbulut's talk we decided to see if one could construct an exotic $S^1 \times S^3 * S^2 \times S^2$ using the techniques we promoted in $[FS_1]$ and $[FS_2]$. As we show this is quite simple to do and the invariant ρ of these papers can be used to detect the fact that the construction is exotic. Instead of viewing $S^1 \times S^3$ as $S^1 \times B^3 \cup S^1 \times B^3$, it is more convenient from our point of view to think of $S^1 \times S^3$ as $S^2 \times MB \cup S^1 \times B^3$ (MB = Mobius band). For our construction we start with K^3 a Seifert-fibered homology $S^2 \times S^1$ obtained by surgering an exceptional fiber of $\Sigma(3,5,19)$ and form X^4 , the mapping cylinder of the free involution contained in the S^1 -action on K^3 . If we could show that K^3 bounded a homotopy $B^3 \times S^1$ with π_1 mapping onto, we could take its union with X^4 and thus construct a fake $S^1 \times S^3$. We cannot do this, but we are able to show that K^3 bounds a homotopy $B^3 \times S^1 * S^2 \times S^2$ and thus we are able to form M^4 , a homotopy $S^1 \times S^3 * S^2 \times S^2$. As in $[FS_1]$ we can show that if M^4 were s-cobordant to $S^1 \times S^3 * S^2 \times S^2$ then

Supported in part by NSF grant MCS 7900244A01.

² Supported in part by NSF grant MCS 8002843A01.

$$\mu(K/\mathbb{Z}_2) - \frac{1}{2} \alpha(K,\mathbb{Z}_2) = \rho(M^4) = \rho(S^1 \times S^3 * S^2 \times S^2)$$
$$= \mu(S^2 \times S^1) - \frac{1}{2} \alpha(S^2 \times S^1, \mathbb{Z}_2) = 0 \pmod{16}$$

for some almost framing of K/ \mathbb{Z}_2 . However α (K; \mathbb{Z}_2) = 0 and the two μ -invariants of K/ \mathbb{Z}_2 are both 8 (mod 16); so M⁴ is exotic. Finally, we are able to show that the double cover \widetilde{M} is standard, i.e. \widetilde{M} is diffeomorphic to $s^1 \times s^3 * s^2 \times s^2 * s^2 \times s^2$.

We now proceed with the construction of M^4 . Let K^3 be the homology $s^2 \times s^1$ which is the boundary of the plumbing manifold

Then K is Seifert fibered with Seifert invariants ((1,1),(3,-1),(5,-2),(15,-4)); so the involution contained in the s^1 -action on K is free. Let x^4 be the mapping cylinder of the orbit map $K+K/\mathbb{Z}_2$. As was shown in our earlier paper $[FS_2$, Lemma 3.1] there is a \mathbb{Z}_2 -equivariant map $K+S^2\times S^1$ which induces isomorphisms on homology. (The involution on $S^2\times S^1$ is identity \times antipodal.) Taking mapping cylinders there is an induced map $f\colon X+S^2\times MB$ which induces isomorphisms on homology.

We have the following Kirby calculus picture for K:

(cf [FS₁; p. 362]).

Now construct a cobordism Y^4 from K to $\partial_+ Y = \hat{K}$ by attaching the following 2-handles to $K \times I$:

We claim that f extends over these 2-handles to a map: f: $X \cup Y + S^2 \times MB \cup (S^2 \times S^1 \times I \# S^2 \times S^2)$.

To see this follow the 2-handles back through the Kirby calculus argument in $[FS_2; p.361-362]$. The attaching circles are k_0 with 0-framing and k_2 with 2-framing:

On K-(exceptional fibers), f preserves S^1 -fibers and is a 15-fold covering. The image of f (see [FS₂; Lemma 3.1]) is $S^2 \times S^1$:

In $s^2 \times s^1$, $f(k_0)$ is nullhomologous (in the above diagram we see that $f(k_0)$ bounds a genus 1 surface) therefore $f(k_0)$ is nullhomotopic in $s^2 \times s^1$. So there is a homotopy in $s^2 \times s^1$ of $f(k_0)$ to a trivial knot. By the homotopy

extension property this extends to a homotopy from the identity of $s^2 \times s^1$ to a map g of $S^2 \times S^1$ to itself which takes $f(k_0)$ to a trivial knot. We can also easily arrange that $g(f(k_1))$ be a meridian of $g(f(k_0))$. Composing f with the above ambient homotopy, we extend $f: X \cup K \times I + S^2 \times S^1 \times I$ so that $f|K \times \{1\} + S^2 \times S^1 \times \{1\}$ maps tubular neighborhoods of k_1 and k_2 onto tubular neighborhoods of the components of a trivial Hopf link in $S^2 \times S^1 \times \{1\}$.

For some framings a_1 on $f(k_1 \times 1)$ and a_2 on $f(k_2 \times 1)$, f will extend over $Y = K \times I \cup h^2(k_1) \cup h^2(k_2) \Rightarrow S^2 \times S^1 \times I \cup h^2(f(k_1)) \cup h^2(f(k_2))$. Because $f \mid K$ induces isomorphisms on homology the naturality of the Mayer-Vietoris sequence and the 5-lemma imply that the intersection form of these two manifolds is the same. The intersection form of Y has matrix

$$\begin{pmatrix} 0 & 1 \\ 1 & 2 \end{pmatrix} ,$$

and therefore is even unimodular with signature 0. Hence the same is true for the intersection form

$$\begin{pmatrix} a_1 & 1 \\ 1 & a_2 \end{pmatrix}$$

of $S^2 \times S^1 \times I \cup h^2(f(k_1)) \cup h^2(f(k_2))$. This means that this intersection form is the same as the intersection form of $s^2 \times s^2$. Hence $s^2 \times s^1 \times I \cup h^2(f(k_1)) \cup h^2(f(k_2)) \cong s^2 \times s^1 \times I \# s^2 \times s^2$. Another 5-lemma argument shows that $f|\hat{K}+s^2\times s^1$ induces isomorphisms on

homology. K is:

But the link

in S^3 is concordant by the ribbon move shown to

Hence there is a homology cobordism Z from \hat{K} to $S^2 \times S^1 =$

with $\pi_1(\widehat{K}) + \pi_1(Z)$ and $\pi_1(S^2 \times S^1) + \pi_1(Z)$ onto. Let $\overline{f}: S^2 \times S^1 + S^2 \times S^1$ be a diffeomorphism inducing on homology the same homomorphism as $(f|\widehat{K})_{\star}$. (Here we identify $H_{\star}(\widehat{K})$ with $H_{\star}(S^2 \times S^1)$ using the homology cobordism Z.) Then by obstruction theory $f \cup \overline{f}$ extends to $f: Z + S^2 \times S^1 \times I$. Since \overline{f} extends over $B^3 \times S^1 + B^3 \times S^1$ we obtain a homology equivalence

$$f:M = X \cup Y \cup Z \cup B^{3} \times S^{1} + S^{2} \times MB \cup S^{2} \times S^{1} \times I \# S^{2} \times S^{2} \cup S^{2} \times S^{1} \times I \cup B^{3} \times S^{1}$$

$$= S^{1} \times S^{3} \# S^{2} \times S^{2} .$$

Using Van Kampen's theorem one checks that $\pi_1(M^4) = \mathbb{Z}$ and hence f induces an isomorphism on fundamental groups. Let $\widetilde{f}:\widetilde{M}+S^1\times S^3 \sharp S^2\times S^2 \sharp S^2\times S^2$ be the induced map on oriented double covers. As \widetilde{f} is degree one, the induced homomorphisms on homology with $\mathbb{Z}[\mathbb{Z}]$ coefficients split [W; Lemma 2.2]. However, all homology groups are free and in any dimension are the same rank, so \widetilde{f} , hence f_1 induces an isomorphism on homology with local coefficients. So f is a homotopy equivalence. It is easy to compute that $\rho(M) \equiv 8 \pmod{16}$ (see [FS2; proof of Prop. 5.5]); hence M is not s-cobordant to $S^1 \times S^3 \sharp S^2 \times S^2$.

We now show that the double cover \widetilde{M} is standard. Note that \widetilde{M} is obtained by gluing together two copies of $Y \cup Z \cup B^3 \times S^1$ by the involution t:K+K. Since t is contained in an S^1 action, t is isotopic to the identity. Hence \widetilde{M} is the double of $Y \cup Z \cup B^3 \times S^1$. A handle decomposition for $Y \cup Z \cup B^3 \times S^1$ consists of a 0-handle, two 1-handles, and three 2-handles. (The cobordism Z is constructed by attaching algebraically cancelling 2 and 3-handles to $\widehat{K} \times I$.) So the framed link picture for \widetilde{M} is obtained by adding a meridional circle labelled "0" to each circle representing a 2-handle. Using these it is easy to slide 2-handles to obtain

i.e. $\widetilde{M} \cong S^3 \times S^1 \# S^2 \times S^2 \# S^2 \times S^2$.

BIBLTOGRAPHY

- [A] S. Akbulut, A fake 4-manifold, these proceedings.
- [CS] S. Cappell and J. Shaneson, Some new four manifolds, Ann. of Math. 104 (1976), 61-72.
- [FS] R. Fintushel and R. Stern, An exotic free involution on 3^4 , Ann. of Math. 113 (1981), 357-365.
- [FS₂] ______, Seifert fibered 3-manifolds and nonorientable 4-manifolds, to appear in Proceedings of the 1981 AMS special session on low dimensional topology, AMS New Contemporary Mathematics Series.
 - [W] C. T. C. Wall, Surgery on Compact Manifolds, Academic Press, 1970.

DEPARTMENT OF MATHEMATICS TULANE UNIVERSITY NEW ORLEANS, LA 70118

DEPARTMENT OF MATHEMATICS UNIVERSITY OF UTAH SALT LAKE CITY, UT 84112