A μ -INVARIANT ONE HOMOLOGY 3-SPHERE THAT BOUNDS AN ORIENTABLE RATIONAL BALL

Ronald Fintushel and Ronald J. Stern²

In this note we show that the Brieskorn homology sphere $\Sigma(2,3,7)$ bounds an orientable rational ball Q. It is known that the μ -invariant of $\Sigma(2,3,7)$ is one as it bounds the plumbed 4-manifold W⁴

Note that W^4 has an even intersection form with signature $\sigma(W^4)=8$ and rank 10. Thus $M^4=Q\cup_\Sigma W^4$ is a closed orientable 4-manifold with even intersection form of signature 8 and rank 10. (Note that M^4 cannot be a spin 4-manifold.) As a corollary we have the following recent theorem of N. Habegger [1]:

COROLLARY. Every even unimodular symmetric bilinear form F with $\left| {{\mathop{\rm rank}}\left(F \right)} \middle/ {\sigma \left(F \right)} \right| \ge 5/4$ can be realized as the intersection form of a closed orientable 4-manifold.

THEOREM. $\Sigma(2,3,7)$ bounds an orientable rational ball Q^4 .

<u>PROOF.</u> First we attach a 1-handle and a 2-handle to $\Sigma(2,3,7)\times I$ to obtain a rational homology cobordism W_1 between $\Sigma(2,3,7)$ and a 3-manifold K^3 which has the integral homology of L(4,-1). Then we describe an integral homology cobordism W_2 between K^3 and L(4,-1). Since L(4,-1) bounds a rational ball W_3 , we let $Q=W_1\cup W_2\cup W_3$. This is done as follows.

It is well known that $\Sigma(2,3,7)$ is obtained by +1 surgery on the figure eight knot. Attach a 1-handle to $\Sigma(2,3,7) \times I$ to obtain a cobordism from $\Sigma(2,3,7)$ to $\Sigma(2,3,7)$ # $S^2 \times S^1$:

¹ Supported in part by NSF grant MCS 7900244A01.

² Supported in part by NSF grant MCS 8002843A01.

Now attach a 2-handle

This describes the cobordism W_1 . To see that it is a rational homology cobordism note that the attached 2-handle kills 4 times the generator of H_1 which was introduced by the 1-handle.

Now the link

is ribbon concordant to the link

by means of the ribbon

Thus κ^3 is integral homology cobordant to

i.e. to L(4,-1). Hence we have W_2 .

Finally L(4,-1) bounds a rational ball W_3 . To see this attach the following 2-handle to L(4,-1) to obtain $S^2 \times S^1$:

QUESTION. Does there exist a closed orientable 4-manifold with definite even intersection pairing and signature 8?

BIBLIOGRAPHY

1. N. Habegger, Une variete dimension 4 avec form d'intersection paire et signature -8, Comment. Math. Helv. 57 (1982), 22-24.

DEPARTMENT OF MATHEMATICS TULANE UNIVERSITY
NEW ORLEANS, LA 70118

DEPARTMENT OF MATHEMATICS UNIVERSITY OF UTAH SALT LAKE CITY, UT 84112