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The 1980s have experienced a tremendous growth in our understanding
of four dimensional smooth manifolds. This has been principally through the
work of Simon Donaldson [D] with his celebrated theorem.

Theorem: Let M be a smooth closed oriented simply-connected 4-mani-
fold with positive definite intersection form &. Then @ is “standard”, i.e. over
the integers.

P=(N D)

Although this is a theorem about 4-dimensional topology, its proof is
differential geometric and analytical in nature. The main theme of Donaldson’s
work is to study the space of solutions of the self-dual Yang-Mills equations on
an SU(2) bundle over the Riemannian manifold M and relate it to the topology
of M.

At first (or even second) glance, the use of techniques from Mathematical
Physics to solve an important problem in topology must be ad hoc and there
must be a more “topological™ proof! The purpose of this note is to argue that
gauge theories and Yang-Mills connections naturally arise in the study of
smooth 4-manifolds. (Why didn’t low dimensional topologists discover them
sooner?)

1 The Intersection Pairing
The traditional goal of geometric topology is to discover algebraic invari-
ants which classify (at least partially) all manifolds in a given dimension.

Historically, one of the most important of these invariants has been the intersec-
tion form.
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Perhaps it’s best to start with two-dimensional manifolds where the
intersection form and intersection numbers are more familiar. We can represent
one-dimensional homology classes on a smooth surface S by smooth oriented
curves. Suppose a. fi € H, (S. Z) are represented by curves A and 8. By slightly
perturbing the curves we can assume that they intersecl transversally in isolated
points. This means that at cach point of

Intersection number 7ero

intersection a tangent vector to A. together with a tangent vector for B (in that
order). form a basis for the tangent space of S. To each point of intersection we
assign + 1 if the orientation of this basis agrees with the orientation of S:
otherwise we assign — 1. The (oriented) intersection number A - B is defined to
be the algebraic sum of these numbers over all points of intersection, and the
intersection form is the induced bilinear pairing defined by /. (a. )= A4- B. It's
casy to see that /, is skew-symmetric [/, (x. /) = — £, (f. 2)] and unimodular. In
fact. for any such form we can choose a basis so that the matrix of the form is

(7o)
-7or

Interscction numbers and the intersection form for a smooth 4-manifold
M are defined similarily. This time we suppose 2-dimensional homology classcs
a, i € H,(M.Z) are represented by smooth oriented surfaces 4 and 8 and that
the surfaces intersect transversally in isolated points. Agatin we assign +1toa
point of intersection il an (oriented) basis for the tangent space of 4 together
with an (oriented) basis for the tangent space of B agrees with the oricntation for
M : otherwise we assign — 1. The intersection number 4 - Bis the algebraic sum
of these over al! points of intersection. and the intersection form is the hilincar
pairing /,, (2. Y = A - B. This time. however, the pairing is symmetric [/,, (2. f)
= 1, (f.a)]. It is still unimodular - the matrix for the form has determinant + 1.

For smooth manifolds there is another way to define the intersection
form. By Poincaré duality we can define the pairing in cohomology rather than

homology. If we use DeRham cohomology H . (M).thena. i € Hj(M)canbe
represented by 2-forms ¢ and b. We simply let

Iya.py=fanb.

(T}
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Defining the intersection pairing on cohomology allows us to extend the
definition 1o all 4-manifolds, smooth or not. If a.fle Hy(M:Z) and
[AM] e H, (MM :Z)isthe fundamental class of M (given by the arientation on M),
then 7, (a. By = a Uf. where “U™ is the cup product in cohomology.

Here are some examples.

t. The 4-sphere S*. Since #, (5%, Z) =0. the intersection form is trivial

. =0.

2. The complex projective planc @ P2. Here H, (€ P2 :Z)=Z, and so the

matrix for fgp is (1).

3. The product of spheres §2 x S2, In thiscase H,(S? x $2;2)=Z ® Z,

and we can represenl gencrators by the embedded surfaces

A=S8% x |pt} and B=pt} x §*. Since 4 and B intersect in a single

point, and each of them can be “pushed off™ themsclves. the matrix for

. {01
l.x .4t 18 10}
4. The Kummer surface
K=[Z0.2,.Z,.Z,) € C P Z* + Z,* + Z,* + Z,*=0!. This time
things are much more complicated. The rank of #,(K:Z)is 22, and one

can show that the matrix for /, is given by Eg + E5 + 3(0 I). where

10
2 -1t 0 0 0 0 o o
-1 2 -1 0 0 0 o0 o0
0 -1 2 -1 0 0 o0 o
0 0 -1 2 -1 0 o0 0
E=l 0 0o o0 -1 2 -1 o -1
0 0 0 0 -1 2 -1 0
0 0 0 0 0 -1 2 o0
0 0 0 0 -1 0 0 2

(In fact, Ey is the Cartan matrix for the exceptional Lic algebra eg.)

The intersection form is indeed a basic invariant for closed 4-manifolds.
In 1949 Whitchead [W] showed that the homotopy type of a closed. simply-
connected 4-manifold is completely determined by the isomorphism class of the
intersection form.

The classification (up to isomorphism) of integral unimodular symmectic
bilincar forms starts with three things: the rank (the dimension of the space on
which the form is defined). the signature (the number of positive eigenvalues
minus the number of negative cigenvalues considered as a real. rather than an
integral form). and the type (the form is even if all the diagonal entries in its
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matrix arc even. otherwise it's odd). A form is positive (negative) definite if all
eigenvalues are positive (negative); otherwise it's indefinite.

For indefinite forms the rank, signature, and type form a complete set of
invariants [MH]. The classification of definite forms, however, is much more
difficult. There is only one nontrivial restriction on un even form—it’s signature
must be divisible by 8. In fact it is known that E; (mentioned above) is the unique
positive definite form of rank 8; there are two cven positive definite forms of
rank 16 (E; @ E, and I',): 24 such forms of rank 24: 3> 107 such forms of rank
32; = 10*! such forms of rank 40.

The first indication that the intersection form of a smooth 4-manifold
had more than algebraic restrictions was Rohlin's Theorem [R] which asserts
that any even form coming from a smooth simply-connected 4-manifold has
signature divisible by 16. In particular the form Eg cannot occur as the interscc-
tion pairing of a simply-connected smooth 4-manifold.

2 A Study of H* (M. Z)

In order to motivate the use of gauge theories to better understand the
intersection form on a smooth 4-manifold M, we begin by studying the second
cohomology group #2 (M ; Z) from the vantage point of an algebraic topologist.
differential topologist. differential geometer, and then an analyist. This material
is classical and appears in various (although rarely onc) standard graduate
courses. For simplicity we assume that #, (M ;R)=0.

When an algebraic topologist is confronted with the group H*(M:Z),
abstruction theory comes to mind. whence H3 (M ;Z)=[M.CP*]. Bt CP* is
the classifying space for SO(2)=U(1) bundles, so that the have a 11
correspondence

H*(M ;Z) — {Isomorphism classes of SO (2) bundles over M}

where x€ H*(M : Z) corresponds 1o that SO (2) bundlc L over M with Euler
class =e(L)= x.

Now assuming that M is smooth. a differential topotogist would consider
H*(M :R) rather than H2(M :Z) and then use the DeRham theorem to iden-
tify H* (M :R) with H,.(M) i.c.. the homology of the DeRham complex

(.)0—000—‘0{2'—‘002-0

where £ are the p-forms on M and d is the exterior derivative. Since d® = 0, (¢} is
indeed a complex and we can form its hemology groups H,.(M). Thus any
clement x € H3(M;R)= H?,, (M) =Kkerd/imd is represented by an element
xe R withdx=0.
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Let’s now assume that M is endowed with a Riemanntan metric. This
induces a metric {,) on p-forms, so that the differential operator din (+) has a
formal adjoint 8; i.c.. (da.b) = {a.dh). An analyist would form the Laplacian
A =dé + 5d and then usc Hodge theory to identify H3, (M) with the space of
harmonic 2-forms, i.c.. those 2-forms x with Ax=0.

At this point, we can summarize our discussion with the following
diagram

H3 (M :Z) &==20, (1oomorphism classes of SO (2) bundles over M)

H3(M:R) ZRuntmen, g2 (pgy 220, harmonic 2-forms) .

We would like to make this into a “commutative” diagram by associating
to an SO(2) bundle over M a DeRham 2-form and to make this association
unique. This is the realm of differential geometry through the study of connec-
tions and their curvatures!

Let E be a vector bundle over M. A connection V on E is merely a rule
which allows one to take derivatives of sections of E in the direction of tangent
vectors of M. So, given a section ¢ € I' (E) and a tangent vector field X on M,
then V, g is the derivative of ¢ in the direction of X and it must satisfy a Leibniz
rule. In other words, a connection on E is a linear differential operator V:I"(E)
— I (T*(M) ® E) such that

V{yo)=df@a+fVa

wheref: M — R. I{ Eisendowed with a fiberwise metric {.) we then require Vto
be Riemannian, that is

d{o,,0,>=(Va,.0,) +{a, Va,)
It will be convenient for us to set the notation
QUF)=T(AT*MQ F)

for any bundle F over M. So. for example, V:Q°(E) — Q' (E). A connection V
has a natural extension

d*:QYE)— Q' (E)

defined by d¥ (2 ® 0)=d1 @ o+(~ 1¥x A Va, where 2 € 2 and ¢ € 2°(E).
The cureature R of a connection V on E is a 2-form with values in g,
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where g, € Hom (E, E) is the subbundle of cndomorphisms which are skew-
symmetric on cach fiber. In other words R* € 27 (q,). It is defined by

ZM..‘HQ.—Q.}.Q..Q_ IQ_—, :.
Also, we have RV =d*-V.

In the case at hand, £ is an SO(2) bundle, so that g, is the trivial real line
bundle over M. Thus if V is a connection in an SO (2) bundle L over M. then its
curvature R* € Q*(q,) = 2? is a real 2-form! It is a consequence of the Bianchi
identities that R is a closed 2-form. i.c.. d R¥ = 0. Furthermore. it is a funda-
mental result of Chern that the real Euler class e (L), € Hjz (M) is represented
by ‘.._Iu R*. We could now complete our diagram by associating to each SO(2)
bundle L over M the curvature 2-form of a conncction on L. Any two such
conncctions determine the same DeRham cohomology class.

But let’s be greedy. There are many conncections on L and many rep-
resentatives for the real Euler class ¢(L) of L. Given any closed 2-form «
representing (L) there is a connection V, whose curvature is 2o (for fix any

| -
connection V and note ;5 . R¥=a+dwforsomewe ' .SetV,=V-2nw and

1 | J— . . .
then 3n Rx =55 R¥ —dw = 17). In particular there is a connection V, whose

curvature is the unique harmonic 2-form 0 representing e (L). But thereare many
such connections V,! To sec this. let V be a connection in a vector bundle E over
M and let G, « Hom (£, E) be the bundle of orthogonal endomorphisms of E.
If gel(G,). then V=g V g~' is a new conncction whose curvature
RY' =g RY g~ 1. V¥ issaid to be gauge equivalent 1o V and %, =TI (G,) is called
the gauge group. 1n our case of an SO(2) bundle L over M. R =g R¥ g '=R".
In fact, R* = R* if and only il there exists a g € %, with V' =V*! (I R" = R*,
then V' =V + wwhere dw = 0. Since H, (M :R) =0, w=dsforsomes € 0° SoV’
=V+ds=e *(e'ds+c'V)y=¢"*Ve'; henee V and V' are gauge equivalent.)

We now associate to cach SO(2) bundle L over M the unique gauge
cquivalence class of connections whose curvatures are harmonic. This completes
our commutative diagram.

ddffesenteal
HY (M. Z) F=fies, :_.mmﬁﬂnwﬁm_snﬁ_ummnm S0 _mm:mn am:?w_a..oa
of SO(2) bundles classes o
over M, connections with
.n harmonic curvature;

—‘ curvature/2 n

HE(MR) SBhembeon, g2 (M) LR, parmonic 2-forms)
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Now that we have a cosmopolitan description of the free abelian group
H3 (M : Z) which utilizes materiat from (what should be) a standard graduate
curriculum, so what?

3 Why Yang-Milis?

As is pointed out in the first section. in order to gain some understanding
of 4-manifolds. the intersection form should come into play. This did not happen
in the second section. As an attempt to introduce the intersection form into our
scheme. a topologist might consider stable isomorphism classes of SO (2) bun-
dles over M rather than just isomorphisi classes. That is, put an equivalence
relation ~ on SO(2) bundles by declaring that L ~ L' if und only if L @ € and
L’ ® £ are isomorphic as SO (3) bundles, where ¢ is a trivial R' bundle over M.

To sce if we have accomplished anything, what equivalence relation have
we induced on H? (M Z)? By the classification of SO (3) bundles over a 4-
complex. duc to Dold and Whitney [DW]. L ~ L’ ifand only if ¢ (L), = ¢ (L"),
and (e (1))*=(e(L))’. where. for ac H*(M:Z). a,, € H(MZ,) is the mod 2
reduction of ¢, and @* is (@ v «) cvaluated on the fundamental class of M. So by
introducing the equivalence relation ~ on H2 (M Z) given by a ~ b if and only
il @, = b,., and a* = b*. we have the 1-1 correspondence

H{(M:Z)/~ «~ |isomorphism classes of |
$0(2) bundlcs over M}’ -

Let’s now attempt 1o complete the picture.

The novel (at least for a topologist) viewpoint in the previous scction was
the study of connections on L. So we now study connectionson E=L @ ¢ in
particular, we should study those connections whose curvature forms arc har-
monic. But what does this mean. since RY € £ (g,) and g, is no longer trivial (in
fact, for SO (3) bundles E. g, > E). As mentioned above, we have the sequence

eESeELaEs...
However. R € 22 (q,). so we should lock for a sequence involving forms with
values in g,. Given a connection V in E. it induces a connection V in g, given by
V(0)=[V,0] where 0 e Q°(q,). i.c.. V(D) (6)=V (0(a)) — {V a) for any section
a of E. We then have the sequence
- Fy &,
Lla) =02, > R a) S

and. as in the real case. the Biunchi identitics translate to the fact that &* RV =0.
Again, cach ¢* has a formal adjoint 8. and we can form the Laplacian AY = 4% §¥
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+ &Y d*. We then wish 10 study those connections V in E= L @ ¢ whose curva-
tures are harmonic, i.e.. AYRY =0. If M is compact. this translates into two
cquations, 4* R¥ =0 and 8* R* =0, which by the Bianchi identities reduces to
&' R¥ = 0. This is nothing more than the Yang-Mills cquation!! A Yang-Mills
comection is a connection whose curvature is harmonic.

As we saw in the previous section, there is the action of the gauge group
on the space of connections which takes a Yang-Mills connection 10 a Yang-
Mills connection. We are now led to the study of gauge cquivalence classes of
Yang-Mills connections on E= L @ ¢, i.c., the moduli space .4 of Yang-Mills
connections on E.

Note that .4 # 0, since E=L @ ¢ has Yang-Mills connections arising
from the unique gauge equivalence class of Yang-Mills connections on L direct
summed with the trivial connection on E. Such connections are called reducible
connections. The number of gauge equivalence classes of reducible Yang-Mills
connections is. then, just the number m of distinct (up to orientation) splitting of
Eas L' @ ¢ for some SO(2) bundle L'. This number, as we saw above, is half the
number of solutions to the equations

iy  a=(e))
(i) ay=e(L),.

for a € H? (M Z). (ii) says that a=e (L) + 2b for some b€ H* (M Z),s0 m is
half the number of solutions to the equation

(i) (e(L)+2bY = (e(L))
which is equivalent to the equation
iy b -le(L)+ 5)=0.
Perhaps by studying M. the irreducible Yang-Mills connections will

provide a cobordism between the reducible solutions which are completcly
determined by the intersection form on M.

4 Why Self-Dual Connections?

In order to complete the lower row of (2.1). we would like to relate
harmonic forms with cohomology. Unfortunately. the sequence

@1 Q%)% 0 @) — Qg —
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is not a complex. since d% d* = RY. which may not vanish. Don’t despair!
Differential geometers have long been aware that dimension four has a
property that distinguishes itself from other dimensions. The rotation group
SO(m is a simple Lie group for all n+4 and SO(4) double covers SO(3)
x SO(3). so that the Lic algebra so(4) of $0(4) is isomorphic 1o sa(3) x so(3).
Thus. since the six dimensional space A? (R*) of 2-forms on the inner product
space R* is isomorphic to s0(4). A* (R*) decomposes as the sum of 3-dimen-
sional spaces 42 + A% . An alternate description of this decomposition is given
in terms of the Hodge star operator *: A2 (R*) — AZ(R?). If (e,.....e,) is an
oriented basis for R%, then *(¢, v ¢} =¢, v ¢, where(i,j. k,[) is an even permu-
1ation of (1. 2, 3.4). As (*)? = 1. A2 (IR*) decomposes as the + 1 cigenspaces A%
of *. Thus, if M admits a Riemannian metric, A2(7* M) = A% (M) @ A2 (M),
and this decomposition is an invariant of the conformal class of the metricon M.
An element of A2 (M) (A2 (M) is called a self dual (anti-self dual) 2-form.
Since Q(q) =T (A*{T*(M))®q,). * cxtends to an operator
*: Q% (q,) — Q¥ () given by * ® id. Thus 2% (g,) =2 (ap) © 22 (g,). But
RF € Q%(g;). so R* = R, + R*.. This is a rery special property of 4-dimensional
geometry—-the curvature decomposes into its scif dual and anti-self dual
components.
The adjoint 8 : 2*(g,) — 2" '(8,) can be given by 8° = (= 1y '*d**. If
R¥ =0, then 6° R* = — *d* R¥ =0. Thus self dual (anti-self dual) connections,
i.e.. connections V for which R* (RY) vanishes, are Yang-Mills connections.
We now obtain a complex from (4.1) as follows. Suppose V is self dual
connection. Then the sequence

J K
@2 @) 22 @52 ) —0

with * the orthogonal projection of ¥ onto Q2(g%), is a complex since
& -d° (@) =[R".¢6]=0fora € Q°(y,). So. by considering self dual conncctions
(which are Yang-Mills conncctions), we can extract from {4.1) a complex, hence
consider its cohomology groups HY, H| and Hi.

The complex (4.1) and its cohomology groups contain much informa-
tion: First. if V and V' are Riecmannian connectionsin £,V — V' € 82! (g,).so that,
asan affine space. the space 6, of Ricmannian connections on E is isomorphic to
Q'(q,). Furthermore, if V'=V+ A4 for some Ae 0'(g,), R =R"+
d* A+[A. A, where [4,4],, =[4,.4,]. Sccond, the tangent space to the
orbit of the gauge group ¥ = I"(G,) a1 V. considered as a subspace of Q' (9,) =
T Cy. is the image d* (£2°(q,)). To sce this, we can view 2°(g,) = I'(g;) as the
infinitesimal gauge transformations. So given an element a € 2°(q,). consider
the corresponding curve g, =exp(/a) in G, and notc that (d/dDV =], o=
md.mauun V(6) = d* (a). Thus ker &* can be thought of as the tangent space of 6/
at [V].
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ker &t

d0°(q,)

Third, if V is self dual and 4 € Q' (a,). V + 4 is self dual if and only if
O0=R"*=R +d"A+[A.A]. =d* A+{A.A].. The linear part of this
equation isd* A =0. So, if we only consider lincar information. a ncighborhood
of [V] in the moduli space ¥ of gauge equivalence classes of self dual connec-
tions on M should be {4 € Q'(q,)16° 4 =0 and &* 4 =0}, that is, by Hodge
theory, a neighborhood of 0 in H¢.

What about the reducible Yang-Mills connections in E= L @ «. It cer-
tainly is not the case that every harmonic 2-form is self dual. However, since the
intersection pairing is positive (negative) definite on the self dual (anti-sclf duat)
2-forms, il the intersection form on M is positive definite, erery harmonic
2-form is self dual. Thus under the assumption that the intersection form on M is
positive definite (and /' (M :[R)=0, a fact we used in £ 2). we have that if m is
half the number of solutions to

(e(Ly+b)-b=0for be H*(M:Z)

then contains m reducible connections.

It is from this point of view that in [FS1] we show. for instance. that
Eg @ ¢. ¢ any positive definite symmetric unimodular form. cannot occur as
the intersection form on any closed smooth 4-manifold M with H, (M :Z)
containing no 2-torsion. The outline of the proof is simple. Suppose such an M
exists. We can assume #, (M R) =0, for surger out the frec part of #, (M :Z)
and note that the intersection form is unaffected. There exists an clement
xe H3(M:Z)with x* = 2. Let L be the SO (2) bundle over M with ¢(L) = x and
consider the SO () bundle £ L @ . The work of K. Uhlenbeck ([U 11, [U 2]
can be used to show that " is compact. Then, using the work of Atiyah-Hitchin-
Singer [AHS]. we show that &' is a manifold of dimension 2p, (a,) - 3= 2p, (E)
—3=2x*-3=1. 4 is then a disjoint union of circles and intervals whose
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endpoints correspond to the reducible self dual connections. But the solutions
10 h-(x+5) =0 is just the order of the torsion subgroup of /*(M:Z) (for
b-(x+h)=0if and only if (x+25)2=x and (x+26Y =(x+bh+h)?=
(x + 5)2 + (/2. But then b = 4 x or b is lorsion since x is minimal. i.¢.. x cannot
be written as ¢ + d with ¢ < x* of ¢? < x?). Thus. by the universal cocfTicient
theorem m = |tor H2 (M :Z)| = ltor H, (M :2)|. If H, (M : Z) has no 2-torsion,
m is then odd. But intervals have an even number of end points, a contradiction!
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