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Pseudofree orbifolds

By RonaLp FinTusHEL' and RoNALD J. STERN?

1. Introduction

The structure of 6}, the integral homology cobordism group of integral
homology 3-spheres, is of central importance for understanding smooth 4-mani-
folds. However until recently the only known nontrivial fact concerning this
group was the existence of the Kervaire-Milnor-Rochlin epimorphism p: 85 — Z,.
The first indication that this group might be larger than Z, was given by the
celebrated work of S. Donaldson [D] which implied that if an integral homology
3-sphere £ bounds a simply connected 4-manifold whose intersection pairing is
definite and not diagonalizable over Z, then 2 cannot bound an acyclic 4-mani-
fold with 7 (2) —» 7(W) an epimorphism. For example, this suggests that
perhaps the Poincaré homology 3-sphere has infinite order in 6. We will show
this to be the case.

The Poincaré homology sphere H3 is an example of a broad class of
homology 3-spheres, namely the Seifert fibered homology 3-spheres (equivalently,
Brieskorn complete intersections that are homology 3-spheres) 2(a,,...,a,),
where the notation indicates that 2(a,,...,a,) is Seifert fibered over S? with
exceptional fibers of orders a,,...,a, which are necessarily pairwise relatively
prime (see § 2). For instance, H> = (2, 3, 5).

Starting with a Seifert fibered homology 3-sphere, one is able to construct
singular 4-manifolds whose singularities are isolated and which have neighbor-
hoods which are cones on lens spaces with relatively prime orders. We call these
singular spaces pseudofree orbifolds. They can be desingularized by taking a
finite branched cyclic cover. Motivated by recent work of S. Donaldson we shall
define a signature defect-type invariant which we reinterpret as the dimension of
a moduli space of a set of perturbed deck transformation-invariant Yang-Mills
equations on the branched cyclic cover of a pseudofree orbifold related to Z. We

! Partially supported by National Science Foundation Grant MCS8300823
2 Partially supported by National Science Foundation Grant MCS8002843A01
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then use this interpretation to garner new results concerning the 4-manifolds that
S bounds. This invariant is most easily described for Seifert fibered homology

3-spheres as follows.
Given (a,,...,a,), let a =a,...a,. Then the invariant R(a,,...,a,) is

given by
wk) . 2( wk)
sin®| — |.
a, a;

2 " %
R(al,...,an)=z—3+n Z ag Z (wak/a?)cot(
It turns out that R(a,,...,a,) is an odd integer (see 6.3). A key theorem is:

Tueorem 1.1. If R(a,,...a,) > 0 then 2(a,,...a,) does not bound an
oriented smooth 4manifold V whose intersection pairing is positive definite and
whose first homology H,(V;Z) contains no 2-torsion.

The orientation which we have assigned to 2(a,,...a,) is its orientation as
the link of an algebraic singularity. This is important since with this orientation
3(a,,...a,) always bounds an oriented simply-connected smooth 4-manifold
with a negative definite intersection pairing, namely the canonical resolution of
its associated singularity. It is worth pointing out the following special case of
Theorem 1.1.

Tueorem 1.2. If R(a,,...a,) > 0 then 2(a,,...a,) does not bound a
Z -acyclic 4-manifold.

In this regard one should keep in mind that although Z(2,3,7) has
p-invariant 1, it bounds a rational ball (with = (M) = Z,) [FS1] and R(2,3,7) =
— 1. This points out that the invariant R(a,,...a,) does not carry the p-in-
variant.

Further, if R(a,,...a,)> 0 then =(a,,...a,) is not oriented cobor-
dant to any (connected) sum of Seifert fibered homology spheres

- 9=1(2(bj,1""bj,m<i)))
by a positive definite cobordism W where H,(W; Z) contains no 2-torsion.

Now there are many X(a,,...a,) with R(a,,...a,) > 0, for example
R(2,3,6k — 1) = +1 for k > 1, so that 2(2,3,6k — 1) (or any connected sum
of such) cannot bound a Z,-acyclic 4-manifold. In particular 2(2, 3, 5) has infinite
order in 6.

Here is an outline of the proof of Theorem 1.1 which is carried out in
Sections 2-9. Let C denote the mapping cylinder of the Seifert fibration
3(a,,...a,) > S% If Z(a,,...a,) bounds an oriented positive definite 4-mani-
fold V as in the theorem, then X = V U (— C) is a pseudofree orbifold whose
singular points have neighborhoods which are cones on the lens spaces
L(a,;,a/a;). We state our main theorem, from which Theorem 1.1 is shown to



PSEUDOFREE ORBIFOLDS 337

follow, in Section 2. In order to study the singular geometry of these orbifolds we
desingularize everything by taking branched covers in Section 3. In particular,
there is a surface F smoothly embedded in C with self intersection number a.
The a-fold cover M of X = VU (— C) branched over F and the n singular
points is a smooth 4-manifold, and there is over M a smooth Z -SO(3) vector
bundle E whose structure group equivariantly reduces to SO(2). The idea is to
consider Z invariant self-dual SO(3)-connections on E. If R(a,,...a,) > 0 then
using ideas of K. Uhlenbeck ([U1], [U2]), Atiyah, Hitchin, and Singer [AHS], and
the G-signature theorem, we show in Sections 4-8 that the Z -invariant self-dual-
ity equations can be perturbed to have a compact moduli space which is a
manifold of dimension R(a,,...a,) with an odd number of singular points each
having a neighborhood which is a cone on a complex projective space
CP(3(R(ay,...a,) — 1). If R(a,,...a,) = 1(mod4) this contradicts the fact
that an odd number of such complex projective spaces cannot bound. If
R(a,,...a,) = 3(mod4) a similar contradiction is obtained in Section 9 by
considering the reduced gauge group and showing that an odd number of such
complex projective spaces cannot bound inside the gauge equivalence classes of
connections.

Section 10 is devoted to applications of the main theorem. Therein we give
details of the consequences of the theorem to the study of 6. In particular we
prove that 6" has a subgroup of the form Z ® Z,,, k > 0. Also we discuss
applications of the main theorem to constructing examples of Alexander poly-
nomial one knots that are not smoothly slice, to questions regarding representing
2-dimensional homology classes by smoothly embedded spheres, and to the
uniqueness up to concordance of simplicial triangulations of topological mani-
folds.

The authors wish to thank the many mathematicians who have spent time in
discussions about this work: in particular, Morris Kalka, Al Vitter, Tom Duchamp,
and Howard Sealy for patiently explaining ideas concerning many topics in
analysis and differential geometry. Blaine Lawson’s beautiful CBMS lectures on
Yang-Mills theory were the turning point in the understanding of our program,
and his lecture notes [L] were instrumental in our work.

We also recommend that the reader be familiar with [FS2] where we
describe the nonequivariant version of the results presented here.

2. Pseudofree orbifolds

A pseudofree S'-action is a smooth S'-action on a smooth (2n + 1)-manifold
such that the action is free except for finitely many exceptional orbits with
isotropy Z,,,...,Z, where a,,...,a, are pairwise relatively prime. The total
isotropy is the product a = a,...a,. A pseudofree orbifold X = Q°/S! is the
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quotient of a smooth 5-manifold Q% by a pseudofree S'-action. Then X is a
4-manifold with isolated singularities whose neighborhoods are cones on lens
spaces L(a,, b,) corresponding to the exceptional orbits in Q°.
Let X = Q5/S' be a pseudofree orbifold, and set D(X) =

X — Ur_,int(cL(a,, b;)). The S'-action over D(X) is free; hence it is classified by
an Euler class e € H*(D(X); Z). Since the tubular neighborhood of an excep-
tional orbit E, with isotropy Z, in Q° is D* X, 8' which is diffeomorphic to
D* x S!, the part of Q° over each L(a,; b)) is ]ust $3 X S. From this we see
that i*(e) is a unit in Z _, where

0 - H¥D(X), 3D(X);Z) > H¥(D(X);2) > H(aD(X);Z) =

i’ Vi

Furthermore the S'-action on the tube D% X D2 X S' of the exceptional
orbit E; is
t-(z,w,s) = (zt", wt*, st*)
where r; and s; are relatively prime to a;. The triple (a; r,, s;) is called the slice
type of the exceptional orbit E; with isotropy Z, . Note that

(D?x D?x 8')/8' = D* x D*/Z, = cL(a;r,s;) = cL(a,, b,)

where 757! = b (mod a,).

The pair (D(X), e) gives complete classifying information for the S'-action
(Q%,SY). Since i*(ae) = 0, there is a (unique) class f € H*D(X), dD(X); Z)
such that j*(f) = ae. We define e to be the rational number

(e U f)[D(X), 3D(X)]

where [ D(X), dD(X)] is the fundamental class of (D(X), dD(X)). Since X is a
rational homology manifold there is a rational intersection form defined on
H*(X;Q). If we identify H¥D(X), dD(X);Z) and H% X;Z) and then view
e € H%X; Q), the rational self-intersection number of e is just e

In general, given a pseudofree orbifold X, we say that e € H%(D(X);Z) is a
pseudofree Euler class if i*e is a unit in H¥dD(X);Z) = Z,. Such e define
pseudofree Sl-actions over X. To see this, let Y be the free S'-manifold over
D(X) with Euler class e. If p: Y — D(X) is the orbit map, then, since i*(e)
is a unit, each p~}L(a; b)) =S>Xx S! and the S'action on S® X S'=
d(D? x D? x S!)is equivalent to ¢ - (2, w, s) = (2", wt*, st*) where r; and s,
are relatively prime to a;. This action then extends in the obvious linear fashion
over D* X $' with one exceptional orbit of isotropy Z, .

Before we state our main theorem concerning pseudofree orbifolds we need
to introduce two integers. It is convenient to arbitrarily split

H%D(X);Z) = FrH%(D(X);Z) ® Tor HXD(X); Z)
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into free and torsion parts. Define

#{fe FrH? (D(X);Z)| i*f=i%, f>=e®and
f=e(mod2)}, a # 2

(1/2) #{fe FrH?(D(X);Z)| i*f=i%, f>=e®and
f=e(mod2)}, a = 2.

ple) =

For a geometrical interpretation of p(e) see Propositions 4.2 and 5.4.
Define
n a;,—1
R(X,e)=2e2—3+n+ Y. (2/a,) Y. cot(wkr,/a,)cot(wks,/a,)sin*(wk/a;)
i=1 k=1
where (a; 1;, s;) is the slice type at the exceptional orbit with isotropy Z,, . For a
geometrical interpretation of R(X, e) as an index of an elliptic operator and as
the dimension of the solution space to certain equivariant Yang-Mills equations,
see Theorem 8.2.
We now state a version of our main theorem.

THEOREM 2.1. Let X be a pseudofree orbifold with pseudofree Euler class e.

Suppose that
(i) the intersection form on X is positive definite,

(i) Hy(D(X);Zy) = 0,

(iii) i*(Tor H¥ D(X); Z)) = 0, and

(iv) e’ < 4/a
(if e® = 4/ assume e # 0 (mod 2) and H¥w(D(X)); Z,) = 0). IfR(X, e) > 0,
then p(e) = 0 (mod 2).

For a statement of the theorem without the technical condition (iii), see
Theorem 9.2.

A pseudofree S'-action on an oriented 5-manifold )5 may be viewed as a
singular SO(2)-bundle over X. In order to prove Theorem 2.1 we would like to
use such singular bundles to imitate the ideas presented in [FS2]. In order to
desingularize everything we resort to branched covers and study the equivariant
geometry of these covers. Before doing this, we shall explain how Seifert fibered
homology 3-spheres fit into the picture.

Let 2 = Z(a,,...,a,) be a Seifert fibered homology 3-sphere. Note that
this means that = admits a pseudofree S'-action with exceptional fibers with
isotropy Z,,...,Z,; and 2/8' = §% Let C be the mapping cylinder of the
orbit map ¥ — S% Then C is a 4manifold with n singular points which have
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neighborhoods which are cones on the lens spaces L(a;, — a/a;) and the
boundary of C is . Now Z(a,,...,a,) is the link of an algebraic singularity.
(See [M], [N]; for example Z(p, q, r) is the link of the isolated singularity at 0 of
the equation x? + y9 + 2" = 0 in C3.) This fact gives = a canonical orientation
so that oriented this way = bounds the canonical resolution, a negative
definite simply connected smooth 4-manifold. In fact, blowing up once at the
singularity gives C with a negative definite intersection form. Let W =
C — Ur_,int(cL(a,, — a/a;)). Then H(W;Z) = 0 and HXW,Z) = Z. Let B
correspond to 1.

As in Theorem 1.1 suppose that = bounds an oriented positive definite
4-manifold V whose first homology contains no 2-torsion. By surgering out the
free part of H (V;Z) we can assume that H|(V;Z,) = 0. Let X =V U (- C);
so X is an oriented positive definite pseudofree orbifold. Its pseudofree Euler
class is es € H(D(X);Z) = HYV;Z) ® H¥(W,Z) with ey = (0, — B) and
e2 =1/a where a = a,...a,. Now X satisfies the hypotheses of Theorem 2.1
and p(es) = 1. Theorem 1.1 follows once we compute the slice types (a;; 7;, s;)
at the exceptional orbits of the S'-action classified by e.

Consider the smooth S'-action on = X D? given by

t-(x,z)=(t x,tz)

where S! acts on = by the action of the Seifert fibration and on D? as

multiplication of complex numbers. The orbit space (£ X D?)/S' = C. There is

the obvious S'-action on V X S! with orbit space V. These actions agree on the

boundaries and glue together to give the pseudofree S'-action classified by es.
On the tube of the Z ,-orbit in = the S'-action is

S! x D? x §' - D? x §!
t X(z,8) > (t*/%z,t%s)
because the Seifert invariant of X is ((a,, 8,),...(a,, B,)) where

Z (aBy/a;) = 1,

and the slice type of the action at the Z -orbit is (a; »;) where
B,v;, =1 (moda,;). (See [NR].) But the equation E,B(a/a ) = 1 implies that
v, = (a/a;) (moda,). In = X D? near a Z,-orbit we then have the S'-action

S! x(D? x S') x D? - (D2 x §') x D?
t X((z,s), w) = ((¢2/%2,t%s), tw).

So the rotation numbers are 7,= a/a; and s; = 1. Thus R(a,,...,a,) =
R(X, ey).
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3. Branched covers

Let X be a pseudofree orbifold as above with pseudofree Euler class e.
Recall that D(X) = X — U?_,int(cL(a;, b;)). Consider the a-fold cyclic cover of
»_\L(a,,b,) = D(X) given by

H3(3D(X);Z) = H(3D(X);Z) = (UL(a,, b.): z) oz, -7,

where the unit i*e goes to a generator of Z_,. Over each lens space this gives
a/a, times the standard cover S* — L(a;, ,) and it extends to an a-fold cyclic
branched cover of U?_,cL(a;, b;) branched over the cone points. This branched
cover extends to a branched cover over all of X with branch set
F U {cone points} where F is a surface in the interior of D(X) which represents
the Poincaré dual of that unique class f € H% D(X), dD(X);Z) such that
j*f = ae. (See, for example, Lemma 2.2 of [CG2].) So we have an a-fold cyclic
branched cover

A: M(X) > X
where M(X) is a smooth closed 4-manifold with a smooth Z -action and
X =MX)/Z,
Let p: Q% — X be the pseudofree S'-action classified by e. Pull this action
back over M(X). Each tube D* X, S! of an exceptional orbit in Q° pulls back

to a/a, copies of the free Sl-actlon whose orbit map is p; in the diagram
D* x St D* x, S!
Pi
D* ———cL(a;,b,).

So when the pseudofree S'-action is pulled back over M(X) it becomes a
principal S! = SO(2)-bundle P over M(X). Let L, - M(X) denote the associ-
ated SO(2) vector bundle. Now L, carries a smooth Z -action by SO(2)-bundle
maps covering the Z -action on M(X). Note that L,/Z, is just the mapping
cylinder of the orbit map p: Q3 —> X. Let E = L, ® ¢ where ¢ is a trivial real
line bundle over M(X). Then E is a Z -equivariant SO(3)-vector bundle over
M(X) with a Z -invariant SO(2) reduction. In Section 5 we shall study Yang-Mills
connections on E which are invariant under the Z action. First we calculate the
number of such Z -invariant SO(2) reductions of E.

4. Z -Invariant reductions of E

Let X = M(X)/Z, be as in Section 3 with E = L, ® &. Given another
Z -invariant topological reduction E = L ® ¢, let P be the principal SO(2)-bun-
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dle associated to I.. Then P/ Z, is a pseudofree S'-manifold over X = M(X)/Z,
with pseudofree Euler class ¢ € H¥D(X);Z) so that L = L.

ProposiTiON 4.1. L, ® ¢ is Z equivalent to L, ® ¢ if and only if
i) e2 = e?,

ii) ¢ = e (mod 2), and

iii) i*(é) = i*(e) in HYdD(X); Z).

Proof. The classification of SO(3)-bundles over a 4-complex due to Dold and
Whitney [DW] states that the first Pontrjagin class p, and the second Stiefel-
Whitney class w, completely characterize such bundles. Also recall that the first
Pontrjagin class of an SO(2)-bundle is the square of its Euler class.

Let A: M(X) — X be the branched covering map and let N = A~ D(X)).
Consider the cohomology sequences of pairs

0———H(D(X), 8D(X); Z) HD(X);Z) H%(4D(X); Z)
A* A*
0 HYN, 9N Z) H(N; Z)——0
H(M(X)Z) = HAM(X):2).

Now MA*e € HN;Z) = H¥(M(X);Z) is the Euler class of L, So under
the isomorphism H*(M(X); Z) = H¥N, dN;Z) we have p(L, ® ¢) =
(1/a)(A*(e U )N, dN] = (e U f)[D(X), dD(X)] = ae® So if L, ® ¢ is Z -
equivalent to L, ® ¢, by the above classification, é* = ¢2; and since L,/Z, and
L,/Z, when restricted to D(X) are stably equivalent SO(2)-bundles, é =
e(mod 2). So far we have only utilized the information that L, & ¢ is equivalent
to L, ® € and that this equivalence respects the action of Z_, over N.

Now A~ Y(cL(a,, b,)) consists of a/a, disjoint 4-balls. Over each of these
balls D* we may identify L, & €|« with D* X R X R where Z_ acts via
$(x,2,8) = (¢ x, 2tk s) where ¢ is a fixed generator of Z,, k, is an integer
(mod a;), and the action on the D*factor is that on D* c M(X). Similarly we
may 1dent1fy L,® ¢|p: with D* X R2X R with Z_action {-(x,z,s)=
(¢ - x, 2k , 8). Our given Z -equivalence of L, ® ¢ with L, ® ¢ gives an equi-
valence of representations of Z, on 0 X R3; hence k, =k, (moda )- However k;,
clearly determines the Euler class of the S -bundle $3 %, St =p, X L(a,, ,))
— L(a;, b;). It follows then that i*(é) = i*(e) since the S 1-bundles p, ((dD(X))
and p; Y(dD(X)) are equivalent over dD(X).

Conversely, assume i)-iii) hold. Let L = L,/Z,|p, and let L=
L;/Z,|px)- Since i*(é) = i*(e) it follows as above that L, & ¢ is Z equivalent
to L, ® £ over M(X) — N. Over dN if we take the quotient by Z  we obtain an
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equivalence of L with L, and we need to know that this extends to an
equivalence over all of D(X) of L ® ¢ with L @ . There are two obstructions to
extending our equivalence and they lie in H* D(X), dD(X); Z,) and
H*(D(X), 3dD(X); Z). But since é = e (mod 2) the first obstruction vanishes, and
since é2 = e? the second vanishes. (See [FU; pp. 223-4].) O

ProposiTiON 4.2. Suppose H,(D(X);Z,) = 0 and i*(Tor H¥ D(X))) = 0.
Then, up to orientation, the number of Z invariant reductions of E is just
p(e)| H(D(X); Z)|.

Proof. Given an element é € Fr H¥(D(X);Z) such that i*¢ = i*e, é2 = e2
and é = e (mod2), there is an SO(2)-vector bundle L, such that L, ® ¢ is
Z equivalent to L, ® e If ¢t € Tor H(D(X);Z) = Tor H(D(X); Z) =
H\(D(X);Z), then (é + t)® = é2% é + t = é (mod2) since H(D(X);Z) is odd
torsion, and i*t = 0, so that i*(é + t) = i*¢. When a = 2, i*(— e) = i*(e), so
that the factor 1/2 must be included in the definition of pu(e) to account for a
change of orientation. The proposition now follows from (4.1.). O

5. The equivariant geometry of E

In this section we shall describe the setting of our studies, namely the
equivariant differential geometry of the Z -equivariant vector bundle E over
M = M(X).

Choose Riemannian metrics on E and M with respect to which Z  acts by
isometries. For any vector bundle F over M let Q%(F) = T(A*T*M ® F) be the
space of k-forms on M with values in F. In particular, Q°(F) is the space of
smooth sections of F. For our purposes we shall view a Riemannian connection
as a linear map v: Q%E) — Q¥ E) which satisfies

V(fo)=df® ¢ + fVve
and
d{0,,0,) = (V0,,05) +(0,,V0,)

where f: M — R, and { , ) is the Riemannian metric on E given above.

Let % denote the space of all Riemannian connections on E. For v € € let
RY € Q¥ Hom(E, E)) .denote the curvature of V. The gauge transformation
group ¢ of E is the group of all bundle automorphisms of E (fixing M) which
restrict to orientation-preserving linear isometries on each fiber of E. The adjoint
bundle g, of E is defined by

gg = {L € Hom(E, E)|L, € so(E,) on each fiber E_of E }.
Of course, for v € € we have RY € Q%g). The map E — g, given by
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u = u X —, where “X” denotes fiberwise cross product, induces an isomor-
phism of bundles E = g . Since the difference of two connections on E lies in
Qg ), € is an affine space. The gauge transformation group ¥ acts effectively
on € via g(V)=gevoeg Lie for o € Q%E) and v € TM,

g(v).(0) = g(v,(g7%)).

Let # = %/% denote the moduli space of connections on E and let m: € > @
be the orbit map.

A connection vV € ¥ is called selfdual if *RY = RV where “*” is the
Hodge *-operator on M. Let «/ denote the subspace of € consisting of all
self-dual connections of E. The action of ¢ on % preserves .&7; we let 4 =
/G = m( ) denote the moduli space of self-dual connections on E.

The compatible actions of Z, on E and M induce an action of Z_ on %. If
Ve¥? hel,oc Q%E),and v € TM are given then first define the action
of Z, on Q°(E) by

h(¢) =hogoh!
where h~! is a diffeomorphism of M and h is a bundle map. Then set
h(v),(0) = h(v,(h"")),
ie. set h(V) = hov oh L This action of Z_ on ¥ preserves . Then define
the invariant connections of E to be
¢*={v €|h(v)(o) =vV(o)forallo € Q°%(E)and he Z_}.

Also let &7 = €% N /. The subgroup ¥* C ¢ of Z -equivariant gauge trans-
formations

9 ={ge|gh=hgforal heZ)
acts on €* and &/ Welet £ = ¢°/9* and A * =L/ G".

There is an action of Z, on each Qg ) defined by
(hq))"l“wuk = hq)h_l*(ul) ,,,,, h™ts(vp)

where Z , acts on g, by means of the isomorphism E = g, described above. We
let Q%(g )* denote the invariant subspace of this action. As usual a connection v
on E induces a connection V on g, by the formula

v(¢) = [v.9¢] for¢ € Qqp).
This means that (V¢)(o) = V(¢(0)) — ¢(Vo) for any o € Q°(E). Under
the isomorphism E = g, this rule corresponds to the differentiation law
V(u X 6)=(Vu X o)+ (u X vo) for u € Q°E). The connection v: 2°(g )
— QY(gg) can be extended to d¥: Q%g.) — Q**Yg,) by defining for
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® € Qqa,):
k
dv(I)vo ,,,,, vk = Z (_ l)lvui(q)uo ,,,, Djoeeos vk)
ji=0
i+j
+ Z (_ 1) ]q)[ui,vj],vo ,,,,, Djseees By, v
i<j

ProPoSITION 5.1. If V € €* then d¥(Q%(g)%) C @ (g )™

Proof. The map d¥: 2% a,) — Q**!(g) is the composition of the induced
connection:

QO AFT* ® g,) > QYAT* ® g,) = QT* ® A*T* ® g,)
with antisymmetrization
T* ® AST* — A*HIT*,
Since V on E and M is fixed by Z_, so is the induced connection above.

Antisymmetrization is clearly Z -equivariant. O
Similar proofs yield:

ProrosiTiON 52. If V € €* then R € Q% g.)* Furthermore, for any
connection v, v’ € €% ifandonlyif v — v’ € QY (gp)* O

Throughout this work we shall need to use various Sobolev spaces. For the
space Q°(E) of sections of a smooth Riemannian bundle over a Riemannian
manifold we let L?(Q°(E)) denote the completion of 2°(E) in the Sobolev norm
Il Ly (If the manifold is compact, different metrics give equivalent norms.) If we
fix a base connection vV, € €, we define the Sobolev space of connections €, to
be €, = {V, + A|A € LYQ'(gy))}. Because of the affine structure this does
not depend upon the base connection. Similarly if v, € &/ we define &/, =
(Vo + AlA € LY QY gg)), dY(A) + [A, A]_= 0}, where dY(A) +[A, A]_
is the orthogonal projection of dV(A) + [A, A] onto the (— 1)-eigenspace
Q2 (gy) of the action of the *-operator.

Since ¢ = Q°(Aut so@(E)), the gauge transformation group of % is defined
to be 9, = L%, (Q%Autgos( E))). It is known that &, is a Hilbert Lie group
with Lie algebra L%(2°(a)), and that the action of ¢ on % extends to a smooth
action of ¢, on %,.

Since the structure group of E reduces to SO(2) there are connections on E
which split as direct sum connections for some splitting E = L & ¢ for some
rank 2 vector bundle L and trivial line bundle e. Such connections are called
reducible. The restriction of the orbit map of the action of ¥, on %, to the
irreducible connections induces a principal bundle projection m: €} — %%,
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where # is a smooth Hausdorff-Hilbert manifold. Local charts of this manifold
are given by m: 0 , > #* where

O,,={v +AJA € LYQ'(gp)), 8A = 0, and ||A||3 < ¢}

for ¢ sufficiently small [L; p. 65]. Here 8V denotes the formal adjoint of dV.

If v € €, — %5, ie. if V is a reducible connection, then I, the isotropy
group of the action of ¥, at v, is isomorphic to SO(2). (Compare [L, Prop. II,
8.10] or [FS2, Prop. 3.1].) In this case I';, preserves O, , and the map
7. O, /Ty = % is a homeomorphism onto a neighborhood of #(V ) and is a
diffeomorphism off the fixed point set of I',.

We define ¢ by fixing a base connection vV, € ¢* and letting €¢ =
(Vo + AlA € LYQY(gg)*)). Similarly we can define #7. The gauge transfor-
mation group in this context is 42, , = L2, (Q2°%Aut so@(E))®). The same proofs
as in the nonequivariant case (see [L; I1.10]) show that %) is a Hilbert-Lie group
with Lie algebra L%(2°%gg)*) and that ¥} acts smoothly and freely on €;*
such that the space #5 is Hausdorff and such that #5* = €5* /9 is a smooth
Hausdorff-Hilbert manifold and €5* — %#5* is a principal bundle projection. (In
this regard one should keep in mind Corollary 5.6 below.) For v € €5 we have
slices 0 , = 0, ,N %* as in the nonequivariant case.

From now on we shall write ¢ to mean %;, ¢ for ¢, and drop the Sobolev
subscripts. We also do this for €%, ¢, etc.

Next we shall discuss the reducible self-dual connections on E.

PRrOPOSITION 5.3. Suppose M /Z , has positive definite intersection form and
HYM/Z ;R) = 0. Then each Z equivariant SO(2)-vector bundle L over M has
a unique Z equivariant gauge equivalence class of Z invariant self-dual
connections.

Proof. Let v be an arbitrary SO(2) connection on L. By averaging Vv over
the group, we obtain a Z -invariant connection D on L which locally is
D = d + iw where iw is a real-valued 1form. The curvature of D is RP =
idw € Q%(M)*®, and the de Rham class [(1/27i)R"] € H3M;R) is the real
Euler class e of L. It follows from the uniqueness of harmonic representatives
that there is a unique harmonic form & € Q% M)“ such that [¢] = e € H*(M; R).
So (1/27i)RP — & = dA, and by averaging we may assume A € Q'(M)*. So
D’ = D — 27A is a Z jinvariant connection on L, and R” = RP — id(27A) =
27ie is harmonic in Q% M)* Thus R represents an element [R”'] of the
Z -invariant de Rham cohomology of M, therefore of HM/Z ;R).

Let Q2 (M)® denote the +-eigenspaces of the * operator; then Q%(M)* =
Q2 (M)* ® Q2 (M)*. Identifying HXM/Z ;R) with the harmonic space of
Q%(M)* we obtain the corresponding splitting
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H*(M/Z;R) = H2(M/Z,;R) ® H® (M/Z,; R).
If[¢] € HL(M/Z;R) then [¢]® = [ A ¢ = £ [;6 A *6 = +(||$]|o)2 Thus
the intersection form on HM/Z ; R) is positive definite on H2(M/Z ;R) and
negative definite on H2 (M/Z ; R). Since M/Z_, has a positive definite intersec-
tion pairing, H2 (M/Z ;R) = 0; so R®” € H2(M/Z ;R) and D’ is self-dual.
Furthermore, if ¥ is any other Z -invariant connection on L with RY =
RP then v = D’ + iA’ where A € Q(M)* and dA’ = 0. However
HYM/ZR) =0 so that A’ =—df for f€ Q°M)* Thus v = D’ — idf.
Multiplication by the function g = exp(if) gives a Z equivariant gauge transfor-
mation, and
g(D’) = exp(if ) D'exp(— if ) = D’ — idf = v. O
Recall that X = M/Z, and D(X) = X — U?_,int(cL(a,, b,)).

ProposiTioN 5.4. Suppose X has positive definite intersection form,
H(D(X);Z;) = 0 and i*Tor H(D(X),Z)) = 0. Then there are exactly
w(e) - |H(D(X); Z)| Z -equivariant gauge equivalence classes of reducible Z.
invariant self-dual connections on E.

Proof. By Proposition 4.2 m = pu(e) - |H(D(X); Z)] is just the number, up
to orientation, of reductions of E = L, @ e.

A reducible Z ginvariant connection Vv gives a Z invariant splitting
E=zL®eand Vv=D&d But E=(—L)®(—¢) and D also defines a
connection on — L, so that by Proposition 5.3, there are at most m Z -equiv-
ariant gauge equivalence classes of reducible Z -invariant self-dual connections
on E.

Any gauge equivalence of reducible SO(3)-connections must preserve paral-
lel sections of E and hence induce a gauge equivalence of the corresponding
SO(2)-connections. Thus there are exactly m Z -equivariant gauge equivalence
classes of reducible Z -invariant self-dual connections on E. O

ProposiTiON 5.5. Suppose v, v’ € €* (i.e. are irreducible) and g € ¥
with v’ = g(v). Then g € 9~

Proof. If v is irreducible and v’ = g(v) then for h € Z_, h(g(v)) =
v')=v’'=g(V)=gMhv)); ie. [g,hl(V)=vV and [g, hl € % So
[g, h] € T, the isotropy group of the action of  at 7. However a connection
has a nontrivial isotropy group if and only if it is reducible (see [D, page 287] or
Proposition 3.1 of [FS2]). So ', = 1 and g € ¥~ O

Note that for reducible Z -invariant connections as above with g(v) = v,
we can only conclude that [g, h] € T, = SO(2) for each h € Z ; so g need not
be equivariant.
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« def "
COROLLARY 5.6. Let m: € — % be the projection. Then #° (= € /9*) =
* «, def * *
(€ ) and M (=L /G*)=m(L"). ]
CoROLLARY 5.7. The induced maps % — w(€*) and M~ — w(L*) are
quotient maps topologically.
In fact the only difference between .#* and (27 *) is that some identifica-

tions may have to be made among the finite number of gauge equivalence classes
of reducible connections of .#Z* in order to obtain (.27 ). O

6. The invariant fundamental elliptic complex

Consider a connection vV € 7. We then have the fundamental complex
dy
0 - 9%g;) > Qag) > 9% (g5) > 0

where dV is the orthogonal projection of dV on the anti-self-dual 2-forms. Since
v is self-dual, dY ov = RY = 0, and this complex is elliptic [AHS, §6]. Thus
the complex has cohomology groups HY, HY,, H2Z which we identify with spaces
of harmonic forms.

We have seen that the linear action of Z, on g induces an action on the
above complex and the Z -invariant subcomplex

av adY a
0_"90(915) _"QI(QE) _"92—(91?) - 0.

(Compare Proposition 5.1, and note that the Z -action on M commutes with
the * operator.) This is an elliptic complex with cohomology groups HZ®, H3*,
and HZ* which may be identified with spaces of invariant harmonic forms.

Our goal is to compute

— dim HY* + dim HL* — dim HZ“.
Following [AHS; § 6] we may replace the invariant fundamental elliptic complex
by a single elliptic operator
8V +dY:QYgp)" - Q%gp)" @ Q2 (gp)°
where 8V is the formal adjoint of d¥. And as in [AHS] this has the same index as
the Dirac operator "
D:T(V,(M)® V_(M)®g.)" > I(V_(M) @ V_(M) ® g5)"°

where V, (M) and V_ (M) are the complex spinor bundles of + }-spinors on M.
Now the index of 8¥ + dV is the average of the Lefschetz numbers:

Ind(8Y +dY) = % Y L(g,8" +dY) = % Y. L(g,D).

g€Z, g€Z,
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However by the Lefschetz Theorem of Atiyah and Segal [ASII], L(g, D) can be
computed in terms of the index of associated elliptic symbol classes on fixed point
sets.

As in [AHS] for g = 1 we have:

L(1,D) = ch(g, ® C)ch(V_)A(M)[M]
= p,(gz ® C)[M] + 3(ind A)
where A: T'(V,® V_)* > I(V_®V_)* and

indd = —=[(x(X) = d,) = (o(X) = d,)]

where d, and d, are the defect terms for multiplicativity of Euler characteristic
and signature under branched covers. These defect terms may be computed in
terms of the Lefschetz numbers:

- 5(d—d,)= I L(g.d).

g€Z,
g#1

We have already computed in the proof of (4.1) that p,(gz)[M] = p,(E)[M] =
ae’ Hence p,(g; ® C)[M] = 2ae> Also, under the hypothesis of Theorem 2.1,
the oriented rational homology manifold X = M/Z_ has H(X; Q) = 0 and has
positive definite intersection form; hence

x(X) = o(X) =

So we have
L(1,D) = 2ae® — 3a + %‘"(dx -d,).

To compute the Lefschetz numbers L(g, D) for g # 1 we must consider
restrictions to the isolated fixed points I; of the Z, and to the fixed surface
F = A"Y(F) of Z,. Consider first an 1solated fixed pomt y of Z , ; there are a/aj
such points in M. Let g=e2*/% e Z and let 0, = 2mr. k/a and 6, =
2ms k/a ;. The contribution to the Lefschetz number of g at y is:

ch (V,— V_)ch(V_)
ch (A _))

L(g,D), = (T®C)-chy(g® C)|[point]

where T is the tangent space at the point y. We have
ch(g;®C)=ch((L®e)®C)=ch,L+ch,L+l=g+g'+1
2mik )

a;

=1+2cosh( =1+2cosz—wk =3—4sin2(w—k).
a a;

i
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Hence

L(g,D), = 3L(g,4), — 4sin

( 7Tk) ch (V V_)chg(V_) (T ® C)[point].

Chg(A—l)

Now compute the second term on the right.

(T ® C)[point]

B 48m2(,,k)ch (V.= V_)ch(V_)

j Chg(A—l)

2 (eiop/2 _ e—eo,,/z)e—wp/z

g LT Ty ](e re ()

Y ‘ By
-— (e!%/2 — e”™") i(0,-0)/2 1 o i(61—6)/2)gin2 7k
4| I1 = — |(e + e )sin

[p=1(1—e%)(1—e ») a;
[ 2
— _ _ 1 i(6,-6,)/2 —i(6,—6:)/2 ) ¢in2 7k
= 4L’:‘.’[_—___Il i0,/2 —i0ﬂ/2:\(e 17 % + e 1~ % )SlIl a,

T 4“}—2;[1 B smh11/02/2 }[ZCOSh( o )} . (%)

—— 2csch( g )csch( )[COSh(lz )°°Sh(_2'2')

kr. ks.
= 2(1 + cot(f—l)cot(f——'))sinz(ﬁ).
a; a; a;

Summing over all g € Z, we obtain the contribution:

a.—1

i wkr, aks,

2y (1 + cot( ')cot(——l))sinz(ﬁ).
k=1 a; a; a;
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But
a;—1 a;—1 4 a;j—1
k 1 — cos(27k/a ;) 1 1
> sin2(%) =y ) == —2—(a]. -1) - 3 > cos(2vrk/aj)
k=1 j k=1 k=1
1

1 1
= §(al,— 1)+ § = §aj.

So the contribution from Z , obtained by summing over the a/a; points in I, is:

3Y Y L(ga),+at 22y cot( mh )cot(”:“f)sm ("’").

g€Z, y<l; ] k=1 i i af
g+1

The surface F = A Y(F) is the fixed point set of Z . Since Z, acts trivially
on the fibers of g, over F we have

ch,(ag, ® C) = ch(L & ¢)|; ® C = ch(L|z) + ch(L|;) + 1 = 3.
So computing as above, for any g # 1 in Z we have
L(g, D)5 = 3L(g,A)s.
TueEoREM 6.1. — dim H%* + dim HL* — dim H2® = R(X, e).

Proof. Using our computations we have

Ind(8Y +d¥) = = 2 L(g,D)
geZ
3
= 2¢* —3+[— +;ZL(5’A)+n
gge*lla

LI B wkr, ks ok
+ Z — Z cot( a, )COt(a_,.)Sm ( a, )
Since the term in the brackets is 0, we have our result. |

Next, note that Hg = kerv consists of the covariant constant sections of
V. Thus

. o _ [0 if v isirreducible
dim H { 1 if v is reducible.

Similarly if v is Zinvariant then HX® consists of covariant constant
Z -invariant sections of Vv and

. 0,« _ [0 if ¥ is irreducible
dim Hg { 1 if ¥ is reducible.
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At a reducible Z -invariant self-dual connection v, E = g, = L & ¢, and
the isotropy group of %, T'%, at v consists of the SO(2) which rotates L and
acts trivially on . So we have QP(g;)* = QP(L)* ® 2”(¢)* The isotropy group
T'2 acts by the standard action of SO(2) on the vector space 2P(L)" and acts
trivially on ©7(e)*. So the fixed point set of the I'S action on QP(E)* is QP(e)*.
For the harmonic spaces we have

HY® = HYA(L) ® H(e) = HE“(L) @ HY(M/Z,;R)
HZ* = H2*(L) ® H%*(e) = HZ*(L) ® H? (M/Z;R).
However by hypothesis H((M/Z ;R) = 0 = H? (M/Z ;R) (since the intersec-

tion form of M/Z_ must be negative definite on H2 (M/Z ,; R)). We thus have
the following description of the harmonic spaces at a reducible v € &/

ProposiTION 6.2. For a reducible v € &/°, dim H%* = 1, and HL* and
HZ*® are even dimensional vector spaces with T'g acting via the standard action
of SO(2) (leaving only 0 fixed). O

CoroLLARY 6.3. R(X, e) is an odd integer. O

Proof. By Proposition (5.3), E = L, & ¢ always admits a reducible self-dual
Z equivariant connection. O

7. The compactness theorem

We now turn to the key idea that will allow us to prove Theorem 2.1,
namely to determine when .# and .#“ are compact spaces. If ¥ is a connection
on E its Yang-Mills action is defined by:

1
%u(v) =5 [ IR

(View RY € Q%(gj), and think of g € Hom(E, E); then use the inner product
(A, B) = tr( A’ ° B) to induce the norm.) Two theorems of Karen Uhlenbeck are
fundamental.

ProposiTION 7.1 (The Bubble Theorem [U,]). Let {V;} be any sequence of
self-dual connections on E. Either

(1) There are a subsequence {V,;} and gauge equivalent connections (v.)
such that v, > V,, a selfdual connection on E, in the C*-topology (so that
[vi’] - [Voo] in '/”)’ or

(2) There are a finite number of points x, ..., x; in M and a subsequence
(v} and gauge equivalent connections {V,} such that vy > V,, a self-dual
connection on E|y = My =M — (x,,...,%,}) in the C*>-topology.
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ProposiTiON 7.2 (Removability of Singularities [U,]). Let v be a self-dual
SO(3)-connection on a bundle E, defined over My = M — {x,,...x,}. Suppose
YM(V) < 0. Then (E,, V) extend smoothly over M.

An important consequence is that the moduli space is compact when p,(E)
is small enough.

THEOREM 7.3 (Compactness Theorem). Let E be an SO(3)-vector bundle
over an oriented 4-manifold M. Suppose that 0 < p,(E) < 3; then M is
compact. This also holds if p,(E) = 4 if we also assume that w,(E) # 0 and
HX(m,M;Z,) = 0.

Proof. Consider a sequence {[V;]} in . If {[Vv,]} has no convergent
subsequence then the Bubble Theorem implies that there are some subsequence
{v,} and gauge equivalent connections {V;.} such that V, = V,, a self-dual
connection on E|, where My =M — {x,,..., %} for some finite number of
points x; € M. Since each v, is a self-dual connection on E we have

@'ﬂ(éi') = 2‘n'2p1(E)
(see [L], [Us], or [FS,]). So from Fatou’s Lemma

1 1 -
O<¥H(vV_ )= = Vo ll2 < ZTim i VAT
(v, 2/Mo”R 12 < 2hmmfjl"lo||R I

= YM(V,) = 27%p,(E) < co.

Thus the Removability of Singularities Theorem applies; so ¥, extends to a
self-dual connection on a bundle E_ over all of M. Since E_ |, = E|,, we have
wy(E,) = wy(E); it follows that p(E_) = p,(E) (mod4) (for example see
[DW, Thm. 2]). However since

1
2

we have 0 < p(E,) < p(E). If 0 < p(E) <3 this implies that p,(E,) =
p,(E). So by the classification of SO(3)-bundles [DW], E_ = E and {[V,]}
actually has a convergent subsequence in /.

In case p(E) =4, wy(E)# 0, and H¥m M;Z,) = 0, we might have
p,(E_) = 0. However this would imply that the bundle E_ was flat and so had
finite structure group G. So the classifying space BG = K(G, 1), and the
classifying map for the vector bundle E_ must factor through K(mM,1).
Thus the second Stiefel Whitney class wy(E,) was pulled back through
H%(w M;Z,) = 0; i.e. wy(E_) = 0, a contradiction. Hence E_ = E in this case
as well. O
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CoroLLARY 7.4. Let X be a pseudofree orbifold with pseudofree Euler class
e. Suppose e?><4/a and, if e®>=4/a, also assume e # O(mod2) and
H?(7(D(X)); Z,) = 0. Then the moduli space of self-dual connections on the
SO(3)-vector bundle E = L, ® & over M(X) is compact.

Proof. This follows immediately from (7.3) since p,(E) = ae® < 4. In case
ae® = 4, note that E|y flat implies E/Z |, is flat; so since wy(E/Z | x)) =
e(mod 2) the proof goes through just as in (7.3). 0O

THEOREM 7.5. With the hypothesis of (7.4), #* is compact.

Proof. Since it is the fixed point set of the action of Z, on A, #(/*) is
closed and therefore compact. Now by (5.7) the map A#* - #(F/*) is a
topological quotient map and is one-to-one off a finite set. Thus any open cover of
A * clearly has a finite subcover. Also, as we have pointed out before, #* C #“
is Hausdorff. Thus .#* is compact. O

8. The perturbed moduli space

Let X be a pseudofree orbifold with pseudofree Euler class e. Suppose we
are in the situation where R(X, e¢) > 0 and the moduli space .#* of equivariant
self-dual connections on the bundle E = L_, & € over M = M(X) is compact. We
will now shamelessly follow the perturbation argument of [D] as described in [L]
to perturb #* to obtain a compact manifold of dimension R(X, e) which has for
each equivariant gauge equivalence class of reducible Z -invariant self-dual
connections a singular point which has as a neighborhood a cone on a complex
projective space.

First, we have a theorem of Atiyah, Hitchin, and Singer

ProrosiTiON 8.1 [AHS]. Let v € € then there are a neighborhood 0 of
0 € HL“ and a differentiable map

®: 0 - H%
with ®(0) = 0 which is SO(2) = I'-equivariant when ¥ is reducible. Further-
more,
(1) AN 0%, =D Y0) if v is irreducible,
(@) A N (0% /SO2)) = ®~Y0)/SOQ) if V is reducible.
Recall that (g , is the slice of the ¥« action at ¥ which is described in
Section 5. This proposition is proved by applying the Kuranishi technique to the

map
Y ker8¥ — L3(Q2 (g5)°)

given by y(A) =dYA + [A, A]_ where ker8¥ c LY(Q(a)®). See [L; Theo-
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rem IV. 2.1] for an excellent exposition.
It follows from Section 6 that

dim Hy* — dim H2* = R(X,e) if v is irreducible,
dim HL* — dim H2* = R(X,e) + 1 if ¥ is reducible,

provided that the intersection form on X is positive definite and H'(X;R) = 0.
We now want to deal with the possibility that there are Z -invariant self
dual connections ¥ on E such that H%* # 0. Assume that we are in a situation
where # and A * are compact.
Let #2= €% X 4LYQ2(gz)*). Outside the reducible connections we
have a principal fiber bundle ¥¢* —» #°* with fiber ¥* and %2 > Z*" is a
smooth associated vector bundle. The assignment

v - RY

is a crosssection of this bundle, and #*" C #°" is the zero set of this
cross-section. As in Donaldson’s proof we shall change RY by adding on a
compact perturbation term so that the new section RY +0(V ) cuts across the

zero section of %2 transversely. We shall choose ¢ to have values in the
subbundle

Fy =" Xg“Lg(Qz— (@E)a)‘
Note that %2 C #2 is compact on each fiber.

Consider a reducible connection v, € #* and let ® be the function given
in Proposition 8.1. We now review the arguments of [L, §IV.4] with minor
modifications. Since Hg® and HZ® are even dimensional vector spaces with
SO(2) acting standardly, we may identify them with complex vector spaces and

identify SO(2) with U(1) acting in the usual way. After a smooth change of
coordinates in ker ¥, the map R_ on 07 . decomposes as

(d_ ’q)): Vl X Ck+(l/2)(R(X,e)—l) - ‘V1 X Ck
where d_ = dy, is an isomorphism V; = W, and (d_ , ®) commutes with the
action of I'; = U(1). Let L be a C-linear surjective map
L: Ck+(1/2)(R(X,e)—l) N Ck

and let p: 03, >R be a smooth cutoff function such that p = 1 near 0. Define

a new section
(d_,(1—p)®+pL)=(d_ ,®)+(0,0(L—®))=R_+o

which is C-linear and surjective in a neighborhood of 0. So the new zero-set
modulo U(1) is a cone on CP(3(R(X,e) — 1) in a neighborhood of 0. Further-
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more, the new section
v=R_+o

meets the zero section of # 2 transversely near V,,. Since transition functions of
Z? are smooth and uniformly bounded, o remains in L3(Q2 (g;)®) after being
transformed by a transition function for the bundle % 2; i.e. o is a section of the
compactly embedded bundle % c %2

Since d_ is an isomorphism, inside 0;0’8 the new zero set is contained in
0 X Ck+A/2(R&X.e)+D) and s just { ¥ = 0} N supp p which is closed and bounded,
hence compact. Outside of g . the zero set is unchanged. Thus #’ is
compact. Furthermore since d¥ and d(R_) differ by an operator with finite
dimensional range, d¥ is Fredholm and its index is the index of d(R_),
viz. R(X, e).

By Proposition 5.4 there are a finite number (namely u(e)|H (D(X); Z)|) of
reducible connections in #®. Perform the above perturbation corresponding to
each of these, and continue to call the resulting compact perturbed moduli space

M ={v € B|¥(V) =0}

Then #’ arees with #* outside neighborhoods of the reducible connections.
Now work in £, the complement of the reducible connections. If
¥(v ) = 0 then using the Kuranishi argument write ¥ as

( ’L) a
kerd” = V, @ V, = W, @ W, = L3(2 (a)"),

where L = (d¥),, V, = kerL = R**AX9 W, = (ImL)* = R, and L: V, —
W, is a Hilbert space isomorphism. Then (w,0) € W, ® W, is a regular value of
¥ if w is a regular value of the finite dimensional smooth map Q, and by Sard’s
Theorem regular values of Q are dense in R.

Cover /" with finitely many slices { 05, . |i = 1,...,m} each contained in
&> along with the finitely many open cones on projective spaces which are
neighborhoods of the reducible connections. We may suppose that the v,’s are
smooth connections.

We obtain a family of perturbations

¥,=¥+o, +: - +o,

for each w = (w,,...,w,) € R\ X .- XR* = R where o, = p,  w, for
w, € W, = R* as above and for a cutoff function p, on 03 ..
Following Lawson, view ¥, as a smooth map

#* X BN(n) > F2

for BMn) = {w € R"|||w|| < n}. For 1 small this map is transverse to the zero
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section of #2 [L; p. 101]. Hence ¥, is transverse to the zero section of #2 for
almost all w € BM(7). Applying the same argument as in the reducible case to
each of the m new perturbations we see that the new moduli space is still
compact.

THEOREM 8.2. Under the hypotheses of Theorem 2.1 there is a compact
perturbation ¥ = R_ + o of the self-duality equations on €* so that the new
moduli space M'={v € €*|¥(V)=0} is a compact smooth R(X,e)-
dimensional manifold with p(e)|H,(D(X);Z)| singular points such that
each has a neighborhood which is the cone on the complex projective space
CP(iR(X,e) — 1)). m|

It is important to note that by construction the equation ¥(Vv) = 0 is
invariant under 9°.

9. Proof of Theorem 2.1
We now are in a position to prove our main theorem.

THEOREM 2.1. Let X be a pseudofree orbifold with pseudofree Euler class e.
Suppose that:
(i) The intersection form on X is positive definite;
(ii) i*(Tor HX(D(X); Z) = 0;
(iii) Hy(D(X); Z,) = 0;
(iv) e? < 4/a.
(If e®2=4/a assume e # O(mod2) and H*m(D(X);Z,) = 0). If
R(X,e) > 0, then u(e) = O(mod 2).

Proof. Let E = L, ® ¢ be the Z equivariant bundle over M = M(X) given
in Section 3. By Proposition 5.4 there are exactly m = u(e) - |[H(D(X); Z)| =
p(e) (mod2) Z -equivariant gauge equivalence classes of reducible Z -invariant
self-dual connections to E. If R(X,e) > 0, Proposition 8.2 yields a compact
smooth R(X, e)-dimensional manifold .#’ with m singular points each hav-
ing a neighborhood which is the cone on the complex projective space
CP((R(X, e) — 1)). If we remove the interiors of these cones from .#’ we then
obtain a compact manifold whose boundary consists of m disjoint copies of
CP(i(R(X,e) — 1)). If 3(R(X,e) — 1) is even, this implies that m is even
(hence p(e) = 0(mod 2)), for an odd number of CP(2k)’s cannot bound a smooth
manifold. (CP(2k) has odd Euler characteristic.)

In any case we shall show that m must be even. Fix a regular point x of the
branched cover M - M/Z = X and consider the reduced equivariant gauge
group 95 = {g € 9%g, = id,}. The normal subgroup %; acts freely on ¢
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and 9°/g = Aut(E,) = SO(3). The fibration 7m: #*° — #°" now factors
into two fibrations, m,; €% — €% /%% a principal %g-fibration, and
7 € /9" —> B, a principal SO(3)-fibration.

Let v,,...,V,, €* be representatives of the distinct Z -equivariant
gauge equivalence classes of reducible connections in . Each v, has a slice
0% . in %% andin OF . thereis a complex space 0; on which I'g = U(1) acts
in the usual manner and such that @,/U(1) is a neighborhood of [V;] in .#". (See
§8.) Let S, denote the unit sphere in the complex space 0. If g € ¥* moves a
connection in §; to another connection in S; then (since 0g, . is actually a slice
(L; I1.10.13,14]), g € 5. So g(0g, . ) = 0%, ., and since A’ is the moduli
space of solutions of the ¥ “invariant equation ¥(v ) = 0, g(S§;) = S,.

Recall that 'y actson E=L; ® ¢ by acting as SO(2) on L, and trivially on
e. Thus Tg N 95 = {id}. So each g € &5 moves S, off itself, and the projection
My €% > €°/9Yy maps S; and, in fact, 03 . isomorphically. In ¢°/%5;
g € SO(3) takes a connection in m,(S;) to another connection in 7y(S;) if and
only if g€ I'y (as above). Let vV €S, and consider the SO(3)-orbit
SO(3)(m(V )). The intersection SO3)(7my(V )) N 7(S;) = T'g(7(V)) is a circle.
Hence the SO(3) bundle

i (#(5)) = 7(3) = CB( 5 (R(X,e) - 1)

reduces to an S'-bundle
5, = m(5,) = (5,) = CB( 3(R(X,e) = ).

This is just the Hopf bundle. Hence this SO(3)-bundle over 7(S;) has w, =
w, (Hopf bundle) # 0 € HX7(S;); Z,) = HXCP(3(R(X, e) — 1)); Z,); so
wil/PRE=D 2 (. Thus an odd number of these SO(3)-bundles cannot bound a
smooth SO(3)-bundle. Hence, by removing the interiors of the cones on the
projective spaces in #’, we see that m must be even. O

Remark 9.1. If the conjecture stated in [FS2] is true, then Theorem 2.1
holds without hypothesis (iv).

We shall now restate our theorem avoiding some of the technical hypotheses
of (2.1). For a pseudofree orbifold X with pseudofree Euler class e, consider as
above the Z -invariant SO(3) vector bundle E = L, ® ¢ over M, an a-fold
branched cover desingularizing X. Define p(e) to be the number, up to orienta-
tion, of Z -invariant reductions of E.
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THeEOREM 9.2. Let X be a positive definite pseudofree orbifold with
H(D(X);Z,) =0, and let e be a pseudofree Euler class with e < 4/a. (If
e2 = 4/a also assume e # 0 (mod2) and H*(m(DX),Z,) = 0). If R(X,e) > 0
then p(e) = 0 (mod 2). O

10. Applications

In this section we will give some applications of Theorem 2.1 mentioned in
the introduction. Throughout this section we shall use Z(a,,...a,) to denote the
Seifert integral homology sphere with exceptional fibers of (pairwise relatively
prime) order a,...,a,, and its orientation as the link of an algebraic singularity.
In Section 1 we defined the invariant

2 o2l
R(a,,...,a,) = S T3+n+ Yy - Y cot(mak/a?)cot(mk/a,)sin’(7k/a,)
i=1%i k=1
where a = a,...a,. We showed in Section 2 that the following theorem is a
corollary of Theorem 2.1.

THeoreM 10.1. If R(a,,...a,) > O then 2(a,,...,a,) does not bound an
oriented smooth 4-manifold W whose intersection pairing is positive definite and
whose first homology H,(W; Z) has no 2-torsion. O

Tueorem 10.2. If R(a,,...,a,) > 0 then 3(a,,...,a,) is not oriented
cobordant to any — U_,3(b;,,...,b; ;) by an oriented positive definite
cobordism W whose first homology H(W;Z) has no 2-torsion.

Proof. If such a W exists, cap off with the positive definite simply-connected
4-manifolds that the — 2(b;,,...,b; ;) bound to obtain a manifold con-
tradicting Theorem 10.1. O

The terms &(p;a,b) = (2/p)= cot(mak/p)cot(mbk/p)sin*(wk/p) which
occur in the formula for R(a,,...,a,) are very closely related to the Casson-
Gordon invariant for slice knots [CG1]. The following computational device
explained in [CG1] is quite useful. Let A(x,y) be the triangle whose vertices
have coordinates (0,0), (x,0), and (x,y). Let int A(x,y) be the number of
integer lattice points in A(x, y), where boundary points count 1/2 ((0, 0) is not
counted) and other vertices count 1/4.

Lemma 10.3 [CG1].
8(p;a,b) = 4{int A(b*, a*bb* /p)-area A(b*, a*bb*/p)}
where aa* = 1(mod p) and bb* = 1(mod p). O
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CoroLLARY 10.4. 8(p;1,1)=(p — 2)/p=—8(p;p — 1,1). O

By (10.3) and (10.4) it is easy to check that R(2,3,6k — 1) = +1 for
k=1,2,... . Hence we have the following result (cf. [K; Problem 4.2]).

Proposition 10.5. The p-invariant zero Brieskorn homology spheres
2(2,3,12k — 1) do not bound Z ,-acyclic 4manifolds. a

Also, (10.2) shows that (2,3,5) has infinite order in 6, the integral
homology cobordism group of integral homology 3-spheres. Furthermore, the
Brieskorn sphere Z(2, 3, 7) has nonzero p-invariant and bounds both positive and
negative definite simply connected 4-manifolds (namely + 1 surgery on the figure
8 knot). Let Z,; denote the subgroup of 6 generated by =(2,3,7). If any
multiple nZ(2,3,5) is integral homology cobordant to a multiple m=(2,3,7)
where m, n € Z, then by gluing the appropriate definite manifolds that (2, 3, 7)
bounds we obtain a positive definite manifold that nZ(2,3,5) bounds. This
contradicts (10.2). Thus we have:

THEOREM 10.6. The integral homology cobordism group 8. is infinite, and
in fact contains Z ® Z,, forsomek =0,1,2,... . o

Next we consider the pretzel knots K(p, g, r):

Coonr
ST
OTOOC

(where K(— 3,5,7) is pictured above). The Alexander polynomial of K(p, g, r) is
1 when pg + pr + qr =—1 and p,q,r are odd. Casson pointed this out in
Kirby’s problem list [K; Problem 1.37] and asked whether these K(p, q,r) are
slice knots. He also pointed out that the 2-fold branched covers of these knots are
2(|pl, |ql, |r]) which must bound Zj-acyclic 4manifolds if the knots K(p, g, r)
are slice. However using (10.4) one computes that R(|p|, |g|, |r|) = +1 if
pq + pr + gr = — 1 and p, q, r have absolute value > 1. Thus:

Tueorem 10.7. Let p, q, r be odd integers of absolute value greater than 1.
If pq + pr + qr = — 1 then K(p, q, r) is an Alexander polynomial 1 knot that is
not slice. O
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As a consequence of (10.5) and a theorem of Galewski-Stern [GS], we have:

TueoreMm 10.8. For each n > 5, there exist closed topological n-manifolds
with infinitely many nonconcordant simplicial triangulations. O

As a final application, we point out how K. Kuga’s theorem [KK] concerning
the nonrepresentability of homology classes in S X S* by spheres can be
obtained from our invariant R.

TueoreM 10.9. Let M be a closed smooth 4-manifold having the integral
homology of S X S2. Let x,y be the standard generators of HyM;Z). If
(p,gq)=1, p# +1and q # +1, then the homology class px + qy cannot be
represented by a smoothly embedded 2-sphere.

Proof. Consider u = px + qy with (p,q) = 1. Then set v = ax + by where

P q

4 b=l.

Then u,v generate H,(M;Z). Suppose that u is represented by a smoothly
embedded 2-sphere; let N be its tubular neighborhood. Since u? = 2pq, ON =
L(2pgq,1).

Set Y =M — int N. Then JY = L(2pg, — 1). We easily compute
H(Y;Z) = Hy(Y;Z) = 0 and H,(Y;Z) = Z. Furthermore, Hy(Y, dY;Z) = 7Z is
generated by the class w represented by F, N Y where [F,] = — v.

Let ¢ € H%(Y;Z) be the Poincaré dual of w. If

7 = HAY;Z) 5 H(8v;Z) = Z

|2pql>

then i*(e) is the Poincaré dual of dw. However, since v-u = bp + aq,
dw € H(L(2pq, — 1);Z) consists of bp + aq times the dD2%fiber of the ap-
propriate disk bundle over the S* representing u. Since bp — aq = 1, it follows
that 4pgab — (bp + aq)®> =—1; so (bp + aq)® =1 (mod 2pq); hence
(bp + aq,2pq) = 1. This means that dw is a unit in H\(L(2pq, — 1);Z); i.e.
i*(e) is a unit. Thus we can form the pseudofree orbifold Y U ¢(dY) = X with
pseudofree Euler class e. With an appropriate orientation X has positive definite
intersection form with H(X,Z) =0, ¢* = (1/|2pq|) and p(e) = 1. To con-
clude the proof we show that R(X,e) > Oif and only if p # +1and g # £1.
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We have
2 g |%ral-l (W(bp + aq)k) wk
R(X,e)= — -2+ —— cot? sin®
(X.e) 12pq| 12pq| £§ﬁ 12pq| 12pq|

1
=gl 27 8(2pq|; bp + aq,bp + aq).

By changing the orientation of M and of x or y, we may assume that p > 0,
g > 0. Then, after perhaps interchanging the roles of x and y we may assume
0 < a < p,0 < b < q. Further if we assume that p > 2, ¢ > 2then 1 < a < p,
1 <b<gq.Let r=>bp + aq. Since r* = r, Lemma 10.3 says

8(2 ) = 4{ A( -— | = A(T -
; T,T i t r, b M
pq n b} ) area 2 )}

If B is a rational number, let [B] denote the largest integer < B. To get an
estimate on 8(2pq; 1, r), let I' be the smaller rectangle in the figure

3
r
(r.m)

3
’//’(ntgaﬂ)

(0,0) (r,0)

Then int A(r,(r3/2pq)) = A + (1/2)B + (1/2)D where A is the contribution
from the lattice points on bdryA(r,(r3/2pq)) N bdry ', B is the number of
interior lattice points of I, and D is the number of interior lattice points on the
diagonal of I'. Now

r3 r3
=2lr+|s—||=(r—1)|5g—=|—r+ 1
( [2Pq]) ( )[2pq]
However

r2=(bp + aq)’ = 4pgab + 1 and 3 = 4pgab® + 4pq%a®b + r,
and r=bp + aqg < 2pq. Hence [r3/2pq] = 2pab® + 2qa®b = 2abr; then
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D = #{x|0 <x <r and r|[r®/2pq]x} = r — 1. Thus

1 1 rd 1 r3
8(2pq,r,r)24<z+§(r—1+[m] +§ (7—1)[m]_r+1
1 rt
+§(1’—1)—4pq}
3 3 2
=2r—1+2r([—r ]___r )=2r—1—r—
2pq 2pq pq
1

Thus

=2r—1—4ab — —.
Pq

R(X,e) > ;1(-]- -2+ 2r—1—4ab — 1 =(2\/4pqab+1 —4ab)—3

Pq

> 4(,/pqab - ab) - 3.

When p>2,g>2,1<a<p-1,1<b<q— 1, then

Jpgab > J(a + 1)(b + 1)ab > ab + 1; so R(X,e) > 1. O
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