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LECTURE 1.

1. Introduction. In these three lectures we will study differential
geometric properties of smooth 3-manifolds that have the homology
of §3, i.e., homology 3-spheres. Poincaré originally conjectured that
the only homology 3-sphere is 53; however he quickly realized that
homology 3-spheres exist in abundance. We list some examples.

1. Since the binary icosohedral group I is subgroup of SU(2), it
acts on 5% with quotient the famous Poincaré homology 3-sphere P3
with 71 (P3) = I a finite group of order 120. In fact, it is known that
the only finite non-trivial group that can occur as the fundamental
group of a homology 3-sphere is I , and it is still unknown if P23 is the
only homology 3-sphere © with fundamental group 1.

2. The Brieskorn homology 3-sphere Ep,g,r) ={z0 + 2] + 2§ =
0} NS® is a homology 3-sphere whenever P, ¢, 7 are pairwise relatively
prime [B]. In fact $(2,3,5) = P, and if 1/p + 1/¢+ 1/r < 1 then
m1(Z(p, q,7)) is infinite.

3. A rather ubiquitous collection of homology 3-spheres are the
Seifert fibered homology 3-spheres (ai,...,a,) (see [NR]). These
3-manifolds T possess an S'-action with orbit space S?. If X # S3,
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then the Sl-action has no fixed points and has finitely many excep-
tional orbits (multiple fibers) of order aj,...,a,. X is a homology
sphere exactly when the orders of the exceptional fibers are pairwise
relatively prime. If n > 3, then £ # 5% and the orders classify
» = 2(ay,...,an) up to diffeomorphism. If n < 2, then £ = . As
our notation predicts, the Brieskorn sphere X(p, ¢, ) is Seifert fibered
with 3 exceptional orbits of orders p, ¢, and r. Also one can show
that

71(Z(a1, ..., an)) =< T1,..., Tn, h|h central, z{*

—h7H =1 . nx o Ee =R >

Here by, b1, ..., bn are chosen so that
(1.1) a(—bo + i:éi) =1
=1 i

where @ = ay - - - an. We shall say that ¥ has Seifert invanants
{bg;(a1,b1), .-, (@n,br)}. (These are, of course, not unique.)

4. Given a knot K in 5% one can perform a 1/n, n € Z, Dehn
surgery on K to obtain a homology 3-sphere. The homology 3-spheres
2(p, q,pgn +1) are obtained by +1/n surgery on the (p, q) torus knot;
the homology 3-spheres X(p, g, r,s) with ¢gr — ps = +1 are obtained
by a +1 surgery on the connected sum of the (¢,r) and (—p, s) torus
knots. It is not known if every irreducible homology 3-sphere can
be obtained by a Dehn surgery on some knot in $°. However, every
homology 3-sphere can be obtained as an integral surgery on a link
in $%. Recently, Gordon and Luecke [GL] have shown that nontrivial
Dehn surgery on a nontrivial knot never yields $°. Furthermoré, any
homology 3-sphere obtained by Dehn surgery on a knot is irreducible.

5. Given a knot K in S one can take the n-fold cyclic cover
of §3 branched over K, denoted K,. This is a homology 3-sphere
when | [],; A(w*)| = 1, where A(t) is the Alexander polynomial of K
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normalized so that there are no negative powers of ¢t and has non-zero
constant coefficients and w = e**. The homology 3-sphere £(p, ¢, r)
1s the r-fold cover of the (p,¢) torus knot and every £(ay,...,a,) is
the 2-fold cover of §% branched over a rational knot (see [BZ]). Not
every homology 3-sphere is a cyclic branched cover [My]. However,
every 3-manifold is an irregular branched cover of the figure eight knot

[HLJ].

The target of our study in these lectures will be the oriented ho-
mology cobordism properties of homology 3-spheres, where oriented
homology 3-spheres ¥ and ¥, are oriented homology cobordant pro-
vided there is an oriented 4-manifold W with oW = 3, I1-%,.
Equvalently, £; and £, are oriented homology cobordant provided
214E, bounds an acyclic 4-manifold. This leads to the study of
the abelian group ©F which is the set of oriented homology three
spheres modulo the equivalence relation of oriented homology cobor-
dism. The group operation is connected sum §. This is an abelian
group with the additive inverse of T being —%. Until recently the only
known fact concerning the group @ is the Kervaire-Milnor-Rochlin
homomorphism g : ©ff - Z,. A homology 3-sphere ¥ bounds a
smooth simply-connected 4-manifold W* with trivial tangent bun-
dle (ie. W* is spin). The signature o(W*) of W* is known to
be divisible by 8, so let u(X) = o(W*)/8 (mod 2). To show that
#(%) is independent of the choice of W* utilizes Rochlin’s theorem
which states that the signature of a closed spin {(almost paralleliz-
able) 4-manifold is divisible by 16. For if W' is another such 4-
manifold, o(W U —W') = o(W) — o(W') = 0 (mod 16), so that
o(W)/8 = o(W')/8 (mod 2). Similarily, (%) is an homology cobor-
dism invariant.

A reasonable question to ask at this point is “Why study homology
3-spheres or @ 7 First, understanding homology 3-spheres and the 4-
manifolds they bound is useful in constructing interesting 4-manifolds.
A given homology 3-sphere & may bound two 4-manifolds Wi and W,
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with intersection forms I and I, respectively so that M* = W) Ug
—W> may be a desirable closed 4-manifold with intersection form
I, & I,. Conversely, if the intersection form of a closed 4-manifold M*
decomposes as I; @ I, then there is a homology 3-sphere ¥ in M*
splitting M* into two 4-manifolds W, and W, with intersection forms
I, and I, respectively [FT]. This has been useful in constructing exotic
4-manifolds and group actions. For example in [F81] it is shown that
¥(3,5,19) bounds a contractible manifold W* and that the double of
W4 U, W4 along the free involution ¢ : & — ¥ contained in the § 1
action on ¥ is §* with a free involution 7 (obtained by interchanging
the copies of W*) that is not in any sense smoothly equivalent to the
antipodal map. Thus $%/7 is a smooth homotopy RP* that is not
s-cobordant to RP%. Other constructions are given in [FS2].

Secondly, the structure of group 84 is closely related to the ques-
tion of whether a topological n-manifold M™ , n > 5, is a polyhedron.
In [GS] and [Mat] it is shown that M™ is a polyhedron iff an obstruc-
tion Tyr € H3(M"; ker(u - G)f — Z3)) vanishes and if 7as = 0 there
are |H®(M™;kerp)| triangulations up to concordance. Furthermore,
7 = 0 for all M iff there is a homology 3-sphere & with u(X) =1
and such that £§¥ bounds a smooth acyclic 4-manifold. A reasonable
conjecture at that time was that © = Z5, so that kery = 0. To date
the existence of a homology sphere with the above properties is un-
known. However, at the end of this lecture we will utilize techniques
from gauge theory to show that the group © is infinitely generated!

There is not much algebraic topology associated with homology
3-spheres. There is no interesting homology, and most homology 3-
spheres ¥ are K(x1(X),1)'s. Thus, we only have =;(X), a (super)
perfect group. For an oriented integral homology 3-sphere X, A. Cas-
son has introduced an integer invariant A(Z) that is determined by
the space R(Z) of conjugacy classes of irreducible representations of
71(%) into SO(3) (see {AM]). This invariant A(X) can be computed
from a surgery or Heegard description of ¥ and satisfies A(E) = p(X)
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(mod 2). This powerful new invariant was used to settle an out-
standing problem in 3-manifold topology; namely, showing that if 3
is a homotopy 3-sphere, then p(X) = 0. This successful approach
to the study of homology 3-spheres certainly provides motivation for
investigating differential geometric properties of homology 3-spheres.
The connection with differential geometry is provided by the natural
correspondence

representations of 71(Z) into SO(3)
conjugation

R(Z) =

flat connections in ¥ x R3
—r

gauge equivalence

For a flat connection, the holonomy along a loop depends only on the
homotopy class of the loop and defines an element of R(X). Con-
versely, consider the universal cover 3. of ¥. Extend the operation of
m1(%) on £ to £ x R?® by means of a representation ™ (X)) - SO(3).
The quotient (£ x R*)/7,(Z) is a bundle over & which inherits a flat
connection from the trivial connection on & x R3.

C. Taubes [T2], utilizing gauge theoretic considerations, has rein-
terpreted Casson’s invariant in terms of flat connections. Refining
this approach, A. Floer [F| has recently defined another invariant
of I, its “instanton homology”, which takes the form of an abelian
group I,(¥) with a natural Zg grading that is an enhancement of
A(Z) in that MZ) = L 377 (-1)irankgJ;(Z). The definition of these
instanton groups makes essential use of gauge theory on three- and
four-manifolds and so it appears that they are generally difficult to
compute. (We refer the reader to two excellent expository papers [A]
and [Br] concerning these invariants and how they relate to recent in-
variants of Donaldson for 4-manifolds.) However in [FS6] it is shown
that when ¥ is Seifert fibered the techniques in [FS3] can be adapted
to compute these instanton homology groups.

The goal of these lectures is to review some of the “classical” differ-
ential geometric invariants associated to flat connections and indicate
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how they have been used in the past and how gauge theoretic con-
siderations provide new applications of these invariants. We will then
show how these invariants combine to provide information about the
instanton homology I.(£) of £. The instanton chain complex of ¥
has groups graded by Zg that are generated by the elements a of
R(X). When a is isolated in R(Z), its grading in the chain com-
plex is determined by the spectral flow SF(6,a,) of the operator xd,
where a runs along any path of connections from the trivial SU(2)
connection # to the flat connection a, induced by a and d, is the
covariant derivative determined by the connection a. We will provide
a slight refinement of (), * € Zg, by defining L(Z), * € Z, with
Ensj(a) I,.=1, (mod 8) and show that for a given n € Z there are
Brieskorn homology 3-spheres with I,, # 0.

2. Chern-Simons Invariants. Let ¥ be a homology 3-sphere. Since
H?(%;Z,) = 0, every principal SO(3)-bundle P over I is trivial, i.e.
is isomorphic to £ x S0O(3). Given such a trivialization, one can
identify the space of connections C of Sobele¥ type L} with the space
LR (D) ® s03) of 1-forms on ¥ with values$ in the Lie algebra s03
in such a way that the zero element of C corresponds to the product
connection # on X x SO(3). The gauge group of bundle isomorphisms
of P can be identified with G = L}, (X, SO(3)) acting on C by the

nonlinear transformation law

g(a) = gag™" + (dg)g* -

We will assume that k+1 > 3/p so that G consists of continuous maps.
The quotients B = C/G can be considered as infinite dimensional
manifolds except near those connections a for which the group

ga = {g € glg(a) = a}

is non-trivial. Such connections are called reducible. The trivial

connection @ is reducible by all constant maps ¢ : ¥ — SO(3).
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The irreducible connections form an open dense set B* in B. The
set of flat connections, i.e. the set of all a for which its curvature
F, € LL(Q*(Z) @ s03) satisfies F, = 0, is invariant under G. How-
ever, the group G is not connected; in fact 7o(G) = Z given by the
degree of g : & — SO(3).

Given any connection a, we can take a path v : I = [0,1] — C from
a to the trivial connection 8. This path determines a connection A.
in the trivial bundle over 3 x I. Let

1
0S(a) = 15 /E Tr(Fa, AFs,)

This function €S : C — R depends on the trivialization of P. If 8’ is
the trivial connection with respect to another trivialization, then let
7' be a path in € from a to §'. We can glue the connections A, and A
together over £ x {0} and along £ x {1} via a gauge transformation
to obtain a connection A in a principal SO(3)-bundle F over & x S!
and _

—1-- TT(FA /\FA)——}—-— ] TT‘(FA /\FA )

4n? Joxr ! At g " ™

1

='47r—2 s TT(FAAFA)=p1(E)
x 51

where the last equality follows from Chern-Weil theory, with p1(E)
the first Pontryagin class of E evaluated on the top class of & x S.
Since wz(E) =0, p1(E) = 0 (mod 4). Up to sign, CS : ¢ — R/4Z is
the Chern-Simons invariant of the connection a. A similar argument
shows that C'S descends to €S : B — R/4Z. This R/4Z invariant can
be regarded as a (mod 4) Pontrjagin charge of the connection A, for
Tr(Fa, A Fa,) is the Chern-Weil integrand.

This Chern-Simons functional induces a functional C§ : R(X) —
R/4Z. Noting that R(XZ) is compact, define

7(¥) = min{CS5(a)|a € R(X)} € [0,4]
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It appears that these Chern-Simons invariants have never been used
in the study of homology 3-spheres. We will now see that coupled
with the techniques of [FS3] these invariants are extremely useful.

3. Gauge theory for X(a,,...,a,). A Seifert fibered homology
sphere ¥ = ¥(ay, ..., a,) admits a natural S!-action whose orbit space
is S%. Orient T as the link of an algebraic singularity. Equivalently,
orient ¥ as a Seifert fibration with Seifert invariants {bo; (a:, b;),7 =
1,...,n} given by (1.1). With this orientation Z bounds the canocnical
resolution, a negative definite simply connected smooth 4-manifold.
Let W = W(ay, ..., an) denote the mapping cylinder of the orbit map.
It is a 4-dimensional orbifold with boundary ¥ and singularities cones
on the lens spaces L{a;, b;) (see [FS3]). Orient W so that its oriented
boundary is —%. Then W has a positive definite intersection form.
Let Wy denote W with open cones around the singularities removed.
Then

T (Wy) = m(Z)/ < b >=T{(e1,...,an)

ay '
=< T1,entpjri =1l,i=1,.,n, 21 2o =1>

When n = 3 this is the usual triangle group and in general it is a genus
zero Fuchsian group. Since X is a homology sphere, there is a one-
to-one correspondence between representations a of m1(X) into SU(2)
and representations, which we still call «, of 7;(W;) into SO(3).
Given a € R(Z), let V, denote the flat real 3-plane bundle over Wy
determined by a. When V, is restricted over L(a;, b;) C 8W) it splits
as Lo ; @ R where R is a trivial real line bundle and L, ; is a flat 2-
plane bundle corresponding to the representation ny(L{a;, b;)) — Z,,
of weight [;, where r{a(z;)) = nl;/a;. Here, the preferred generator

of m1(L(ai, b;)) corresponds to the deck transformation

(2, w) — ((2, Cbiw)

of S* where ¢ = €2™/%. Thus L ; is the quotient of $% x R? by the
above action of Z,,. The bundle L, ; extends over the cone c¢L{a;, b;)
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as (C? x R2)®R, an SO(3)- V-bundle whose rotation number over the
cone pOi;It is I; (with respect to the preferred generator given above).
Thus we obtain an SO(3)-V-vector bundle, which we also denote by
Vo, over W. (See [FS3] for V-bundles.) In [FS6] we determine
which (I1,12,13) can arise for representations of m;(Wp), n = 3, thus
determining R(X(p, ¢,7)).

Given a representation « : m(X) — SU(2), its Zariski tangent
space in the space of all conjugacy classes of such representations is
H(X;Vqa) (where Vq also denotes V, restricted to £). This is the
case since V, is the R3-bundle associated to the representation « via
the adjoint action of SU(2).

The quotient /S of the natural $*-action on T = (ay,...,a,) is
the 2-sphere 5% with an induced orbifold (V-manifold) structure. The
orbifold fundamental group of /S is just T(ay,...,ap) = 71 (Wp).

In the following proposition we use the presentation for m; () given

by (1.1).

PROPOSITION 1.2 [FS6]. Let o : m (%) — SU(2) be a repre-
sentation with a(z;) # %1 for i = 1,..,m and o(z;) = 1 for
t=m+1,...,n. Then

dimg H'(m1(%);Vy) = 2m — 6.

(Here H'(7(X); V,) denotes group cohomology with coefficients in
the adjoint representation associated to a.)
In [FS6] we show that

PROPOSITION 1.3 [FS6]. If a : 7;(Z) — SU(2) is a representation
witha(a;) #lfori=1,...,m,ala;)=1fori =m+1,... n, then the
connected component R, of « in the space R(Z) is a closed manifold
of dimension 2m — 6.

In particular, R(Z(p, g,r)) consists of isolated points.
An $0O(2) V-vector bundle L over W is classified by the Euler class
e € H*(W,) = Z of its restriction over W = W — (neighborhood of
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singular points). We shall denote by L. the V-bundle corresponding
to the class e times a generator in H2(Wy, Z). Let B be any connection

on L, which is trivial near OW. Then the relative Pontryagin number

of L, is
2

1
% - Tr(Fs A Fp) =pi(B)

4n?
where a = a; - - ap.

Let A denote the SO(3)-connection over W U (2 x R) = W which
is built from the above flat connection on W and a 1-parameter fam-
ily {a:} of SO(3)-connections over & given by a path of connections
between a, and the trivial connection 6.

THEOREM 1.4 [FS4|. Let the connection A be as above and sup-
pose ¥ has Seifert invariants {bp;(a1,b1),...,{(an,bn)} with by even.
(This can always be arranged.) If one of the a}s is even, assume it is
ai, and arrange the Seifert invariants so that the b;, 1 # 1, are even.
Ife=3, LiZ (mod 2a), then the SO(2) V-bundle L. satisfies

(1) L. has the same rotation numbers (up to sign) as Vo over the

singular points of W,

(2) wa(Le) = wa(Vq), and

(3) p1(A) = e?/a (mod 4).

Thus for each representation a € R(Z(p,¢,r)) there is associated
an Euler number ¢ and CS(a) = e?/pgr mod 4Z. This gives the
computation for 7(X(p, ¢,7)). Note that pgrr(E(p,q,r)) € L.

In [FS3| we introduced an integer

(3.5)
R(e) = R(al,. - an;e)

a;—1
Wak wek

p )cot(—) sin’(

)

a-
k=1 '

The role that this integer plays in the gauge theory of X((ay,...,a,)
is that R(aj,...,an;e) denotes the virtual dimension of the moduli
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space of self-dual connections in the SO(3)-V-bundle L, & R over W
which are astmptotically trivial.

For example, for p and ¢ relatively prime, 7(%(p,q,pgk — 1)) =
1/(pe(pgk — 1)), for ¥ > 1. Omne way to see this is to use the al-
gorithm presented in [FS6] to find a representation with associated
Euler number ¢ = 1. A rather curious way to see this is to con-
sider the orbifold W which is the mapping cylinder of the orbit map
¥(p,a,pgk — 1) — S? and consider the moduli space M of asymp-
totically trivial self-dual connections in the V-bundle £ = L, & R
over W. Then dimM = R(1) =1 (cf. [FS3]), so that (perhaps af-
ter a compact perturbation) there is a component of M which is an
arc with one endpoint corresponding to the reducible self-dual con-
nection. The noncompactness of M indicates that a self-dual con-
nection “pops off” the end (cf. §10 of [T1]). That is, there is a
self dual connection C over ¥ = ¥ x R which is asymptotically triv-
ial near 400 and is asymptotically a flat connection a, near —oo.
For any asymptotically trivial connection A in F over W we have
w7 Jw Tr(Fa A Fa) = €*/(pa(pgk — 1)) = 1/(pg(pgk — 1)).Then
CS(a,0) = g fy Tr(FecAFe) < 1/(pg(pgk—1)), so that CS(e, §) =
1/(pg(pgk — 1)). |

Let © denote the group of oriented homology 3-spheres modulo
the equivalence relation of oriented homology cobordism. In [FS3] it
is shown that if R(p,¢,r;1) > 1, then £(p,q,7) has infinite order in
ol

THEOREM 1.5 [FS6]. Let p and ¢ be pairwise relatively prime in-
tegers. The collection of homology 3-spheres {£(p, q,pgk — 1)|k > 1}
are linearly independent over Z in 04!,

PROOF: Fix k > 2 and suppose that £(p, ¢,pgk—1) = E;::l n; X(p,

g,pgi—1) in ©@f | where n; € Z and ng < 0. Then there is a cobordism
Y between Z(p, ¢, pgk—1) and the disjoint union HLI n;2(p, ¢,pqj —
1} with Y having the cohomology of a (1 + 3 |n;|)-punctured 4-
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sphere. Now cap off the —ny copies of —%(p,q,pgk — 1) by ad-
joining to Y the positive definite canonical resolutions Z bounded
by —Z(p,q,pgk — 1). Let X be the resulting positive definite 4-
manifold. Let W denote the mapping cylinder of the orbit map
2(p,q,pgk—1) — 52, Finally, let X = W Us(p ¢ pek—1)X and consider
the SO(3)-V-bundle E = L, & R over the positive definite orbifold
X, where e € H¥(X;Z) = HX(W;Z) ® (. H*(Z;1)) is a gener-
ator of H%(W;Z) = Z. For any asymptotically trivial connection A
in E over X we have == Jx Tr(Fa A Fa) = 1/(pg(pgk — 1)). The
moduli space M of asymptotically trivial self-dual connections in E
has dimension R(p,¢,pgk — 1;1) = 1, so that (perhaps after a com-
pact perturbation) there is a component of M which is an arc with
one endpoint corresponding to the reducible self-dual connection (see
[FS3]). The noncompactness of M indicates that a self-dual con-
nection C “pops off” the end (cf. §10 of [T1]). That is, there is
a self dual connection C over Y = +X(p,q,p¢7 — 1) X R, for some
J, which is asymptotically trivial near 400 and is asymptotically a
flat connection a, near —oo. Also, there is a self-dual connection B
over X which is asymptotically some flat connections at the ends of
X so that ﬁ;fff Tr(Fp A Fg) > 0. However, 1/(pg(pgk — 1)) =
o2 [y Tr(FAANFa) = &y [, Tr(Fc A Fe) + ooz [ Tr(Fp A Fp) >
m"t‘ﬁ!’ijT(FﬁAFB) > m+ﬁff}2Tr(FBAFB): 80
that Xy ¢ Tr(Fp A F) < 0, a contradiction. §

This theorem was originally proved by Furuta [Fu] using a similar
technique.

Other non-cobordism relationships can be detected by the explicit
computations of 7(Z(p, g,r)). For example, r(X(2,3,7)) = 25/42 and
7(—2(2,3,7)) = 4 — 121/42 = 47/42. Thus, the proof of Theorem 1
shows that 3(2,3,5) is not a multiple of £(2,3,7) .
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LECTURE 2.

1. n and p-invariants. Atiyah, Patodi, and Singer introduced in
[APS1-3] a real-valued invariant for flat connections in a trivialized
bundle over odd-dimensional manifolds. These invariants arose from
their study of index theorems for manifolds with boundary. In this
lecture we will discuss these invariants and show how they have been
used in low dimensional topology.

- Let ¥ be a 3-manifold with a flat connection a in a trivialized
$0(3)-bundle over . Let Q2 denote the space LY (Q(Z) @ s03) and
consider the self-adjoint elliptic operator

Ba =xda —dax: 0, ® Q0 — 00, © 02,

where d, : 2, — Q{:jl is the covariant derivative determined by the
connection a and * is the Hodge star operator, which depends upon
a Riemannian metric on £. The eigenvalues A of B, are real and
discrete. Atiyah-Patodi, and Singer [APS1] define the function

na(s) = > (signA)|A|~*

A#0

We let n(s) denote ng(s). Since the operator B, involves the * op-
erator, it depends upon a Riemannian metric on ¥ and changes sign
when the orientation is changed. In [APS1-3] it is shown that 7a(3)
has a finite value at s = 0. The importance of these 7 invariants is
their role in the computation of the twisted signatures of 4-manifolds
with boundary.

Let X be a 4-manifold with boundary T and let « : 7y (X) — U(n)
be a unitary representation of the fundamental group. This defines
a flat vector bundle V,, over X, or equivalently a local coefficient
system. There are cohomology groups H*(X;V,) and H*(X,%; V)
and these have a natural pairing into C given by cup product, the
inner product on V, and the evaluation of the top cycle of X mod
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Y. This induces a non-degenerate form on H*(X;V,), the image of
the relative cohomology in the absolute cohomology. On H 2(X;Va)
this form is Hermetian and the signature of this form is denoted by
signg. (X).

Assume that the metric on T is extended to a metric on X which
is a product near T and that a| = a. It is shown in [APS3] that

signa(X) = n jX L(p1) - 7(0)

where L(p;) is the Hirzebruch L,-polynomial of X. Thus, these 5
invariants are to be viewed as signature defects. However, they depend
upon a Riemannian metric on X. To resolve this dependency define
the reduced n-function by

pa(s) = na(s) — n(s)

where eta(s) = etag(s) with 8 the trivial U(n) connection. An appli-
cation of the above signature theorem to ¥ x I shows that pa(0) is
independent of the Riemannian metric on ¥ and is a diffeomorphism
invariant of & and a. We denote it by po(X). Furthermore, if ¥ = 8X
with a extending to a flat unitary connection a over X, then

() pa(Z) = nsign(X) — signa(X)

These pq-invariants were made important in low dimensional topol-
ogy via the Casson-Gordon invariants for knots {CG]. In the realm of
low dimensional topology these and related invariants were the only
game in town in the 1970’s and early 80’s. We will now discuss these
Casson-Gordon invariants and indicate how gauge theory can enter
into their considerations.

2. Knots in $%. Let K be a smooth knot in 5*. The knot K is slice
if there is a smooth 2-disk D C B* with K = 8D. Knots K, K, are
cobordant if there is a smoothly embeded annulus in S x I meeting
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5% x {t} in K, (¢ = 0,1). Addition of cobordism classes of oriented
knots is given by connected sum, resulting in the knot cobordism
group ©3.

The question of the hour is: When is a knot slice? There are
necessary algebraic conditions. K C $® bounds an oriented surface
F C 3. Thicken F to an embedding Fx I C $%. Given z,y € Hy(F),
let oz, y) = linking number of z X 0 and y x 1. This defines a bilinear
form o : H1(F)x H (F) ~— Z, such that a(z, y)—a(y, z) = intersection
number of ¢ and y. The Seifert form for K is just the form a. The
Seifert form is null-cobordant if it vanishes on a subgroup of H; (F) of
dimension § dim H1(F)). J. Levine proved (in all dimensions) that if
K is slice, then any Seifert form for K is null-cobordant. Such a knot
is called algebraically slice. Furthermore, in higher (odd) dimensions
the analogous condition is necessary and sufficient for K to be slice.

K is a 7ibbon knot if it bounds an immersed disc (ribbon) in S3
each of whose singularities is two sheets intersecting in an arc which
is interior to one of the sheets. Ribbon knots are slice, for push the
interior of the ribbon into B* and then deform slightly a neighbor-
hood of each arc. An old problem of Fox, which is still unresolved,
is whether every slice knot is a ribbon knot. In [CG] there is pre-
sented an invariant for detecting when an algebraically slice knot is
not ribbon and a modified version of this invariant detects when it is
not slice. We discuss these ribbon invariants and indicate how gauge
theory makes them slice invariants.

3. Casson-Gordon invariants. Let L be the double branched cov-
ering of the knot K in S%. If K is slice, then the double covering of B*
branched over the slicing disc is a 4-manifold W with H(W;Q) = 0.
Furthermore if the image of Hi{(L) in H,(W) has order m, then
|H1(L)| = m?. Also, if the slicing disc is obtained by deforming a
ribbon, then =3 (L) surjects onto 7, (W).

Let x : Hi(L) — U(1) be a representation with image the m-th
roots of unity C,,. The map x is induced by a map L — K(C,,,1).
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Since 2 K(C,,,1) is finite, rL bounds a compact 4-manifold W over
K(Cpm, 1), for some r > 0. Thus the representation y factors through
H;(W) and induces a flat U(1) bundle V,, over W. Then let o(K, x) =
px(L)/r. This is independent of r.

These invariants defined by Casson-Gordon were originally applied
to those knots K in S whose double branched covering is a lens
space L = L{p,q). This contains the collection of 2-bridged knots.
If K is ribbon, then m(L) = Z,,> and m (W) = Z,,. Using this
W to compute o(K,x) one computes that Ho(W;V,) = 01if x is
non-trivial and since the m-fold covering of W is simply-connected,
Hy(W;V,) = Hy(W;V,) = 0 (this is where the ribbon assumption
is used). Also the Euler characteristic of W with V, coefficients is
that of W, namely 1, so that He(W;V,) has dimension 1. Now by
* py(L) = o,(W), so that o(K,x) = £1. Calculations then show
that there are algebraically slice 2- bridge knots K for which there is
a x with o(K,x) # £1, hence they are not ribbon. Casson-Gordon
then proceed in [CS] to refine these invariants ¢( K, x), by considering
infinite cyclic coverings, to define invariants of (K, x) that show that
these K are also not slice in the case that m is a prime power order.

At this point gauge theory can enter the picture to show that in
fact if K is slice, then o(K,x) = %1 for any m. This was done in
[FS4] as follows. Consider X =cone(L) Uy W, a pseudofree orbifold
in the sense of [FS3]. Now the bundle E, over W extends as a flat
V-bundle over X. The flat connection determined by £, is both self-
dual and anti-self-dual. We now study the moduli space of self-dual
and anti-self-dual connections in the SO(3)-V-bundle Fy = E, @ R.
We denote these by M., and M_, respectively. Now M4 is nonempty
(since each contains the reducible flat connection determined by x)
and compact (since flat connections are representations into a compact
group). The index theorem yields that the virtual dimension of M4
is =2+ o(K, x) and that this is an odd integer. If dimM 4 > 0, then
a perturbation of the equations has a moduli space that is a compact
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manifold of dimension dimA + with an odd number of singularities
of the form a cone on a complex projective space. It is then shown
that an odd number of complex projective spaces cannot bound in B.
Thus dimM 4 < 0, and o(K,x) = 1.

This program was extend by G. Matic in [Ma] and independently
D. Rubermann in [R] to show that if [ is a rational homology sphere
with some finite cover a homology 3-sphere, then the same conclusion
holds. The main new ingredient is the gauge theory for manifolds
with ends developed by C. Taubes in [T1]. Rather than coning off
the boundary, the idea is to add an open collar to W* and consider
self-dual and anti-self-dual connections that are asymptotically flat.
With the results of [T1] in place, the proof is formally the same.

Note that the only Pa-invariants that were used in the above set-
up were those associated with representations o : 71(L) — U(2) that
factored through a finite group. In general, there are many irreducible
representations. What role do these invariants play in the study of
©3}? We should keep this question in mind during the next lecture,
where these irreducible representations play an essential role.

LECTURE 3.

1. Aninteger instanton invariant, Let X be a homology 3-sphere,
@ : m (L) = SO(3) an irreducible (i.e. non-trivial) representation,
and a, the associated flat connection in the trivial bundle over I,
Now the Chern-Simons invariant CS(a) of a is just the Pontrjagin
charge (mod 4) of a connection on the trivial bundle over ¥ X R that
is aq near —oo and is the trivial connection 8 near — oo. Let a,(X)
denote that connection gauge equivalent to a, with

1
1 ] Te(Fo gy A Famy) = CS(a) € [0,4]
xR

472

We can associate an integer to the representation « as follows. Let
I{a) denote the dimension of the moduli space M, () of self-dual
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connections on ¥ x R with Pontrjagin charge C'S{«) that are asymp-
totically aq(T) near —co and 8 near +oo. The Atiyah-Patodi-Singer.
index theorem yields the virtual dimension of M, (x) as

(3.1) I(a) = A(T x R)ch(V-)ch(g)
xR

1 1
— 5(he + n76(0)) + E(haa(z) + N (x)(0))

where the forms A(E x R) and ch(V_) are computed from the Rie-
mannian connection on ¥ X R {choose a product metric, say) and ¢
is the SO(3) bundle over T x R with Pontrjagin charge CS(«). The
term hg is the sum of the dimensions of HY{(Z;Vy),i=0,1. It is im-
portant here that « be irreducible. Recalling that ps = n5(0) — n6(0)
(here 6 is the trivial SO(3)-connection), and noting that hg = 3 we
have

(32) I(a)= /

X

N hy )
A(Z x R)ch(V.-)ch(g) — § + a(¥) 4 Pa.(Z)
R 2 2 9

The integral term of (3.2) is

ﬁ 3
[ A X R)H(V)eh(e) = z/zxnpl(g) + ]EXR(L _g)

where £ and & are the L-polynomial and the Euler form of & X R.
Since g is our SO(3)-bundle over ¥ x R with Pontrjagin charge C'S (a),
S5 P1(8) = CS(a). We then get as in [APS1, §4] that the integral

term is
(33)  20(a)~ S[x(® x R) = (S x R} + 5(16(0) = 6(0)

Combining (3.2) and (3.3) we have

3k, \
(3.4) I(a) =205(a) = 5 + 22 4 LB ¢ 7
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This is well-defined as an integer, not just as an integer mod 8, since
we have specified the Pontrjagin charge of the instanton moduli space.

We now have an interesting relationship between the Chern-Simons
invariants introduced in Lecture 1 and the p,-invariants introduced
in Lecture 2, namely

4CS(a) = po + ha (zy +3 mod 2Z

Like the Chern-Simons invariant, this integer invariant I{a) is useful
in detecting when homology 3-spheres are not homology cobordant.
We will illustrate this after some computations are discussed.

2. Examples. In [FS6] we computed I{a) for @ € R(Z(p, q,7)). We
now indicate the key ideas behind the computation.
Recall the integer

(3.5)
R(e) = R(ay,...,an;€)
2e? T2 W rak k. . o mek

the virtual dimension of the moduli space of self-dual connections in
the SO(3)-V-bundle L, & R over W which are asymptotically triv-
ial. Combining (3.5) with the choices of e that arise from repre-
sentations of m(X(p,q,r)) (see Lecture 1) and Theorem 1.4 yields
the computation of I(«); for CS(a) = f}; — 4k € [0,4]. Then
I{a) = R(p,q,r;e) — 8k.

THEOREM 3.6 [FS4]. Suppose R(a1,...,an) 2 1. If E(ay,...,a,)
18 homology cobordant to a homology 3-sphere ¥ , then
(1) 7() < 7(Sap,. .., an)) = =L, and
(2) 1 £ I{a) £ R(ai,...,ay,) for some representation a € R(Z)
with CS(a) < —L

a1 8&n -
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Furthermore, £(ai,...,an) is not homology cobordant via a simply-
connected homology cobordism to any other Z.

Proo¥: Following the proof of Thoerem 1.4 we obtain a reducible
(asymptotically trivial) self-dual connection on the bundle £ = L. ®R
over the union X of the mapping cylinder W of £(a4,...,a,) and the
homology cobordism. Any asymptotically trivial connection A on E
satisfies égf)‘i- Tr(FaAFa) = g5 Again let M be the moduli
space of asymptotically trivial self-dual connections on E. A sequence

in.M which has no convergent subsequence must either pop off an
instanton at one of the cone points or a self-dual connection over
(al,...,al) xR asin (1.4). Since the smallest Pontrjagin number of
a bundle on the suspension of a lens space L(a;, b;) which admits a self-
dual (V-) connection is 347 > al_,l_ﬂ“
point. It follows that no sequence in M can converge to a reducible

, no instanton can pop off at a cone

self-dual connection (on some V-bundle) which has Pontrjagin charge
1

the technique of [FS3] for cutting down the moduli space to find a

less than

. Since dim M = R(ai,...,a,) is odd, we may use

1-dimensional submanifold A of M which is noncompact and has one
endpoint corresponding to the reducible self-dual connection.

Now apply the proof of Theorem 1.4 to A to verify claim (1) and to
show the existence of a self-dual connection on ¥ X R which is asymp-
totically trivial near +o00 and is asymptotically some flat connection
Go near —oo, a € R(X). This implies that I{«) > 1 because of trans-
lational invariance in the R-factor (c.f. [F]). The other inequality also
follows from Theorem 1.4.

The last statement follows as in Proposition 1.7 of {T1]. Let U
be a simply-connected homology cobordism from Z(ay,...,a,) to
Y, and let V be the simply-connected homology cobordism from
2(a1,.-.,a,) to itself obtained by doubling U along £. We obtain
a reducible (asymptotically trivial) self-dual connection on the bun-
dle E = L. ® R over the union X of the mapping cylinder W of
E(ay, ... ay) with infinitely many copies of V adjoined. Again let M
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be the moduli space of asymptotically trivial self-dual connections on
E. Now, since X has a simply-connected end, M is compact [T1]. As
above, since dim M = R(ay,...,a,) > 0, we can cut down to obtain
a compact moduli space with one end point, -a contradiction. K

For example, 7(2,7,15) = (2, 3,35) and R(2,3,35) = 1. However,
for the unique a in R(X(2,7,15)) with CS(a) = 7(2(2,7,15)), I(a) =
~5, so that £(2,7,15) is not homology cobordant to £(2, 3, 35).

3. Extended Instanton homology. Let 2 be an arbitrary homol-
ogy 3-sphere. Suppose that for each a € R(XZ), H*(Z;V,) = 0. Such
representations are called reguler. The Brieskorn spheres satisfy this
condition. Define a chain complex

S (0N 02) B3 (sPIN 0 ) e

as follows. Each IC;(¥) is a free abelian group generated by those
a € R(X) with I{a) = 5. Let o € IC;(Z) be a representation. The
Oa € IC;_1(Z) is given by

ba= )  |a;f]8
FER(E)
I(8)=5-1
where [a; 8] € Z is the number of components (with orientation) of
the 1-dimensional moduli space over ¥ X R that are asymptotically
a at —oo and 8 at +oco. It is shown in [F] that 09 = 0. We let
I.(Z) denote the homology of this chain complex. The instanton
homology I.(%) as defined by Floer in {F] is graded by Zs where the
grading is I{a) mod 8, so that Eﬂ.Ej(S) fn = I, mod 8- If there are
representations that are not regular, one must perturb the flatness
equations to arrive at nearby (not necessarily flat) connections that
are regular (see [F]). Be aware that in [F] the instanton grading is —3—
I{a){ mod 8). We refer the reader to two excellent survey articles
([A] and [Br]) concerning instanton homology and its relationship to
Donaldson polynomials.
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4. Examples. In [FS6] we listed some examples of L(Z(p, g,7))-
The groups I; are free over Z and vanish for odd ¢, so we denote the
instanton homology L.(Z(p,q,7)) of Z(p,q,7) as an ordered 4-tuple

(fo, f1, fzs_fs) where f; is the rank of Ipi+1(Z(p, ¢, 7))

(k=F1 k1 kF1 k:tl) for k odd

L.(%(2,3,6k £ 1)) = { E kb
(&, L 5% for k even
(3k2q:1’ 211’ 3k2:;1 3k:|:1) for k odd

L(2(2,5,10k 1)) =3 .2~ 2
(_ﬁ_, 3 T , 3k) for k even
(3k:|:1 2¢ 3k5t1 i.’z_i..l.) for k odd

. 2 ? K
I*(E(z'}s) 10k + 3)) { (3k:|:2 3k 3k2:i:2 %ﬁ for k even
’ 2 !
(3k +1,3k+ 1,3k ¥1,3k+ 1) for k odd
L(Z(2,7,14k £ 1)) =

(3k, 3k, 3k, 3k) for k even

L(X(2,7,14k £+ 3)) = (3k,3k £ 1,3k, 3k £ 1)
L(Z(2,7,14k £ 5)) = (3k £ 1,3k + 1,3k £ 1,8k £ 1)

(51:;1 5k+1 5kF1 5::;:1) for k odd
I.(5(3,4,12k £ 1)) = N
(Z(8, ) { 52k’ 521:, 52k, 5;“ for k even
: (51:2 1 5k—3, 5k— ~1 5k—3) for k odd
I.(5(3,4,12k ~ 5)) = 2
(=( ) { (5k2—2 ’ 5k2—2 , 5k2-—2’ 5k2—2 for k even
(4k, 4k + 1,4k, 4k £ 1) for k odd

L(%3(3,5,18k + 2)) =
( ( )) {(4kil,4k,4kﬂ:l,4k'—'|:3) for k even

We now list a few computations of I,(S(p,q,7)). For the fist ex-
amples we will list these as n-vectors with the i-th entry denoting the
dimension of Iz;_1.

1,(2(2,3,5)) = (1,0,1,0)
I.(2(2,3,11)) = (1,1,1,1)
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L(Z(2,3,17) = (1,1,2,1,1)
1(2(2,3,23) = (1,2,2,2,1)
[(%(2,3,29) = (1,1,3,2,2,1)
[(2(2,3,35)) = (1,2,3,3,2,1)
L(2(2,3,41)) = (1,1,4,3,3,2)
I,(£(2,3,47) = (1,2,3,4,3,2,1)

For a € R(X(2,3,6k — 1)), CS(a) = 3—;;:5 mod 4 where e = 1
mod 6. Choosing the largest e and computing R(2, 3,6k —1; ¢}, it can
be shown that for a given any positive integer N, there is a K with
Lin_1(2(2,3,6K — 1)) # 0. Similarily, it can be shown that for any
negative integer N, there is a K with f2|N|_1(E(K, K+1L,K(K+1)+
1)) #0.
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