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Dedicated to the memory of Andreas Floer

1. INTRODUCTION

In [D2] S. Donaldson introduced new and useful invariants for smooth,
closed, simply connected 4-manifolds by evaluating certain elements of the
rational cohomology of the space of connections in an SU(2)-bundle over a 4-
manifold M on a homology class represented by the moduli space of self-dual
connections. In this paper we utilize torsion in the cohomology of the space of
connections to define a collection of mod 2 polynomial invariants for smooth,
simply connected, closed spin 4-manifolds and show that this collection of poly-
nomials is stable under connect sums with S* x S* (Theorems 1.1 and 1.3).
This contrasts with the vanishing theorems for Donaldson’s integral polyno-
mials for connected sums [D2]. It will then follow that if one could find two
homotopy equivalent simply connected, smooth, closed, and spin 4-manifolds
with Donaldson polynomials having different parity, then these manifolds are
not diffeomorphic and remain nondiffeomorphic after connect summing with
one or two copies of S 2% 8%, At present, no such example is known. However,
we will show that the Donaldson polynomial invariants have limited utility in
this vein. In fact, using the relation between the usual Donaldson invariants and
the mod 2 polynomial invariants (Theorem 1.1) and through a detailed under-
standing of how moduli spaces decompose for manifolds which are connected
sums, we are able obtain severe restrictions on when the Donaldson polynomials
reduced mod 2 can be nonzero. (See Theorem 1.6.)

In order to describe these mod 2 polynomial invariants, recall that Don-
aldson’s (integral) polynomial invariant Gy pr 18 defined for a closed oriented
simply connected 4-manifold M with bL odd > 1 (and for ¢ alarge enough
positive integer) and has degree d = 4/ — %( 1 +b;4) . Consider the Banach mani-
fold 33;4 , of equivalence classes of irreducible connections of charge ¢ . Don-
aldson’s invariant is defined on homology classes Zy,..., 2, € Hy(M; Z) by
evaluating the cup product of the @ cohomology classes u(z,) € H 2((%”;;’ i L)
(u is defined in [D1]) against the fundamental class of the 2d-dimensional
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moduli space %M, , of anti-self-dual SU(2) connections of charge £. See §2
for a more complete description. In case b; > 1 1s even, we have dim/%M‘ =
8k — 3(1 + b;) = 2d + 1; so a similar polynomial invariant can be defined if
there is a nontrivial 1-dimensional cohomology class in %A}’k . If k is even
and M is spin there is a nontrivial class u, € H l(%g}’ «>ZL,) (cf. [D1] and
§2). Thus in this case there is (for large enough even k) a polynomial invariant
D u, m of degree d in H,(M; Z,) and defined with values in Z,. (See [D3]
for a general discussion of such invariants.) As in the case of g, Mo the mod 2
invariant D u, is an invariant of the smooth structure of M .

Now suppose that M is a closed oriented simply connected spin 4-manifold
with b;} odd > 1 and has a Donaldson polynomial invariant 4 u of degree

d and with ¢ odd. Then M#S® x S* has b* even and the moduli space

%M#Szxsz‘l+l has dimension 2d + 5. Since ¢ + 1 is even, we have the mod 2

invariant ¢, | , .o 2 Of degree d +2 in Hz(M#S2 x S%; Z,) . Our main
Uy
theorem is

Theorem 1.1. Suppose that M is a closed simply connected spin 4-manifold with

a Donaldson polynomial q, ,, of degree d, where ¢ isodd. Then q, | , \ustys?
. LUy,

is defined and for any classes z , ... , z, € Hy(M ; Z) and for x = [S2 x 0] and
y=[0x 8% in Hy(S* x S*; Z) we have

q[‘M(zl, ’Zd)Eq£+1,ul,M#S2><S2(Zl’ cev 5 Zy,X,y) mod 2.

In order to explain the relevance of this theorem to the problem at hand,
let us make the following definition. Suppose that M, and M, are homo-
topy equivalent simply connected 4-manifolds. We shall say that their degree
d Donaldson invariants 9y u, and g u, have the same parity if for each
isomorphism of intersection forms f : H,(M,; Z) — H,(M,; Z) and for all
Zyy.ee 2y € Hy(M; Z) we have

ql’,Ml(Zl >t Za') = ql,MZ(f(Zl)’ f(Zd)) mod 2.

Theorem 1.2. Let M, and M, be homotopy equivalent closed simply connected
spin 4-manifolds. If MI#S2 x S% is diffeomorphic to MZ#S2 x S* then 9y,
and q, M, have the same parity for all odd ¢ .

This theorem is actually a corollary of Theorem 1.1 and Wall’s work on the
diffeomorphisms of 4-manifolds [W1]. For if there is an odd ¢ and an iso-
morphism f of intersection forms as above, then consider the isomorphism
f@l: H(M#S® x S*;Z) — Hy(M,#S” x S*;Z). Let ® : M#5° x §* —
Mz#S2 x S? be a diffeomorphism; so (I):l o(f®1)= g is an automorphism
of HZ(MI#S2 x §%; Z). Then by [WI, Theorem 2], g = G, where G is a
self-diffeomorphism of MI#S2 x S*. Then f @1 is induced from the dif-

feomorphism @ o G. Theorem 1.2 now follows from Theorem 1.1 and the
naturality of Donaldson’s invariant.
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If by isodd > 1, so dim.#y , is even, we may write dim.#, , =2d +2.
For k odd and N spin, 7‘1(%’;’, ) = 0 and there is a nontrivial class u, €
HZ(%’N’,( ; Z,) arising from the 2-torsion in H, (Zy > Z). (Again, see [D1].)
Thus we may form the degree d polynomial invariant G u, N with values in
Z,. We get

Theorem 1.3. Let N be a closed simply connected spin 4-manifold with the
degree d Donaldson invariant Qi u, N with values in Z,. (Thus b,f, is even
and k is even.) Then the degree d +2 invariant Qi uy N#S?xS? is defined and
forany z,, ..., z, € H)(N; Z,)

qk’ul’N(zl, ,Zd)Equ’uz,N#Sszz(Zl,... »Z4,X,y) mod2,

where x = [S2 x 0] and y =[0 ><S2].

A basic theorem in the theory of smooth 4-manifolds, due to C. T. C. Wall
[W1,2], states that given two homotopy equivalent simply connected smooth
closed 4-manifolds M| and M, , there is an integer k such that M, #k(S2 ><S2)

is diffeomorphic to Mz#k(S2 X S2) , 1e. M| and M, are stably diffeomor-
phic. A natural problem is to determine the minimal such integer k, denoted
sd(M,, M,). It now follows from Theorems 1.1, 1.2 and 1.3 that if M,
and M, are homotopy equivalent closed simply connected spin 4-manifolds
with Donaldson invariants 9y and ¢, M, (¢ odd) which do not have the
same parity then actually sd (M, , M,) > 3. At present no such examples are
known. A possible reason is given by Theorem 1.6 where it is shown that many
Donaldson invariants are even.

For many closed simply connected 4-manifolds it is known that “homotopy
equivalent implies diffeomorphic after a single connected sum with S?x 82>
For example, work of Mandelbaum [M] and Gompf [G] shows that this is true
for simply connected elliptic surfaces. Hence

Theorem 1.4. Let M, and M, be homotopy equivalent closed simply connected
spin elliptic surfaces. Then any Donaldson polynomial invariants 9y u, and

9y u, > for £ odd, have the same parity.

Theorem 1:4 also follows from the explicit computations for spin elliptic
surfaces given by Friedman and Morgan [FM].

Let Symi(Hz(M ;Z)) be the set of d-linear symmetric functions on
H,(M;Z) with values in a ring R. The symmetric product 49,9, €

Sym@ % (H,(M; Z)) of the symmetric functions ¢, € Sym® (H,(M ; Z)) and

g, € Sym%(H,(M ; Z)) is defined by the rule

qqu(xl 5 vy xp+q)

1
= dd Z @, (X515 -+ s X )42 (X, 11)> -+ > Xo(a,+d,)) -
172" 0€S,, 4,
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The degree d Donaldson invariant 4, p 1s an element of Syde(Hz(M VAR
Similarly the intersection form Q,, of M is an element of Symi(Hz(M 3 ).

Define 1
(p)
M = EQ;]/

Reducing mod 2 we consider the algebra

Sym;( (M Z)) @Symz (H,(M; Z)).

In §8 we prove a vanishing theorem for Qi1 u,, M#s?xs? (Theorem 8.1) remi-
niscent of Donaldson’s connected sum theorem [D2] which together with our
calculations of ¢, . x € Symd+2( H,(X;Z)) and its invariance under the
orthogonal transformations of Hz(X ; Z) induced from diffeomorphisms of
X = M#S* x % will prove

Theorem 1.5. Let M be a closed simply connected spin 4-manifold with a Don-
aldson invariant gq, ,, with £ odd. Then q, , = €, ,, 5{;) mod 2 for some
integer p and €, \ €Z,.

Combining this result with the thesis of Y. Ruan [R], we obtain strong re-
strictions on the possibility of Donaldson’s invariants ¢, ,, taking odd values.

Theorem 1.6. Let M be a closed simply connected spin 4-manifold with a
Donaldson invariant 4y ar of degree d with ¢ odd. If b;} # 3mod 8, or if
d > rank(H,(M; Z)), then q, ,, =0mod 2.

The proof of the main Theorem 1.1 is accomplished via a degeneration of
metrics argument of the sort utilized by Donaldson in [D2]. Two routes are
available for carrying out this argument. The first is to split M #5% x §* along
an obvious S°. Then the argument is a modification of the arguments of [D2],
and we shall outline such an approach in a moment. We have chosen instead
to view M#S? x S* as the result of surgery along a circle in M . Then the
interface between AM\{ tubular neighborhood of the circle} and the handle
S? x D* is the 3-manifold S*x S'. We study the result of stretching a tubular
neighborhood of this S? x S' to infinite length. The tool for comparing the
resulting moduli spaces of anti-self-dual connections with the original moduli
space is the thesis of Tom Mrowka [Mr]. Techniques from Mréwka’s thesis are
becoming increasingly important in gauge theory (cf. [GM] and [MMR]), and
we felt that it would be interesting to carry out our argument from Mréwka’s
point of view.

For the experts, we outline the alternative approach using Donaldson’s work
from [D1] and [D2]. Let S* be a 3-sphere in M#S” x S* whose complement
is the disjoint union of M \ B* and S* x S* \ B*. Suppose that one has a
l-parameter family of metrics {g,} on M#S? x S* such that in (M #S? x
s?, g,) our S* has diameter less than d(t) and d(t) — 0 as t — oo. Thus

in a reasonable sense, the sequence of Riemannian manifolds (M #S% x Sz, g)



2-TORSION INSTANTON INVARIANTS 303

converges to the one-point union (M, g, )V (S2 x S? » &2 ?) » and we choose
the g so that both g, and g. . are “generic”. Foreach i=1,...,d,
let ¥, be a codimension 2 subvariety of the appropriate space of connections,
such that V; is a cocycle representative of u(z,). (See §2.) Similarly choose
V. and Vy Then the invariant ql+1,ul,M#Ssz2(Zl s .ees Zg, X, y) is found by
evaluating w, [V, n---NV, NV _N Vy H%M#Szxsz’[_'_l], and g, ,(z,,..., z,) is
the algebraic intersection number #¥, N---N v, ﬂ/[M’ 0"

Suppose that {4,} is a sequence of connections such that for each n we have
A, eVin---n¥,Nn¥V.n v, ﬂ/lM#Sszz’Hl(g,n) where ¢, — oc. Then {4,}
converges to a pair of connections A4 € %M’k(gM) and B € .%Szxsz,j(gszxsz)
together with possible instanton bubbles, and k + j + #(bubbles) < ¢ + 1.
Counting arguments as in [D2] and §5 below show that the only possibility is
that AeV,n---nV,NnAH, ,(8,), Be Mg, g2 o(852,52) (s0 B is the trivial
connection O ). Furthermore, a single bubble must occur at an intersection
point of generic surfaces S, and S, representing x and y. One then needs
to argue that the calculation of ¥V, n---Nn¥V, NV n Vy N ‘%M#Szxsz,i’ﬂ(gtn)
for large n will follow from the solution of the gluing problem: To an A4 €
vpn---nv,n.#,, ,(g,) slue the connection 0., # on S? x S obtained
from starting with O .. and grafting in a charge 1 instanton / at a point of
s.Nns,.

The gluing problem at hand is quite similar to the one considered by Donald-
son in his proof of Theorem B of [D1]. In that case one needs to graft a pair of
charge | instantons to the trivial connection on a b* = | manifold. Here there
is only one instanton on the »* = 1 manifold S? x S2, but there is a second
gluing parameter coming from gluing the connection O, 2#] on S? x S* to
the connection 4 on M . Finally, one needs to modify the argument of [D1,§V]
to see that foreach 4 e ¥V, n---n¥, N ./%M’ (&) and each intersection point
of S, and S, one obtains a circle of connections of the form A#(O g o#l)
on which u, evaluates nontrivially. Since x -y =1 is odd, Theorem 1.1 will
follow. This is discussed further in the proof of Theorem 8.1 below.

Here is an outline of the paper. In §2 we review Donaldson’s invariant
and describe Qi u, N in more detail. In §3 we present the necessary results
of Mrowka [Mr] and of Taubes [T3] concerning gauge theory on manifolds
with cylindrical ends. Mrowka’s thesis [Mr] is discussed in §4. In §5 we begin
serious consideration of Theorem 1.1, whose proof is there reduced to a single
calculation. This calculation is then carried out in §6. In §7 we study the
invariant D u,, m and prove Theorem 1.3. Finally, in §8 we combine our
gauge-theoretic calculations with some algebra to prove Theorems 1.5 and 1.6.

2. SOME TORSION INSTANTON INVARIANTS
Let M be a closed oriented simply connected 4-manifold and P a prin-
cipal SU(2)-bundle over M . The bundle P is classified topologically by its

second Chern class, ¢,(P) = k. Let &/ = &/ (P) be the L:‘:-Sobolev space
of connections on P. It is acted on by the Hilbert Lie group % = %(P) of
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Li-gauge transformations. The quotient is %), , = % (P), the space of equiv-
alence classes of connections. Let .%,, , denote the irreducible connections in
Py 1 - (We do not distinguish in notation between a connection 4 € % and
its equivalence class 4 € %,, , .) The moduli space of equivalence classes of
anti-self-dual connections on P is denoted by .#,, , or by .#,, ,(g) when
making explicit the Riemannian metric g on M. For £ > 0 and a generic
choice of g, this moduli space is a manifold, which, if nonempty, has dimen-
sion 8k — 3(1 + bL) . (See [FU] for details.)

If b;l > 1 is odd and if k > 3(1 + b;,) then the Donaldson polyno-
mial invariant g, ,, is defined as follows. The dimension of /ZM,,( is 8k —

3(1 +b,,) = 2d, and 4 m € Syde(Hz(M; Z)). For a generic surface X in
M , the restriction of an irreducible anti-self-dual connection over ¥ is again
irreducible; let ry : %M’k — 332* denote the restriction map. Donaldson de-
fines a complex line bundle %, over %y U{6;} (where 65 denotes the trivial
connection on X) together with a section so that when pulled back by r; it
gives a section of rg(,i’}_) whose zero set V; is a codimension 2 submanifold
of .%‘A; L U{0} which meets all of the moduli spaces %M’ ;» | <k, transversely
[D1]. We shall call V5 “the divisor associated to X ”.

Given homology classes z,, ... , z, € H,(M ; Z), represent them by generic
surfaces Z,, ... , X, in general position. The intersection V}:1 n---N Vzd ﬂ%’M’ K
will then be discrete, and the condition k > 3(1 + b,,) will imply that is is
compact. (The VE,» are also chosen to have transverse multiple intersections.)

Donaldson’s polynomial invariant is defined to be
qk’M(z1 seee s Z,) =#(V2. Nn---nN VEd n/[M,k)

where “#” denotes a count with signs. Donaldson [D2] proves that g, ,, de-
pends only on the smooth structure of M . More formally, g, ,, can be viewed

as follows. There is a homomorphism u : H,(M ; Z) — Hz(fé‘* Z) defined

M. k>
in [D1], and under the hypotheses on k, the above intersection is compact.
Then g, ,(z,, ..., z,) = u(z))U U u(zy)#,, 1. In fact, the divisor V;

is a cocycle representative for u(z,). The next proposition is well known.

Proposition 2.1. Let M be a closed simply connected 4-manifold. Then
n(Byy i) =0 unless M is spin and k is even, in which case n,(By, ) =Z,.

Proof. This proof can be ferretted out of [FU] as follows. Let g =% /1.
Then . * is a principal £-bundle over i 5 SO (B 1) = no(?). If £° is
the based gauge group (of gauge transformations restricting to the identity over
a basepoint) then & fibers over SU(2) with fiber 2% so n, (%) = no(?o).
It is easy to see as in [FU, §5] that no(?o) = [M, S3] , and by the Steenrod
Classification Theorem this is Z, if M is spin and 0 if M is not spin. We
have

Z, 1o 7, (%) = 7y(8) = 0;
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~

so m,(¥) =0 if M isnot spin. If M is spin then [FU] shows that J, is onto
in the case that k = 1 by identifying its image with a generator u € T, (S 3) =
no(?o) = 1,(¥). For general k the argument shows that its image is g"(u),

where g : st s isa degree k map; hence j, is onto if and only if k is
odd, completing the proof. 0O

Now consider a simply connected spin 4-manifold M with b;’l even. The
moduli space of anti-self-dual connections on the SU(2)-bundle over M with
¢, = k has formal dimension 8k — 3(1 + b[‘;) = 2d + 1. Let homology classes
Zys--o 5 2, € Hy(M;Z) be represented by generic surfaces X, ... ,Z, as

above. If k > %(l + bL) + % then the intersection VE; Nn---N Vy_d Ny
will be a compact 1-manifold in %A'; . (for a generic metric on M). Sup-
pose k is even. This intersection represents a class in H, (‘@A;,k 1 2)=1Z,.
Just as for A m this class can be shown to depend only on Zy,...,z; and
the smooth structure of M . This defines an invariant which Donaldson calls
D u,m € Syméz(Hz(M ; Z)) . Donaldson’s definition of this invariant in [D3]
is basically the same. It goes as follows. Coupling the Dirac operator ) on
M to connections on P gives a family of operators and hence a virtual bun-
dle Indp, over & . The operator ), can be regarded as a real operator,
and so there is a real line bundle detIndg D, over ./ . When k is even this

bundle descends to a real line bundle 5 over 93;4 « (see [D1]). The class

u € H'(ﬁ;,k ; Z,) 1is defined to be u; = w,(n). Then for k even and in the
range above, qk’u“M(zl seee s Zg) = u(z)) U---Uu(zy) Vu (4, ]

Similarly for M spin, bL odd, and k odd one obtains a class u, €
H*(#,, .+ Z,) asin [D1]. Then for k > 3(1+b},)+ 1 one obtains an invari-
ant g, € Symy (Hy(M; Z)) where dim.#,, , =8k —3(1 +b,) = 2d +2
defined by

qk’uz’M(z1 e s Zg) = W2 U U u(zg) Uy,

3. GAUGE THEORY ON MANIFOLDS WITH CYLINDRICAL ENDS

Given a simply connected oriented 4-manifold X with nonempty bound-
ary 0X, we let X denote the extended manifold X U (0X x [-1, o0)). We
shall only consider Riemannian metrics on X, which differ on 9.X x [1, oc)
from a product metric by an exponentially decaying term. We call such metrics
“asymptotically cylindrical”. Gauge theory on these manifolds has been stud-
ied by several authors, notably Mrowka [Mr], Taubes [T2,3], Morgan, Mrowka,
and Ruberman [MMR], and Floer [F]. The appropriate theory in our context is
based on connections which decay faster than e~°" for a fixed small constant
J.

Let &/ (P) denote the space of smooth connections on P with finite energy,
ie. [ X, Tr(F, A F,) < oo with the coarsest topology compatible with smooth

convergence on compact sets and the continuity of A4 +— [, Tr(F, A F ). The
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gauge group & consists of gauge transformations on P with the topology of
smooth convergence on compact sets. In &/ (P) consider the finite energy anti-
self-dual connections

-1
mx,k:{Aeﬁ“g/X Tr(F,AF,) =k < oo and *FAz—I:A}‘

Its quotient by & is the moduli space My  C % . The “charge” k need not
be an integer.

In auspicious circumstances the moduli space ./Z Y .k has nice local properties
and one can proceed without worries. This is explained in [T3, Theorem 1.8]
which we shall now paraphrase. We need to work with based moduli spaces;
so we fix a basepoint x;, € X x {0} and let & % be the subgroup of gauge
transformations in & which restrict to the identity on the fiber over x,. Set
%° = 2°/2° and ///)? = My k/?o. Consider an a € #(0X), the repre-
sentation space Hom(nl’(aX ), SU (2)). The action of SU(2) by conjugation
induces an effective action of SO(3) on #(dX) whose quotient is the charac-
ter variety x(0X). Let I’ be the isotropy group of a and let U, be a slice
in #(0X) to this action at a;so U x. SO(3) models a neighborhood of the
SO(3) orbit of a in Z(X). ’

Theorem 3.1 (Taubes [T3; Theorem 1.8], Mrowka [Mr]). There is a locally con-
stant continuous function R on /l)? with values in the set of connected compo-
nents of #(0X) with the following significance. If K is a connected component
of Z(0X) such that for each o € K the dimension of U, equals the dimension
of the twisted cohomology H' (0 X ; ad a) and k, € Z*, then for each k < ky:

(i) Each A € /Z)? g N R™Y(K) has a representative in m, . such that if
A, = Alyy, o then lim, | A, exists, isa flat connection, and the assignment
A — rO(A) = lim A, defines an SO(3)-equivariant continuous map

t—o00
Py NRT(K) - R(OX)
which descends to
riy NR™(K)/SO(3) — 2(dX).

(ii) For a dense set of asymptotically cylindrical metrics on X, the moduli
space defined by My () =My N r’l(a) is a manifold (except at reducible
connections in case X has a negative definite intersection form). If nonempty,
My () has dimension 8k —3(E(X)+sign(X))—3h, —5p. . where E(X) and
sign(X) denote the Euler characteristic and signature (with compact supports) of
X, p, isthe p-invariant of [APS2] and h is the sum of the Oth and 1st betti
numbers of H* (0 X ; ad a).

(1i1) If W is an open subset of F(0X) which contains only smooth points,
then for a dense set of asymptotically cylindrical metricson X , M )? 4N )
is a manifold (except at reducible connections).
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(iv) For a dense set of asymptotically cylindrical metrics, r° s My 0 Yo Nr (K ) —

F(0X) is an SO(3)-equivariant generic map. In particular, it can be made
transverse to any SO(3) invariant complex.

This follows smce in this situation there is a 6 > 0 such that, for 4 €
My 0 X .k NR™ (K ), e Tr(F A F,) is integrable. As examples, note that if 9.X
is a Brieskorn homology sphere then x(0X) is discrete, and if a € y(0X) is
nontr1v1al then H' (BX ad a) = 0 (cf. [FS1]). For the trivial representation,
H' (0X;ad a) = (BX R ) = 0 as well. Thus the hypothesis of Theorem 3.1
holds for all of #(0X). Of course, this already appears in the work of Floer
[F].

In this paper we are especially interested in the case 9 X = S?xS'. We have

R(S* x S') = Hom(Z, SU(2)) = S°,
and R

x2(S* x $) = SU(2)/S03) = [~1, 1].
Let o be a representation corresponding to a point in the open interval (-1, 1).
Then T' = S! , U, is l-dimensional, and

U, xp SO(3) = (interval) x ;i SO(3) = (interval) x 57

Now HI(SZ><S1 ; ad «) is the group cohomology Hl(Z; ad a) = HI(Sl ;ad o).
But the twisted Euler characteristic of S' is the untwisted Euler characteristic
with coefficients in R, namely 0; so dim HI(S2 xSl' ad a) = dim HO(Sl' ad a)
=diml, =1 =dimU_ . For 7 = +1 ex(S x S ) we have I' = SO(3) and
so U, is 3- dimensional. But the same argument as above shows

dimH' (S x S ; ad 1)=dimH (S x S ;ad 1) =dimI', =3 =dimU,.
Thus K = %( x S') satisfies the hypothesis of (3.1).

4. MROWKA'’S THESIS

Our technique for proving Theorems 1.1 and 1.3 requires an understand-
ing of what happens when a metric on M degenerates along a codimension
1 submanifold. In particular, suppose we have a fixed metric g € M and a
codimension 1 submanifold Y of M. Suppose that Y splits M into sub-
manifolds X| and X,; so M = X, U, X,. We assume that g is close to a
metric on M which is a product in a neighborhood “tube” Y x [-1, 1]. We
then wish to study the effect of changing g in a family { g | t>1} where g,
is within ¢, of the metric on M which agrees with g off Y x[-1, 1] but has
stretched the tube to Y x [, ], and lim,_,__¢e, = 0. Suppose further, for
simplicity, that all components of #(9Y) satisfy the hypothesis of Theorem
3.1. For ¢ large, we need to understand how My (8, relatesto 4, X, .k, (&)

and /[X“‘kz(g,,z).

In one direction, there is Uhlenbeck’s Compactness Theorem [U]. In this
situation it yields the following result.
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Theorem 4.1 (Uhlenbeck (cf. [Mr])). Consider an increasing unbounded sequence
of integers {t,} . Suppose A, is a sequence with A; € My (8, ). Then there are
finite sets of points {Xi}ioy . m in X, and {y;},_,  in X, such that after
passing to subsequences, {A;} converges uniformly in C > on compact subsets
of X\ \{x,,...,x,} and X,\{y,, ... ,y,} toanti-self-dual connections.

This phenomenon is called “weak convergence”.

As for the other direction, when Y is a homology 3-sphere, the relationship
can be studied via the Floer homology of Y ; for example see [F, FS 1,2, A].
In this case, the Donaldson invariant of M can be computed via a pairing of
relative Donaldson invariants on X, and X,, which take their values in the
Floer homology of Y .

The general case is studied in the thesis of T. Mréwka [Mr] and by Taubes
[T3]. (See the forthcoming work of Morgan, Mréwka, and Ruberman [MMR]
for further details.) We next proceed to give a synopsis of some of the results
of Mréwka’s thesis.

Let U° be an open subset of the smooth points of #(Y) and for j =1, 2

let /Vjo pe a precompact open subset of (r?)_l(Uo) where r;) :%)?. e — Z(Y)
J+2 7

is given by Theorem 3.1. Let .#° be the fibered product (with SO(3)-action
coming from the diagram):

WO
0 / \ 0
(4.2) 4 !
AT
UO

Then Mrowka shows that for generic (asymptotically cylindrical) metrics on
X,, and X,  the restriction maps r? and rg are transverse; so ./~ % isa

manifold.
For i=1, 2, let X, =X, UY x(=t,1) C M(g,). Then as in [D1,2] we say

that an 4 € %’A},kﬁkz is “(n, t)-close™ to (A4,, 4,) € M x A, iffor i=1,2
we have

P = Aix Mo < s

where the subscripts denote restriction (and /] = /170/50(3)) .

Mrowka’s Theorem 4.3 (Part I) [Mr]. If k; and k, are both positive then there
are real numbers 1, and t, such that for all t > t, and 0 <n < n, there is an

SO(3)-equivariant map yto 0 /[137,([ +kz(gl) satisfying:

(a) The image of y? Is open in %A(}’kﬁkz(g,) and contains all points (A, &)
such that A is (n, t)-close to a point of N x A, .
(b) y? is a homeomorphism onto its image.
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(c) Forfixed ((4,,¢)), (4y, &) € #°, the sequence y2((4, . &,), (4,, &)
converges weakly to

[(4,,¢), (4, &) €A x A7

Here elements of % are given by gauge equivalence classes of pairs (A4, &)
where 4 € & and ¢ € P_, the fiber over the basepoint.
The theorem above should be compared with [D1, Theorem 4.53] and [D2,

Proposition 4.6]. The map yt is obtained from an SO(3)-equivariant map
30-4/"—»%}‘}(% where B)((4,,¢)), (4,,&,)) isequal to 4, on X, and
A4, on X, and patches the two connectlons together on the tubes BX X [O 2t]
and has framing ¢ ¢'2 The map y, is obtained from a deformation of ,Bt .
In particular, the image f,(/#") is homologous to y,(/#") in %,

Mk +k,
There is also a version of Mrdéwka’s theorem which holds when one of the

moduli spaces has zero charge. Assume that k; >0 and k, = 0. Then /%X ' k

can be identified with the representation space .%(X,) and we can consider /1/2
as an open subset of the smooth points of .%#(X,). Thus, as the a € /1/20 vary,

the H’ (X, ;ad a) fit together to form an SO(3)-equivariant bundle Eg -

/1/20. Pull back ._.g to an SO(3)-equivariant bundle =° over .#°. Mrowka’s
result in this case is

Mréwka’s Theorem 4.4 (Part II) [Mr]. There are real numbers n, and t, such
that for all t > t; and 0 < n < n, there is an SO(3)-equivariant map y? :
S @0 M ok, and an SO(3)-equivariant section sO 7 S B such that

(a) 7, (/I/ )ﬂ% &, (g,) isopenin %A(},kl(gt) and contains all points (A, &)
such that A is (n, t)-close to a point of N x A

(b) y?((so)_l(O)) = ylo(/lfo) H/ZA(}’kl(gl), and ytol(so)_.(o) is a homeomor-
phism onto its image.

(c) Forfixed [(4,,¢,), (4, &) € 4, thesequence y{((4,, ¢)), (4,,&)))
converges weakly to

[(Al > él) > (A2 > 62)] € ‘/1/10 X ‘/1/20.

We next need to look more closely at the divisor V5 corresponding to an
oriented surface ¥ C X . For any such surface which is generic in the sense
that restriction induces ry : /Z; k"~ @; for all k (i.e. an irreducible anti-
self-dual connection over X restricts to an irreducible connection over X) the
divisor V; is defined to be the zero set of a generic section of rg(,? ) where
,7 = det Ind D}: 4 and D}: 4 1s the Dirac operator on X coupled to connec-
tlons The operator Ds , has numerical index 0; thus generic fibers of the

index virtual bundle Ind Dy , are O-dimensional, however at certain “jump-
ing points” A € ,@ ker Dy o4 S = coker Dz 4 # 0. These points constitute the
divisor of the determmant line bundle det IndD . It is shown in [DK] that
if 7 is defined by this divisor, then 7% is also a cocycle representative for
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u[X]. Thus for our purposes, it suffices to identify Vs with 75 . Then an anti-
self-dual connection 4 over X lies in Vs if and only if its restrlctlon rs(A)
over X is a jumping point for the index v1rtual bundle of the Dirac operator
on X coupled to connections.

Proposition 4.5. In the situation of Theorem 4.3 suppose that T C X,. Then
B(A4,, 4, € V ifand only if A € V.
Proof. Let “ * ” denote restriction of a connection to X so A = B,(4, 2)
Then B,(4,, 4 ) € V5 if and only 1fkerDZ 4 #0,1e if and only 1f A, €
V.. O

s -

It is more interesting to ask about a surface £ in X such that ¥ = UZ,
with £, C X, and such that the homology class of X is represented nelther 1n
X, nor X,. Assume that £, NZ, isa circle, and let X, =z U(&Z x[0, 00)) C

X,, . The surface X, has a Dirac operator Dy deﬁned on L -sections. The
followmg proposmon is discussed at length and proved in [MMR]

Theorem 4.6 (Morgan, Mréwka, and Ruberman). Let ((4,,¢)),(4,,&)) €
NV a Suppose that —1 ¢ U°. Then there is a ly such that, for all t > t,

B4, &), (45, &) €V ifand only if (4,, &) €Vy or (4,,8) € Vy

2
5. CONNECTED SUMS WITH S’ x S

Let M be a smooth closed simply connected spin 4-manifold with b;; >3
and odd, and let ¢ be an odd integer, ¢ > (1 + b+) The moduli space of
anti-self-dual connections on the SU (2)-bund1e P over M with ¢,(P) = ¢
gives rise to a Donaldson polynomial 4 € SymZ(Hz(M ; Z)) where d =
4¢ — %(1 + b];). (Notice that the conditions placed on bL and ¢ imply that
d>3(1+by)>6) Let X = M#S* x S* and consider the SU(2) bundle
over X with ¢, = ¢ + 1. The formal dimension of the moduli space %X’ 0+
is 8(£ +1)—3(1 + (b+ +1)) =2d +5. Since X is spin and £ + 1 is even
and > 3(by + 1)+ 1, the Z,-polynomial invariant Gpi1 ., x Of degree d +2
is defined. Let z,,...,z 4 € Hy(M,Z) be represented by generic oriented
surfaces Z,, ..., X, in M asin §2 and let x and y be the classes represented
by S x 0 and 0 x S>. Here we are viewing H,(M, Z) as a subgroup of
H,(X, Z). We mean to evaluate (JZH,MPX(Zl seee s Zgs X, V).

It is useful to view the process of taking connected sums with S* x S° as
the result of surgery along a homotopically trivial circle. Let C denote a circle
in M, and let M, be the simply connected manifold M \ N(C), where N(C)
is an open tubular neighborhood of C. Let C’ be a circle in S4, and let

K = S*\N(C") = 5" x D*; then X = MyUg K. Let g, and g, be
asymptotically cylindrical generic metrics on M0 , and K and let g =g
be a generic metric on X such that the family of metrics { glt>1} on X,
obtained as in §4, converges to gM g .
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Since the character variety x(S2 x S l) = [-1, 1] is connected, all Chern-

Simons invariants of flat SU(2)-connections over $* x S' are trivial. Thus a
connection A with finite action on the restricted bundle over M|, has integral

2. o
charge (—1/8n )jMO Tr(F,AF)).

Recall from Theorem 3.1 the restriction map "M, :%MO — x(S2 x S 1). Let
‘/[Mo,m(a) denote the moduli space of anti-self-dual connections 4 over M,
with charge equal to m and with rMO(A) =a.

Proposition 5.1. The formal dimension of %Mo,m(a) is
. 2d+8(m—-4£)-1, a#+l,
dim.#, =
im Ay, m(@) {2d+8(m—e)—3, o=+l
Proof. The Atiyah, Patodi, Singer Theorem gives

dim.#,, () =8m —3(1 +by) : :

= 5h. =50,

where p, is the p-invariant of [APS2] and 4, is the sum of the Oth and Ist
betti numbers of H *(Sz x S ,ad o). To compute p_, note that the represen-
tation a of 7zl(S2 X Sl) extends as a representation of 7tl(D3 x S l). Thus
p,=3 sign(D3 X S') —sign_, a(D3 x S') =0.

The calculation at the end of §3 shows that 2, =2 if a # +1 and h, =6
if & =%1. Now 8¢ —3(1 +by) = 2d; so we have dim.#), ,(a)=2d+
8(m—¢)—1h_, as desired. O
Corollary 5.2. If 2d + 8(m — £) > | the moduli space /%Mmm (with respect to
the generic metric gMO) is a manifold whose formal dimension is 2d +8(m —¥¢) .

Proof. Since %(Sz x S') ~ §? is a smooth manifold, Theorem 3.1(ii1) im-
plies that /Z]gm » 1s a manifold. Since this moduli space contains no reducible
connections, the group SO(3) acts freely on %/30"" . Also SO(3) acts on
%(Sz x Sl) with S° as principal orbit type. Thus the quotient ‘%Mo,m is also
a manifold, and according to (3.1) r240 is a generic SO(3)-equivariant map.
Thus for a generic metric, "y,
SO dim/lM0 =1 +dim‘%M0

:%Mo’m \ r;l:)(il) — (=1, 1) is transverse, and
a) where a # £1. 0O

,m ml
Similarly we have

Proposition 5.3. The formal dimension of M), («) is

8n—4, a#=xl,

8n -6, a==+l.

Corollary 5.4. If n > 1 the moduli space #, , is a manifold whose formal

dimension is 8n — 3.

dimA (o) = {

With the metric 8y, ON M . the moduli spaces ‘//M().m(”) will either be

empty or manifolds of dimension given in Proposition 5.1. Nowlet V|, ... .V,
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be the divisors associated with the surfaces X, C M,, [Z] = z,. Let J"MO

1
denote the zero-dimensional intersection fM =Vn---nv H/ZM e
0

Proposition 5.5. If A € fMO then rMO(A) #+1.

Proof. The subcomplex r,;:(il) of %Mm . has dimension 2d — 3 and is met
transversely by the codimension 2d submanifold ¥V, n---nV,. O

Proposition 5.6. fMO Is compact.

Proof. If not, there is a sequence of connections {4,} in %, converging
0
weakly toan 4_ € ./, My.m> M < ¢, together with instantons at points x, ... ,

X, € M, and perhaps instantons on tubes $?xS'xR. (See e.g. [FS2].) Since

the Chern-Simons invariant of any flat connection on S’xS'is0e R/Z, the
moduli spaces containing the instantons on tubes account for an integral total
charge 7> 0. If A ¢ %Mo , then r + 7 > 0. The surfaces X, are in

general position; so the points x,, ..., x, lie on at most 2r of the surfaces.
Suppose that 0 < m < £. Then A4__ liesin at least d—2r of the codimension 2
varieties V;. So by Corollary 5.2 and transversality, 2d +8(m —¢) > 2(d —2r).
But also counting charge we get

ZZm+r+TZ€+%+T.

This gives a contradiction unless r =7 =0.
In case A € %M 0> then 4 = 6, the trivial connection. But the formal

dimension of %M 0 is negative by Proposition 5.1. Thus transversality implies
that 6 ¢ V, for any /. This means that each X, contains some X;, and so
2r>d = 4 — —( + b;}) Again counting charge, we have ¢ > r+ T >

26 — —(1 + b7 v) + T . This contradicts our basic assumption that ¢ > 4(l +b; M)
Thus .7, M, 1s compact. 0O

Proposition 5.7. The intersection fMO consists of a finite number of points; mod-
ulo 2 this number is ql’M(zl e s Zg)-

Proof. First we apply Mréwka’s Theorem 4.4 to M = M, U N(C). Since
AN PN > we can take U® = %(S* xS")\ {#1} . The tubular neighbor-
hood N(C) = R} x S':so F(N(C)) can be identified with %(Sz x Sl) , and
the fibered product .#° can be identified with (rM )_l(U 0). The obstruction

bundle :.(])u0 has fiber H+(R x S'; ad p) for p € %(R3 x S'). This coho-
mology group vanishes; so Theorem 4.4 implies that for large ¢ we get maps
N = /1/0/50(3) — %M,[(g,) which are homeomorphisms onto their (open)
image.

The intersection %, M, C r;;( 1) by Propositions 5.5 and 5.6. Hence
we may consider £, C /. We clalm that for large t the homeomorphism
7, identifies %), with Sty =A,, (g)NV N: V,. (Cf. [D2; Proof of

Theorem 4.8].) Flrst if 4¢e f , then by Theorem 4.4(c) {7,(A4)} converges to
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[4, rMO(A)] e/ZMO‘l ><%(R3 xS');soas 1 — oo, 7.(A) € #,, ,(8g) converges
toapointof ¥, N---N V,. But V,n---NV, intersects %’M’p(g,) transversely
in a dimension O submanifold. So for large enough ¢ by Theorem 4.4(a)
there is a unique point of .7 (f) close to y,(4). We claim that for large
enough ¢ these points comprise all of . (¢). If not, then there is a sequence
A, € A,(t,), t, = oo, which fails to converge strongly to some connection
[4, rMO(A)]. In other words, {4,} convergesto [4,, , A.] € .4, Lk, x My, N(C) &,

together with instantons at points x, ... , X, € M0 and Viseen s Vg € N(C)

and perhaps also loses some integral charge 7" on the tube S?xS'xR. (See the
proof of Proposition 5.6.) Since we are assuming that {4,} fails to converge
strongly to some [A4, "y, (4)], we must have k,+r+s+T > 0. But the standard

counting argument as used in Proposition 5.6 implies that kK, +r+s+ 7 =0.
This means that for large ¢ we can identify .7, M, with 7, (t)

The Donaldson invariant 4y p(Zy, ..., z,) 1s calculated by computing the
signed number (finite) of points in .7, (¢) ; so our proposition follows. O

Notice that we have not yet used reduction mod 2 in a substantial way. Given
a homology orientation [D2], g, ,(z,, ..., z,) is the count of signed points
in %,

Let Z and Z be generic surfaces representmg the homology classes x =
[S x 0] and y = [0 ><S] in X = M#S? ><S and with divisors V, and V
We are viewing X = M U (S2 x D? ), and we may clearly assume X, C S? x D
We need to focus our attenuon on Zy The surface Zy restricts to M, and K
to give bounded surfaces E M, and Z . We also use this same notatlon to
denote the corresponding surfaces with cyl1ndr1cal ends in M, and K_ .

For A4 € @ Lk and B € @ &, let A" and B’ denote the restrictions
to Z M, and Z . Since fM consists of a finite number of connections,
and smce the d1v1sor Vs can be chosen transverse to f , we have 7, n

Vs = . Then it follows from Proposition 4.6 that if ((A &), (B, ;7))

v, My

W0 , then for large enough ¢, the image ﬂt ((4,¢), (B, n)) € V5 if and only
if (B,n)e€ V '

For (A4, f)e/l ¢ and (B, n)e% .| Wwith r (A é)_a—rK(B n,
we have in the pullback diagram (4.2) restricted to the fibers of (A4, &) and
(B, m):

SO(3)-4 SO3)-B
(5.8) N v
SU(2)/T, = §*
where SO(3)-4={(4,¢)|¢€ PMo-Xo} and similarly for SO(3) - B

Now let %, denote the intersection My [ NV.N V, x - By Corollary 5.4 this

is a 1-manifold. Let jﬁgo * Z(O denote the SO(3)-equivariant fibered product
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over %’(Sz x Sl).

0 0
jMo * S
0 ~ 0
I, “k
0N ‘/ro
Mg K
R(S* x Sh

We see from (5.8) that if (A4, &) € jf‘f’)o and a = "1?40(‘4’ &) then the corre-

sponding fiber of jﬁgo * ﬁ is an SO(3)-equivariant ' = § '_bundle over the
3-manifold o o 1 o
Fx N(rg) (SUQ)/T,) =FH ().

Taking the quotient by SO(3) we get the 1-manifold (JASO * LYKO) /SO(3) =
Fus,*F which is an Sl-flbration over 4nr,;'rMo(fMo) . Note that .7, «.% is
not a fibered product. It is easy to see, using Uhlenbeck’s compactness theorem
[U], that each %, (a) is a compact 0O-manifold; thus JMO * F consists of a
finite number of the isotropy circles I' , a € r, (%, 0)

We are going to count the circles in %, * % . Our already cumbersome
notation will be kept simpler by assuming that for A,,4, € fM , we have
rMO(A ) # rMO(A ). Since %, M, is a finite set, there is no loss in makmg this
assumption. The general case will follow by keeping track of multiplicities.

Proposition 5.9. For large enough t, the image yt(f * F) is homologous to

F(t) = A& g)nvn-. nVnVan&j’XHl

Proof. Let a € rMO(J’ ) and let U be a small interval in x(S2 x SI \ {1}

such that U N rMO(JMO)
is a single connection. Let /I/MO = ‘/%Mo‘[ N rMO(U) and Sy = M | N KI(U)

and form the SO(3)-equivariant fibered product:

X, £+l(

{a} . Our running assumption is that rM = {4}

For large enough ¢, Mrowka’s theorem 4.3 gives SO(3)-equivariant homeomor-
phisms y? 0 /Z)? 4l (g,) onto open subsets. Now

0

(S, « I N°)/S0(3) = (S, * T NA

isan S'-fibration over F ﬂr"( MO(JMO)O ) = F(a). If Be S (a),denote
the fiber over B by I' - B. Thus ./ N (4 O*f)zl“ - F(a).
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By Proposition 4.5 and Theorem 4.6 we have that for large enough ¢,
/)’to((A,é), B,m)eVin---n¥,nv¥.n V, g ifandonlyif 4e V¥V n---n¥,
and B € V,nV,, that is, if and only if ((4,¢), (B, n)) € JA;’O « 7. Tak-
ing the quotient by the action of SO(3) we see that g(#)N¥V,Nn---N¥V, N
v.nv, = B, (', - Fx(a)) which is homologous to 7,(I', - #(a)). But again
by the definition of y, and the fact that intersections with the divisors V5 are
transverse, the intersection B(/ )NV, n---n¥V, NV N v, is homologous to
yt(./l/)ﬂVlﬂ~-~ﬂVdﬂVxﬂVy=yt(./V)mYX(t).

To complete the proof, we must show (as in Proposition 5.7) that for large
enough ¢ there are no other points of _#,(¢). If there are other points then
there is a sequence 4, € 5, (t,), t, — oo, which fails to converge strongly to
apoint (4, B, h) € JMO x S x ' where rMO(A) =rg(B) = a. Thus {4,}
converges weakly to some (4', B') € M, kX /%K, k, together with instantons
at points x,,... ,x, € M, and y,, ... (: yls € K and with an integral charge
T > 0 lost on the tube S xS'xR. By assumption r+s+ 7 > 0. We
now proceed with a counting argument as in Proposition 5.6, but there are a
few more complications. First assume that k, > 0 and k, > 0. Then we get
2d+8(k,—£) > 2(d-2r),i.e. k >¢—3r,and 8k,—3 > (1-2s),ie. k, > $—1s.
By a count of charge we have: £ +1 >k, +k,+r+s+T >/ +%+%r+%s+T,
which implies that s+ 7 =0 and r = 1. Butif r =1, then k, >¢—1;s0
k, > £. Also s = 0 implies that k, > %; so k, > 1. The charge count now
gives £ + 1>k +k,+r+s+T>¢+1+1, a contradiction.

Incase k, = 0 and k, > 0, we have (as in Proposition 5.6) r > 2¢—3(1 +b;,)
and k, > 1 — 5. Now the basic charge count yields ¢ + 1 > (3 — Ls) + (2¢ -
3(1+4b,,)+s+T. Thus ¢ < 3(1+b,,)+ 1 (3s+ T). However our basic
assumption on ¢ which guarantees the existence of the Donaldson invariant
d, p 1s that £ > %(1 + b;,). Combining this with the above inequality for ¢
we have 0 < $—(3s+ 7). Thus s=7 =0, and so k, > 1;soinfact k, > 1.
Recalculate the basic charge count: £ +1>1+r>1+2¢ — %( 1+ b;;) , which
implies that ¢ < 3(1+b,,), a contradiction.

Next consider the case k; >0, k2 =0. Then k, > Z—%r and s > 1. We get
C+12k +r+s+T20+3r+1+T;s0 r=T=0.Butthen 4'€.7, ,and
B' =0, and since T =0, r(4') = r(B') = 1, which contradicts Proposition
5.5.

Finally suppose that k, = k, =0. Then r > 2¢—3(1+b,,) and s > 1. The
charge count gives £+ 1 > 24— 3(1 +b;})+ 1+7T;s0 £ < 3(1 +bL)—T, which
contradicts the basic assumptionon ¢. O

Recall our standing hypothesis that ", is 1-1 when restricted to JMO .

Proposition 5.10. o x(Z1seee s 205 X, 0) = L{EA(@) [ a € 1y, (F))
mod 2.

Proof. Consider the isotropy circles y,(I', - B). Referring to (5.8) we first
study the family of connections SO(3) - A. Since M, is spin, the Dirac
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operator gives us a family of real operators over SO(3) - 4. The index bun-
dle of this family can be pulled back over SU(2) where it becomes trivial.
Now —1 € SU(2) acts nontrivially on spinors, and the index bundle of the
Dirac family Indg(P, SO(3) - 4) is the quotient of this trivial bundle. (See
[D1].) It follows that as a class in KO(SO(3)) the index bundle is m, - 7,
where m = 2 ind(P Mo) + ¢ is the numerical index and 7, is the class of the

Hopf (real) line bundle. Similarly over SO(3) - B we obtain m, - n,, where
m,=2ind(P,)+1.

If A€ fﬁ(;o and B € JKO , the connected component of the fibered product
fﬁ‘;o +.#. obtained from (5.8) is S’ x SO(3). Now fix a € r,‘go(soo) CA) =
rY(SO(3) - B). Then, if 4' € (r,?%)"(a) NSO(3)- A, we have (rﬁ,o)“(a) n
S0(3)-4=T,-A' =S' and similarly (ry)"'(a)nSO(3)-B=T,-B =S".
(Note that T', - B' € SO(3) - B is not to be confused with I'_ - B ¢ .#".) The
pullback in S' x SO(3) of r, -A" and Fa-B' is a copy of S' xS'. Under the
quotient N0 ¥ this S x S! family projects to I' - B C fMO * S CH .

We compute Indg (P, 7,(S Ixs! )) by using the excision property for indices.
Pull the connection B’ back over r, - A to get an S family of connections
in #°. Then pull back over S st ; SO we may think of this as an S Iy s!
family, 9M0 of connections (constant in one direction). The excision property

implies that Indg (P, S Pxsh - Ind, (P, ‘7Mo) is the pullback of
Indg(P,T,-B") —Indg(P, B)=m,-n,—m,-1,

where (P, B') denotes the Dirac operator on K . twisted over a constant S L
family of connections. Similarly,

Indg(P, %y, ) = (Indg(P, T, - 4') — Indg(P, 4) + Indg(P, (4', B)
=m;-n-m-1+m +my)-1l=m -n +m,-1.
Hence
Indg(P, 7,(S' x ")) = (Indg(P, T, - B') — Indg(P, B))) + Indg (P, F;, )

0
=m N +my-n,.

We get a transversal of S' x S' — [ -B C ./ by fixing the first factor. Over
this transversal we have the index bundle m, -5, + m, - 1. Restricted to the
family I' - B the determinant is det(m,-n,) =5, since m, is odd. For large
¢ the restriction of %, to the family y,(I', - B) is the first Stiefel-Whitney class
of the restricted index bundle; i.e. over I' - B, we have u, = w,(n,) # 0, since
I, is an essential circle in SO(3); so the Hopf bundle is twisted over it. This
means that the isotropy circles y,(I', - B) represent the nontrivial element of
(B g41) -

Thus ¢q,,, , x(z,,...,2;,x,y) is the mod 2 count of these circles in

TR

J’MO * % , and this is given above. O
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We need now to make one final appeal to Mrowka’s thesis. We have
r?( : /Z,?‘I — %(SZ X S') ~ §* which according to Theorem 3.1(iv) is an
SO(3)-equivariant generic map. Taking the quotient by SO(3), this means that
g r,?l(—l DNy | —(=1,1) is transverse to subcomplexes. In particular,
consider oy < o, € (=1, 1). For any a € (=1, 1), the 4-manifold %,?’I(a) is
compact since such an a cannot be the restriction of a flat connection on K (=
S? x D?). The l-manifold 7, Nrg'(ay, ;) = rg ' (g, @) NAM OV, NV, ¢
gives a cobordism of the compact O manifolds % (o) and e (a ). Thus the
mod 2 intersection number #.% (a) is 1ndependent of a# :l:l

Similarly, given a generic 1- parameter family of asymptotically cylindrical
metrics {gK .1 t€[0,1]} on K_, the family {S%. ’(a)} gives a homology
between (a) and S l(a) when a # 1. Thus the mod 2 intersection
number Ny = #f «(a) is 1ndependent of a # 1 and choice of generic metric.

Theorem 5.11. qu,ul‘X(zl,... ,zd,x,y):NK~q[,M(zl,... , Zg) mod 2.

Proof. Since we have avoided multiplicity questions by assuming that
"u, | A, is 1-1, we have by Proposition 5.7 that g, , = #rM (F 0) mod 2.

Also #f " (a) = N forall a# £1; so the result follows from Proposmon 5.10.
If we remove the assumptlon on rM | f , we get the same result by keeping
track of multiplicities. O

6. CALCULATION OF Ny

In this section we shall calculate N, by studying a specific example. Let Q
denote the negative definite Eg plumblng manifold. Its boundary Y =90 is
the Poincaré homology 3- sphere ¥(2, 3, 5) with its negative orientation. Let
W be the result of performing surgery on any circle in the interior of Q. Since
Q is simply connected, all such surgeries are trivial. Then W, is diffecomorphic
to Q0 +#S2 xS? and its intersection form is -E;®H , where H is the hyperbolic
form.

Consider the moduli space of charge 2, asymptotically trivial self-dual con-
nections /ZW ,(8). (Since Y is a Brieskorn homology 3-sphere, it follows
from §3 that there is a single small § such that we can base all our moduli
spaces on connections with exponential d-decay.) The moduli space /ZW 2(19)
is nontrivial [T1,2] and is a 10-dimensional manifold. Choose a pa1r of generlc
oriented surfaces X,, X, in Q, representing classes z,, z, with z = z2 =-2

and z, -z, =1, and let £ ,X be as in §5. We let A2 (0) = Ay ,(B)N
vnrnv.nb,. As in the proof of Donaldson’s Theorem B (see [Dl] and

[FS2)), A& (19) is a 2-manifold with “internal” ends arising from instantons
which bubble off at pairs of points of intersection of £ ,%,, X , and Zy . In

fact, Donaldson shows that there is exactly one such end of ./ 2(19) arising from
each such intersection. Our choice of surfaces then gives us an odd number of
these ends. Donaldson shows, furthermore, that each such end is a circle on
which the class u, € H l(gé’,;,; Z,) evaluates nontrivially. Thus, as in [FS2],
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there are an odd number of “asymptotic ends” of ./ 2(19) on which u, eval-
uates nontrivially. Dimension counting shows that the only possibility is for
such ends to arise from nontrivial splittings of the form

/W(P) x ‘/ﬂy(/)a 9) - W,z(ﬂ)

where p € Z(Y) and .#,(p, ¥) is a moduli space of anti-self-dual connections
on Y x R with asymptotic conditions p at —co and 9 at +oo. Furthermore
Vinyv,nV,.nV, intersects .4, (p) transversely and nontrivially; so dim.#,(p) >
8, and thus 0 < dim./#,(p, ¥) < 2. Furthermore, since the character variety
x(Y) consists of isolated points, the only O-dimensional anti-self-dual moduli
space .#,(p,¥) consists of the singleton ¥. The next proposition follows
directly from computations in [FS1].

Proposition 6.1. Let Y = X(2, 3, 5) with its negative orientation. Up to conju-
gacy there are two nontrivial representations &, w : n (Y) — SU(2). The mod
8 dimensions of the corresponding moduli spaces of anti-self-dual connections
on £Y x R are dimA#,(,0) = 1, dimAy(w,9) =5, dimAs_, (&, D) =
4, dmAZ _,(w,9)=0. O

It follows from this proposition that each asymptotic end of % 2(19) comes
from a splitting ./, (&) x.#, (£, ¥) where dim.#, (&, ¥) = 1 and dim.#, (&) =
9. Since #,(¢, ¥) is l-dimensional, translational invariance of the anti-self-
duality equation in the temporal gauge [F] implies that ./Z, (£, ¥) is a disjoint
union of copies of R.

Viewed in the language of Theorem 4.3, given a family {g,} of generic
asymptotically cylindrical metrics on W, which stretch a given segment Y x
[-1, 1] of the end of W, to infinite length, we get for ¢ > some t, , embed-
dings

Y My (&) x My (E, 0) > My (05 8,),
and y,(A4, B) — (A, B) € #,,(&) <M, (&, V) as t — co. Now ninnnv.ny,n
(M (E)x My (&, 0)) = {VNV,NV OV, "My, (E)} x Moy (£, D) = N (&) x My (£, D)
for a 1-manifold N 1(é). The standard dimension counting argument shows
that N 1(é) is compact.

Let JZ,(Q‘, ¥) be a transversal to the R-action on £, (¢,9). Set T, =
7,(N l(é) x /ZY(Q‘ , ¥)). The argument above using the proof of [D1, Theorem
B] shows that u [7;] # 0. Recall from §2 that u; = w,(detIndg P ,). It follows
that for any A, A, € #,(&,9), u,[7,(N'(&) x 4,)] = u,[,(N'(€) x 4,)]; so
yi(u) € H'(N'(&) x #,(E,0);Z,) = ®H'(N'(&); Z,) is a diagonal class
which restricts to the class u € H 1(N l(\f); Z,) in each component. The class
u is obviously independent of ¢. We have

u [T =7, () )IN' (&) x My (&, 0)] = $4,(E, D) - u[N'(&)].

Hence [N 1((,‘)] #0 in H (#,();Z,) since u evaluates nontrivially on it.

Suppose Nl(é) was the boundary of Z,-chain C of L@;“,(é). Consider
the map B, : 4, (&) x #,(&,0) — B, ,(O) described in §4. Its image is
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approximately anti-self-dual. The map f, is deformed into y, ; so in particular
B.(N'(&)x.M,(&, ) is homologous to y,(N' (&) x.4y (¢, D)) in By, ,(8). The
map B, is constructed by a process involving truncation and matching overlaps.
(See [Mr] and [F].) Thus B, extends over all of C x /Zy(é, 9¥). This would
imply that T, = yt(Nl(f) X Z;,(é, ¥)) is nullhomologous, i.e. that u,[T,] =0,
a contradiction. Thus [N 1(é)] is nonzero in H (%B,,(£); Z,) .

Lemma 6.2. nl(g@,}(é)) =Z,.

Proof. We just apply the proof of Proposition 2.1 to our asymptotically flat
end situation. The gauge group & consists of maps g : X, — SU(2) in
LT,]oc
the asymptotic condition ¢. Let & = & /Z,, so that 7 (%, (&) = no(? ).
Now =,(%5) = [(W,_, 0), (S3 , 1)], which, since W_ is spin, is the group Z, .
One can now show that when one deforms the constant map W, — S* with
value —1 so that it sends OW,_ to 1, then the resulting map is homotopic rel

such that || V,g |5 ;< oco. Note that this group does not depend on

boundary to the map to 1 € s?. (Use the great circle connecting 1 to —1.)
The result follows. O

Corollary 6.3. The class u €¢ H l(N 1(é); Z,) is the restriction of the nontrivial
element of H'(%,,(¢); Z,). O

Next consider the moduli space MQ, 1 (8) . Again it follows from Taubes [T2]
that /ZQ’I(ﬁ) is a nonempty S5-manifold.

Proposition 6.4. There is a 4-dimensional moduli space My(&) which gives rise
to a degree 2 relative Donaldson invariant, and #Mp(E)NV NV;)=1mod 2.

Proof. First notice that if we can find a 4-dimensional moduli space %Q(f) ,
then for any classes a, b € H,(Q; Z) with corresponding divisors V, and ¥, in
QJQ“ (€) , the intersection .#,(£) NV, NV, is compact—for there is not enough
charge for an instanton bubble to occur (any moduli space left would have
nonnegative dimension), and Proposition 6.1 implies that there is no splitting
of the form

(My(P) NV, V) x My(p, &) — MyE) OV, NV,

for any p. Thus we would have a degree 2 Donaldson invariant.
The intersection [ = /Q,l(ﬁ)ﬂ V,nV, isa l-manifold in (@Q*(ﬁ) which can
have asymptotic ends as described above, ends coming from instanton bubbles
occurring at points of intersection of X, and X, (there are an odd number of

these by the choice of X, and Z,), and reducible connections. It follows from
[D1] that the number of ends of %Q‘ ,(9) which are reducible is

LG O ) e e HyQ,:2), ¢’ = ~1) =0

since HZ(Q+; Z) = —E; is an even form. Now an argument similar to the
one given above shows that there are an odd number of asymptotic ends of [
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coming from splittings

(M, (&) NV, N V,) x My (E, D) mod 2.

Furthermore, there are no other asymptotic ends of /. Thus Proposition 6.1
implies that %Q(é) is 4-dimensional, and it follows that #(/%’Q(f) nv,.nr,) is
odd. O

Notice that this degree 2 relative Donaldson invariant g ¢ takes its values

in the 1-dimensional Floer homology group generated by the class of £. Thus
we can identify the values of ¢ with the integers, and then 4. (2, z,) =1
mod 2 for the classes z , z, chosen above.

Digression 6.5. The basic technique of the proof of Proposition 6.4 can be used
to prove the following “folk theorem”.

Let X be a compact simply connected negative definite 4-
manifold with homology sphere boundary Y. Suppose that
the intersection form of X is not diagonalizable over Z. Then
the 1-dimensional Floer instanton homology group I,(Y) # 0.

The proof is basically given above. Counting ends provides a nonzero (in fact,
odd) pairing of the Floer l-cycle of Y given by the degree 2 relative Don-
aldson invariant with the Floer 1-cocycle (which is a Floer cycle of —Y) given

by Z(#/Z ;/(p, 9)) - p where %,}(p, ¥) consists of the 1-dimensional compo-

nents of .Z,(p, ¥) and [;(p , 8) =4#,(p, 0)/R. A simple algebraic exercise
shows that for a nondiagonal negative definite intersection form there always is

a pair of classes z,, z, such that z, -z, - %Z{(e ~z,)(e-z,) | el = -1} #£0
mod 2. Thus both the Floer homology class given by the Donaldson invariant
and the Floer cohomology class of the cocycle are nontrivial.

Theorem 6.6. N, =1 mod 2.

Proof. We apply the arguments of §5 to W, = Q, 0V S? x D? = Q, yUK
where Q. (=0, \ (SI X R3) ,and S' x R® is a tubular neighborhood of the
circle on which surgery is performed to construct W . The proof of Theorem
5.11 applies to V, n¥V,Nn¥.nN Vy NAy,&) =N I(f) without change because,
by a dimension counting argument as above, no sequence of connections in
My &NV, nV,n¥, NV, can lose charge on the tube Y xR" . Since [Nl 6]+#£0,
we get 1 E#(/[Q(é)rﬂ/1 NV,)-Ny=Ngymod2. O

This together with Theorem 5.11 completes the proof of Theorem 1.1.
7. THE u,-INVARIANT

In this section we shall study the invariant g, , , and prove Theorem 1.3.
Uy,

We shall rely heavily on the work already done in §5 and §6. Let N be a closed
simply connected spin 4-manifold with b;, even and > 2 and let & be an even

integer, k > é( + b;) + %; so we have a Z,-polynomial invariant ¢, ,  of
degree d = 4k — 3(1 + by) — 5. Let X = N#S? x S* which is spin and k+1
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> 3(1+by) + } is odd; so the Z,-polynomial invariant .y y Of degree

d + 2 is also defined. Let Z,...,2, € H(N;Z)C H,(X; Z) be represented
by generic oriented surfaces X,, ..., X, as earlier and let x = [S2 x 0] and
y = [0 x S2] with representative surfaces X and X, as before. We must
eValua'te qk+l,u2,X(Zl"”’Zd’x’y)" .

Write X = NyUg o K where N, is N with the tubular neighborhood of
a circle removed and K = S? x D*. We adopt the notation and follow the
arguments of §5.

Proposition 7.1. The formal dimension of %No»m(a) is

2d + 8(m — k), a# 1,

2d +8(m—k) -2, a==l.

Corollary 7.2. If 2d + 8(m — k) > 0 the moduli space %No,m (with respect

to the generic metric gNo) is a manifold whose formal dimension is 2d + 1 +
8m—-k). O

Next consider the 1-dimensional intersection v =Vn--n v, O%NO K-
A ,

dim.#y (@) = {

Proposition 7.3. If 4 € J7N0 then N, (A) # x1.

Proof. The subcomplex r;,ol(:l:l) of /KNO, « has dimension 2d — 2 and is met
transversely by the codimension 2d submanifold ¥, n---NnV,. O

Proposition 7.4. The 1-dimensional intersection J7N0 is a compact manifold.

Proof. This follows from Uhlenbeck weak compactness and from a counting
argument as in Proposition 5.6. O

The cohomology class u, € H ! (‘@N, « > Z,) restricts to a class, which we shall
still call u, in Hl(Qé’No,k; Z,)=Z, (cf. Lemma 6.2).

Proposition 7.5. The intersection J‘;VO consists of a finite number of circles; mod-
ulo 2 the number of these circles which are nontrivial in nl(,@,:,o’ W EZ, s
quul,N(zl sy Zg)-

Proof. As in the proof of Proposition 5.7, for large ¢ we get maps: ./ —
My (&) V\_/hich are homeomorphisms onto their image, and fNO cH.If
I is a component (a circle) of fNO then as ¢ — oo, {y,(I)} converges to
{4, r 0(A)]]A elyc My, ><,z(R3 X Sl). But I is contained in ¥, n---NV,
which intersects %N, «(g,) transversely, and so by Theorem 4.3(a) for large
enough ¢ there is a unique circle of My (g)NV,N---NV, closeto y,(I). Then
as in Proposition 5.7 a counting argument shows that these circles comprise all
of Ay (t) =4y (g)NV,N---NV,. The invariant G, ~(zy5 ..., 2,) counts

(modulo 2) the number of homotopically nontrivial components of _#,(t), but
7, induces an isomorphism on 7, ; so the proposition follows. O
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Let %, (t) denote ./#, xginvin...v,nv.n V, . The technique that proves
Proposition 5.9 then gives

Proposition 7.6. For large enough t, the image 7y, (fNo * F) Is homologous to
Fx (1) in gx ke1- O

Lemma 7.7. The inclusion induced homomorphism m, My \ME1}) -7 %K )
is trivial.

Proof. Let N = My |\ {£1}. Viewing s* as KuD*x S', and referring
again to Proposition 5.7, we have the pullback diagram

./VO

M R R x S\ {£1}
~ W«
R(S* x SH\ {£1}

and /0 — KO is a homeomorphism. Recall the embedding g, : #} = /" —
ﬂga,l , given by f,(A) = A#r(A) over KU (R3 X Sl) =S*. For large enough
¢ this map is homotopic to the embedding y, : #; = /" — %Sa,l(g,). Let
r;( : 95’54’ — %K , be the restriction. Then r;{ o B, is homotopic to the
inclusion of ./ in By . But (B ) is trivial. O

Before proceeding further we need to give a description of the cohomology
class u, € H? (95’)( k41> Zy) of [DI]. Since X is spin there is a family of

real elliptic operators {P |4 € MX*, x+1)] given by coupling the Dirac operator

on X to connections. This family descends to @,? k +1 ; so for any compact
subset T° of 2"

¥ k41 Weobtain Indp (P, {4}) € KO(T ). This class does not
descend directly to 95’/\, k+1> however Donaldson shows that Indg(D, {4}) ®
det(Indg(P, {A4})) descends to %”X k+1 (since k + 1 is odd). The class u, is

defined to be u, = w,((Indg(P, {A}) @ det(Indg (P, {4})))
Next we need to set the stage for the proof of Theorem 1.3. First we trivialize
the projection

RS xS\ [£1} = SUQ\ {1} = (=1, 1)xS* = 2(S* xS\ {£1} = (=1, 1).
Then we can trivialize the projections J’,\g — J‘;VO and Jfko — S so that

F =Sy, xS0(3) and 1y = (ry, 7), where 7 : SO(3) — S is the projection

of the circle bundle, and similarly Jfkp = S x SO(3) where rg, = (rg,m).
Now let fNO ©® S denote the actual pullback of
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(Compare with v *F which is the quotient of the pullback N 0 * Sy 0 by the
action of SO(3).) Workmg with based moduli spaces we have that the pullback

fNo *J’K ={((4,¢), (B, m)iry,(4) = rg(B), n(¢) = n(n)}
= (S, 0F)x (S xS0(3))
where S' x SO(3) is the pullback of diagram (5.8).

Now qk+1,u2,X(Zl »--+» Z4, X, ¥) is given by evaluating u, on the class of

the 2-cycle 7, (1) € Hz(,@; k+15 Z,) . So by Proposition 7.6 we need to compute

the value of u, on yt(tj?VO * %) . This will be done as in Proposition 5.10 by

using the excision property for indices. Fixing a basepoint 0 € S , we have
(=1, 1) x {0} contained in SU(2)\ {+1} as a transversal to the projection to
(=1, 1) and there is the pullback diagram

(S, xS * (F xS
« ~
S xS Jx xS !
~ «
-1, 1) x {0}
Under the projection map from based equivalence classes to ordinary equiva-
lence classes of connections, the pullback (J’N0 xS') (S xS h= (‘fNo OS) X

(' x S‘) maps onto ‘Z\’o * F
Consider the family of real elliptic operators (), (J’N0 x S l) * (F x {1}))
which we may view as a family over (‘Zvo x S l) *(FH xS 1) which is constant
in the direction of the final S'. By the excision principle we have
Indg(D, (Fy, x §') * (S x S1) = Indg (P, (S x S') * (S x (1))
=Indg(P, F x S') - Indg(P, 5 x {1}),

where this last difference must be pulled back over (‘Z"o x S') * (S X S').

Since % consists of arcs and (by Lemma 7.7) nullhomotopic circles, we have
that Indp (P, S x {1}) is trivial, i.e. Indy(P, 5 x {1}) = m, - 1, where

m, = 2 indP, + 1 is the numerical index. Each component of % x S' is
homotopic to {point} xS " fora point in %’,: , - It thus suffices to compute the
index of the Dirac operator twisted by the family {B'#plvo[p es'c SO(3)},

where B’ is a fixed connection in 35’0 8 which is flat near the point Yo €K,
Iy is an instanton at y,, and the grafted connections have fixed postive scale.
Then it follows as in [D1] that

Indg(P, S xS ) =n, +(m, —1)-1,
where 7, is the restriction of the Hopf real line bundle. Thus

Indg(P, 5 x S') — Indg(P, F x {1}) =7, — L.
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In the same way
Indg (P, (A, x S') * (F x {1}) — Indg(P, (Fy x {1}) * (F, x {1}))
= Ind (E,J’ ><S — Indg( mJ x {1}).
For a fixed A" € %0 _, consider the family
{A'# I #, 1, |p,€S' CSO(3)}.

The 1mage of this famlly in % )k is a circle which generates n,(% ’k) =
H (% x> L)=1,. (Cf. [D1]) We have

Ind, (P, {A'# L #, LY =m, 41y + (my=2) -1
where m, = 2 indD Nt k. A connected component / of f which is homo-

topically nontrivial is homotopic to the image of the above fam11y in %N e
and for such a component

Indg(P, I xS') =y + 15+ (my —2) - 1
Similarly,
Indg (P, Ix{1}) = Indg (D, {A'#polxo#p] Ilp € S', po fixed}) = 15+ (m,—1)-1.
So
Indg(P, I x S') —Indg(P, I x {1}) =y, — 1.
For a connected component J of J7N0 which is homotopically trivial, we have

Indg(P, J x S') —Indg(P, J x {1}) = (ny+ (my = 1) - 1) = my - 1 =, — 1;
so we get the same result in either case.
Finally, consider

Indg (P, (f x {1}) x (F x {1})) = Indg(D, (f S x{(1, D}

where (1, 1) € S'xSs'. Now re : S — (=1, 1) is a finite-to-one map which by
Theorem 6.7 has odd degree. Hence as a homology class in @,: , rel (r,;1 (1)),

# 1s homologous to an odd number of arcs each mapping homeomorphically
onto (-1, 1) via ry. (This uses Lemma 7.7.) It is easy to see that compo-

nents of % which are homologically trivial rel (r,z'(:tl)) cannot contribute
nontrivially to Indg(D, (J‘;\,0 OF) x{(1, 1)}). Le.if J' is such a component,
then
Indg (P, (S, oJ)x{(1,1)}) =m,-1

where m; = 2AA(X )+ k + 1. There are an odd number of components which
are essential rel r,;l(:tl) . Working with homology, we may assume that such a
component is a single arc, I', and such that e I'n r;'(—l , )= (=1,1) is
a homeomorphism. Then J‘;VO ol ~ ‘fzvo . If I is a component of J‘;VO then
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Indg(P, (I @ 1') x {(1, 1)}) is Indg(P, I) pulled back over [« 1" x S xS
Thus if I is trivial in # (ﬁNU,k)
Indg(P. (I 1) x {(1, )}) =my-1,
and if I is nontrivial then
Indg(P, T I') < {(1, )})=ny+(my—1)-1.

Adding the above expressions we obtain
Lemma 7.8. (a) For each component I of J’No which is nontrivial in ”1(‘931:/0, %)
and component I' of S which is essential rel r;l(:tl),

Indg(P, (I x S')+ (I' x S1)) = ny +my + 1y + (my = 3) - 1
(b) For each component J of f which is trivial in n (93’N &)

Ind, (P, (JxS yx (I’ xS ) =1, +n,+(my—=2)-1.
(c) For each component J "of S which is inessential rel r;I(:tl),
Indg(P, (S, xS (J' xS) = +1,+(my=2)-1. O
Proof of Theorem 1.3. A transversal of (ch0 x Sl) * (S xS l) can be obtained
by fixing the final s', say. For components I of J which is nontrivial
in ”1(‘@1:/0,0 and I' of  Wwhich is essential rel rg (:l:l) let 7, be the
corresponding transversal of (/ x s! ) * (I' x s! ). Then
Indg (P, T,) ® det Indg(D, T,)=(n, + 13+ (my —2) - 1)(nyn5)-

Let the cohomology generators of the two S'-factors be t, and ¢, respec-
tively, and let ¢, be the cohomology generator of /. The total Stiefel-Whitney
class of Ind( l) T,) - detIndp(P, T)) is w = (¢, + t; + (my — 2))(1,t5); s0
u,([T,]) = (m 2)(t2 )[T,])=m;—2=1mod 2. If mstead we evaluate on
a homotoplcally tr1v1a1 component J of J , we obtain
Indg(P, T,) ®detIndg(P, T,) = (n, + (m3 — 1) - )m,.

So w = (1, + (my — 1))t,, and u,([T,]) = 0. Similarly u,([T]) = O for a
transversal of (J’NO x Sl) « (J x S’) for any component J' of # which
is essential rel r,;'(:tl) Since the number of components I' is odd, this
means that on the one hand, uz([f x #]) is (modulo 2) the number of
homotopically nontrivial components of f , and by Proposition 7.5 this is
just qk,ul,N(z1 ,--» Zz). On the other hand by definition, uz([f * S]) =

qk+1,u2,X(Zl’ cee zd,x y). O

8. INVARIANT THEORY AND THE DONALDSON POLYNOMIAL MOD 2

For M a closed simply connected 4-manifold, let Sym‘,ﬂ(Hz(M ; Z)) be the
ring of d-linear symmetric functions on H,(M; Z) with values in a ring R.
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The symmetric product y,y, € Symi ) HHy(M; Z)) of y, € SymR( (M ; Z))

and y, € Sym%(H,(M ; Z)) is defined by the rule
PZICTRRES > X4, +d, )
d vd ] Z P (Xgrys - xa(dl))yZ(xa(dl+l) yeees xa(dl+d2))
TE€Sy, 1a,
where S 4, +d, denotes the symmetric group on d, + d, letters. The inter-

section form @, of M is an element of Sym;(Hz(M ;Z)), and the de-
gree d Donaldson invariant 4, p 1s an element of Syde(Hz(M ; Z)) . Define
W € Symz’ (Hy(M ; Z)) by

@ _ 1
v = Q-

=
It is interesting to note that if the homology classes Zy, ..., Z,, are repre-
sented by surfaces X, , ... 22p in general position, then Q(” )(21 seees Zy,) 18

the number of ways of placing p points on the intersections of pairs of these
surfaces (counted with suitable signs) such that each surface contains a point.
The results of Wall [W1] mentioned in the introduction imply that the dif-

feomorphism group of X = M #5% % §? maps onto the orthogonal group O, of
automorphisms of H,(X ; Z) which preserve Q, . In this case, classical i 1nvar1-
ant theory implies that if y is a nonzero element of Sym‘é(Hz(X ; Z)) which is
a diffeomorphism invariant (hence is left invariant by Oy),then d =2p and y
is a multiple of Q(” ). Such a result is false for SymZ (H,(X ; Z)); so we are not

able to prove Theorem 1.5 by an appeal to algebra. Instead our proof combines
algebra with specific knowledge of the invariant Qoyy x deduced via gauge

theory. We begin with the gauge-theoretic arguments. The next proposition is

a version of Donaldson’s connected sum theorem [D2] in the context of the

invariant ¢, , , . Our argument follows the lines of a proof of Donaldson’s
Ly,

theorem given by John Morgan.

Theorem 8.1. Let M be a closed simply connected spin 4-manifold with a degree
d Donaldson invariant q, ,, with { odd. Let X = M#S*x S* and let x and y

denote the homology classes [S2><O] and [OxSZ]. Let z,, ...,z € HZ(M; 7)
and w,=xory, j=1,...,d+2—r. Suppose r #0 or d +2. Then the
mod 2 invariant qu,ulyX(zl, ey 2, Wy e, Wy, ) =0 unless r=d and

(W, wynt=1{x,y}.

Proof. We apply an argument derived from considering a sequence of metrics
{g,} on X whose limit is the one-point union (M V S? x §? s 8u V 8grns?)
where g, and 8¢45? are generic. Fix points Py €M and g, € S? x §* and

embedded geodesic balls B, (p,, v) and By «(q,,v) of radius v. Then

(M #S* x S° » 8,) Is obtained by identifying boundary collars in My(v) =
M\B,,(p,, v) and S x SZ\BSszz(qO , ) in such a way that outside of a small
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neighborhood of the neck where the identification is made, g, agrees with g,
and go . (See [D2,8IV].) If qu,ul’X(zl s 2 Wy, Wy 5 ) #F 0,
then for each v there is an A4, € My (&) N Vi Nn---NV, , ,where the
V.’s are the divisors corresponding to good surfaces representing the z; and
w;. As usual, Uhlenbeck’s theorems on compactness and removability of sin-
gularities imply that there are connections A v € %y ,.(8,) and Agp o2 €

/Zszx s?, 2(8s2,52) such that 4 convergesto A u VAg ¢ together with instan-

tons at p points in M and at ¢ points in S?x 82,

At first we suppose that 0 < r < d. Suppose that m > 0 and n > 0.
Since surfaces representing the z ; and w, are chosen in general position, no
instanton point lies on more than two of these surfaces. Thus A ) must lie on
atleast r —2p of V,..., V ; hence 2d — 8(¢£ — m) > 2(r — 2p). Similarly,
from Ag . we deduce that 8n — 6 > 2(d + 2 — r — 20). Combining these
inequalities with the charge count m+n+p+0 < £+1 leads to a contradiction.
If m>0,n=0,then 2d —8(¢{ —m) > 2(r—2p) and 26 >d+2—r. So
L+1> m+p+02£+1—§+§+%. This contradicts the assumption r < d .
If m=0,n=0 then 2p >r and 20 > d +2 — r; and then the charge count
£+ 1> p+o contradicts the basic inequality ¢ > (1 + b},).

To complete the proof in the case when 0 < r < d, we need to consider the
situation where all the connections in the 1-dimensional intersection

‘fX(V) :%X,Z+l(gu) n VI n---N V;i+2

limit weakly to the trivial connection ©, on M and none limit weakly to
the trivial connection on S x S*. A counting argument does not suffice here.
This is precisely the situation encountered in the proof of the connected sum
theorem.

As in Donaldson’s proof, for large v, we need to consider an open subset
U of 95’; ¢+ consisting of connections whose restrictions to M,(v) are close
to ©,, off a finite number of small balls where the charge is concentrated. To
define U, fix € >0. Then 4 € Z. isin U if there are a finite number of

X, 041
disjoint balls B; in M (v) with centers p, and radii A, such that

(1) fMo(u)\uB, IFA|2 <é,
(2) LA <e,
(3) ]fB’ ]FA_l2 - 87z2mi] < ¢ for some positive integers m, .
The upshot of the counting argument given above is that if we fix ¢, then
for small enough v, the intersection %, (v) is contained in U . The subset of

U consisting of connections A for which some m, is greater than one is of
codimension at least 4 in U . Since Fy p(u) 1s 1-dimensional, we can modify

the third condition defining U :
(3) | [y IF;|> - 8n%| <& for each i.
Note that U breaks up into connected components such that all connections

in any given component have approximately the same charge 5 m ;- To show
that _#,(v) is homologically trivial in <@;’,+l , 1t suffices to work with the
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piece J’X,p(u) lying in, say, Up, the union of the components of U with
charge approximately constant and equal to ) m, = p. We are assuming that
r>1;s0 p>3>0. Also, we may as well assume that .7, (1/) 1S nonempty.

Consider now U mC %’ o which consists of connectlons n CZ’ ., sat-

isfying the defining condltlons for U. According to the theory of Taubes and
Donaldson, for small enough ¢, the anti-self-dual connections in U, , can

P,
be described as follows (cf. [T1, D1]). Let F A; denote the bundle oriented or-
thonormal frames of the space of self-dual 2-forms on M, and let S”(F,; xR")
denote the complement in the symmetric product of p copies of F,, x R of
the preimage of the “fat diagonal” A’,; under the obvious projection. (Here
AL, = {{x;} € Symm’ (M) | X; = X;,some [ #j}.) We consider the diago-
nal action of SO(3) on S”(F,; x R") (where SO(3) acts trivially on the R"
factor). Then there is an SO(3)-equivariant embedding

7’ 87 (Fyy xRY) — By,°)
and an SO(3)-equivariant map

p’ S’ (F) xR") =R
such that {yo{(fi, A)H ZA? < ¢} isequal to U,?,M and such that yO((t/IO)"(O))
=U, 0%13, pp Taking the quotient by SO(3), this descends to

367,

y:S8”(Fy xR")/SO(3) — By,
and to a section y of the rank 3b;4 vector bundle
= IS’ (Fjy x RY) xgop3, R’]
M

|
S’(F,; xR")/SO(3
such that y(t//_l(O)) = u N A, ,. By letting the scales A, assume the

value 0, this set-up extends naturally to the Uhlenbeck compactlﬁcatlon %

where the section gives obstructions to the lower charge problem with pomts of
concentration (instanton points). (See [D1,5.6] and [DK,57.2.8].)
Likewise, there is an “obstruction bundle” description of U N My Y (&)

given by an SO(3)-equivariant map
o*: SP(Fy xR ) x MY o — R
(again, diagonal action) where n =¢+ 1 — p. Thus U , can be identified with
S'(Fy xR ) x My 2 /SO(3),

and Up NAy ,.,(g,) can be identified with the zeros of a section o(v) of

DS’ (Fyy x R) x M 2 ) 5005, RY]

by

|

[S’(Fy, x R") x.#y o ,1/SO(3
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Again, this description extends to ./#, +1.x(&,) where we let some 4,’s equal 0.

The open set U has two distinct ends. The first consists of connections
which are concentrated; this corresponds to the situation where some of the
A; = 0. The second end, which we shall denote Fr(U), consists of those
[{(f,, A} (4,&)] € U such that EA =¢. Since 7, (v) C Int U, the section
o restrlcted over Fr(U)n¥, n---n I/;I +» has no zeros.

It follows from the descriptlon in [T1] that as v — 0, the section o(v)
“decouples”, that is, it limits to the sum of sections g,, = v of n,, and g g
of :

Ns2xs? = ®(%592><Sz,n Xs50(3) R’)
by
!
'%SZXSZ

Since AZ $n consists of anti-self-dual connections, the limiting section a2 s?
=0. Thus for small enough neck radius v, the corresponding section ag(v) is
almost a sum o(v) = g, (v) + g (V), and oo, (V) — 0 as v — 0. Fur-
thermore, for fixed v, a,,(v){(f;, )} — 0 as Y47 — 0.

In particular, this means that for small v, o(v) is asymptotically g, (v) as
Z/lf — ¢. We fix such a small v and now drop it from the notation. Then we
have our neighborhood U ,»and g ~ 0, near Fr(U p) . The intersection ./,
is cut out by the zero set of ¢ restricted to U N vin-.-nv, ,= Wp . Thus on
Fr(W),) the section o ~ g,, is nonvanishing. Since W, consists of connections

which are almost anti-self-dual (more precisely, which satisfy conditions (1)-(3)
above) the notion of Uhlenbeck compactification Wp makes sense. Note also
that the compactness of .#, implies that ¢ has no zeros on the singular set of
Wp .

The formal situation is this—we have a compact singular space Wp with sin-
gular set (corresponding to the lower strata of the Uhlenbeck compactification)
of codimension > 3. Over W there is a vector bundle 7 of rank 3b;[4 with a
section o, nonvanishing over the singular set, and over the boundary Fr( Wp) ,
o is pulled back from the section g,, of 75 MlEr W This set-up gives us a

relative Euler class e € H3b;'(Wp , Fr( Wp); Z). Clearly, dim Wp = Bb;; +1,
and if S denotes the singular set of Wp then Poincaré duality gives

1 ~ 3[)+ = ~ 3pt -
HW, Z)=H (W, Fr(W,)US;Z)= H" (W,, Fi(W,); Z)

because of the codimension of S. The Poincaré dual of e in HI(WP; Z) is
represented by ., - Thus it will suffice to show that e = 0.

Since %, » is nonempty, the usual counting argument shows that p >
and 8n — 6 > 2(d + 2 ~ r). By counting parameters in the base spaces of the

obstruction bundles 7,, and 7, we see that dim Wp‘ y = 8p—3—2r and

dimW, = 8p +8n — 6 —2(d +2). Thus 3by, + 1 =dimW, = dimW, , +

[8n =3 —-2(d +2~-r)] > dim Wp pmt 380 Ol is pulled back from the
: p
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section aM|Fr(Wp'M) , and the base W, u has dimension at least 2 less than

the rank 3b;; of n,,. Note that any nonvanishing section of r’MlFr(Wp ) is

homotopic through nonvanishing sections to aMlFr(W since the obstructions

M)

to such homotopies lie in H' (Fr(W M) T (S3b _l))

We now need to separate the argument into two cases. Suppose first that
3b;} + 1 > dim Wp y +3 = 8p—2r. In this case our plan is to construct
nonvanishing sections 7, of 7, over Wp’ v and T o of Mgty 52 OVer Y =
M 2NV,  N---NV, , and combine them to get a nonvanishing section t
of n over Wp This section will be nonvanishing as well over the singular set
of Wp and over Fr(Wp) it will be pulled back from t,,. Since TarlEeow W)

is homotopic to aM|Fr(Wp ) through nonvanishing sections of #,/|g, W, ) the

Poincaré dual of the Euler class e will be represented by the (empty) zero set
of 7;hence e=0.
We first construct 7,,. Let k be the unique integer such that

8p—2r—3<3k<8p—2r<3b,

and consider the rank 3k vector bundle

N R
DWW, v *s03 R)

i=1

!
Wp, M
This is a subbundle of 7 M| . Obstructions to the existence of a nonvanishing
section of this bundle lie in H (W M T i_l(S3k_1)). Since H3k(Wp,M; 7) =

0, all obstructions vanish and there is such a section 7, . Note that the total
space @:‘zl(W/?)M Xs003) R3) is the quotient by SO(3) of @k(W,,O,M x R3) o

W/? X R* ; s0 we equivalently have a nonvanishing SO(3)-equivariant map

0 . 41,0 3k
Tyt WpM—>R

Next, consider the situation on Y = ./, sixs? N V., n--nVv,, which has
dimension d1mY=8n—6—2(d+2—r)_3bL+l—( p—2r)<3b;;+l—3k.

Thus dim Y < 3(b,, — k). We now wish to find a nonvanishing section 7

of the rank 3(b+ — k) vector bundle 691 kH(YO X s003) R3) over Y. (The
point of the case we are considering is that b} v — k > 0.) The only possible
obstruction arises in case dimY = 3(b;4 — k). In this case the obstruction lies
in Hw’;'_k)(Y; Z) and is Pk where ¢ € H3(Y; Z) is the Euler class of

the vector bundle Y° x S003) R® associated to the basepoint fibration over Y .

Since this bundle has odd rank, its Euler class ¢ is 2-torsion; so P s 2-
torsion as well. However, H 3w _k)(Y' Z) is torsion-free, and so the obstruction

vanishes. Again, since GB Y0><S @h+_ Y xR* )/SO(3), we have

i= l\+l
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+_
«§? : YO - R3(bM k) .

To define 7°: W0 — ;1|W0 >~ W0 x YO) x R , consider a typical point
=[{(f,, A)}; (4,&)] € W o €SP (Fy xR” ) x Mo 2

Let A(Q) = Z/li , and define
Q) = Q) Ty (i A} + (6 = HQ) - Tz (4. €).

(Here the image of ° y lies in the first k of the R*-summands of R and

the image of ngx 52 lies in the last bL—k of them.) The section 1 is SO(3)-
equivariant, nonvanishing, and nonvanishing when extended to the singular set
of Wp0 (where some (or all) of the 4, = 0). As we described above, this

completes the proof in the case where 3b, + 1> 8p —2r.

a nonvanishing SO(3)-equivariant map ‘l’gz

xsn

Next, we need to consider the case where dim W0 =8p—2r= 3b+ +1.
Then we have dim W, = dim W, , +dim¥° -3 = 3b+ +1=dimWw) s

dimY = dim Y°~3 = 0. Thus the cut-down moduli space ¥ =Ao oNV, N
-NV,,, consists of a finite number of points. This means that .7, o breaks

up into unions of connected components corresponding to these points. It thus
suffices to assume that Y is a smgle connection and show that the homology

class of %, » vanishes. Then Y° is a copy of SO(3); so W W uxS0(3),
and the obstructlon bundle is:

~ =0 ~ 3b7
qz@(Wp X30(3> )=EB(W,;,MX )=W x R
by by

l
W, = (W) x SO(3)/SO3) = Wy,

The obstruction bundle is trivial; however this is not enough to deduce that the
homology class [#, )] is trivial because [-%, )] is Poincaré dual to a relative

Euler class in H**(W° ,  Fr(W? ,); Z).
Recall that the condition on a section which defines the relative class is that
over Fr(Wp0 ») it must be homotopic to the pullback of ¢,,, a section of

nM|Fr(WP'M). Since Fr(W, /)
class argument given in the construction of 7 . works here as well to show
that that there is a nonvanishing section 7, of 7, over Fr( Wp’ ») such that
T, takes its values in a subbundle of rank 3(bJr —1). (This argument needs
3(bJr — 1) > 0 to work, for if Fr(W 3 ») were O-dimensional, 7, would still
need to take values in a bundle of positive rank. Of course we have the standard
assumption that b, > 1.)

Now return to this relative Euler class problem of extending a nonvanishing
section of

is a manifold of dimension 3(bL — 1), the Euler

<0 3b;,
Wp,M x R

=)

-3
N
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from Fr( W;?, ) over all of Wpo’ v - As in the previous case, this problem is

independent of the section over Fr( WpO' ») as long as it is pulled back from a
section of #,,—so we work with the pullback of 7, . Up to homotopy through
nonvanishing sections, the pullback is the same as a map

_, S o g3yt

r;) : Fr( W/?,M)

Since t',d is not a surjection onto §30w ! , it is nullhomotopic and therefore it

extends to a map Wpo‘ v =S %=1 This means that the relative Euler class
vanishes and our proof of Theorem 8.1 is completed for the case where 0 <
r<d.

Before continuing with the other cases, we wish to make a few comments
on the argument above. First of all, SO(3)-equivariance forces us to work
with whole R>-summands of R3b;4 . It would not be sufficient, for example, to
get a nonvanishing section of 1, over Fr( Wp, ») Which takes its values in a

subbundle of rank 3b;} — 2, because the pullback over Fr( WPO, ») would not

take its values in a proper subbundle of 7.

Second, this last argument comes close to filling in the details in the alternate
proof of Theorem 1.1 which was sketched in the introduction. In that case
we have a 0-dimensional cut-down moduli space over M , and on S*x §?
there is a single point instanton with center (S2 x 0)N (0 x S2) . Thus p=1,
W;’Szxsz ~ cSO(3), Y° is a finite union of copies of SO(3), and b;2XS2_= 1.
For simplicity we work with a single copy of SO(3). Then we get Wp =
W/?, s2xs? = ¢SO(3) and 7 is the trivial bundle over Wp with fiber R®. The
relative Euler class lives in H3(Wp, Fr(W)); Z) = H*(cS0(3), SO(3); Z) =
Z,, and it is the obstruction to the nonvanishing extension of a map Fr(W ) =
SO(3) — R’ pulled back from 7, : {point} — R’. In fact,if 1, =v € R’ then

the pullback SO(3) — R® is given by g — g(v), and this realizes the nontrivial
cohomology class.

To finish the proof of Theorem 8.1, we still need to dispense with the rest of
the cases. Suppose that ql’+l,u|,X(Zl seensZg,»X)#0 (so r=d+1). Arguing
as above in case m > 0, n > 0, we obtain inequalities 8m > 8¢ + 2(1 — 2p)
and 8n — 6 > 2(1 — 20). These inequalities are again incompatible with the
charge count. We similarly rule out the cases m =0 and/or n =0.

Finally, we need to compute ¢, o, ’X(zl y--e» 24, X, x). This calculation

follows §§5 and 6, except that in Theorem 5.11 we obtain
qz+1,u,,x(zl’ v Zgs X, X)=EN(X,X) gy g (2), 00 z;) mod 2
where N(x, x) is the mod 2 intersection number

N(x, x) = #(ly OV, 0V 0re' (@) foraer, (£,).

(The divisor Vx' corresponds to a second surface representing x.) Refer now
to §6. The proof preceding Lemma 6.2, which uses an argument based on [D]1,



2-TORSION INSTANTON INVARIANTS 333

Theorem B], shows that in this case [N l(oz)] =0¢€ H/(Z,(a); Z,) since there

are an even number of “internal” ends of .#~ 2(19) . Then the proof of Theorem
6.7 shows N(x, x) =0 mod 2. Similarly we can show

qe+1.ul,x(z1’-~- 1 Z45¥,¥)=0.

(Alternatively we can prove that Qoiiu, x(zZy5---,24,¥,y) =0 by applying
the transformation S, defined below to the equation

q“l’ul,x(zl, ey Zg, X, X)=0
and then using the invariance of ¢,,, , , under diffeomorphisms.) O
7R

We continue with the hypothesis that M is a closed simply connected spin
4-manifold with a Donaldson invariant 4 u of degree d with ¢ odd. In
particular by, > 3. Now H,(M;Z)=2aE,®bH where a,beZ and b >0.
It follows from [D1] that a =0 if b <2;s0 b > 3. Let X = M#S°xS* and let
sy denote the symplectic form on H,(X; Z,) given by s,(u,v) = Q,(u, 0)
mod 2 where # and ¥ are any lifts of u,v to H,(X;Z). (Here we are
using the fact that H (X;Z) = 0.) Let ®, : H,(X;Z) — Z, be given by
D, (w) = %QX(w, w)mod 2, and let ¢, : H)(X;Z,) — Z, be the induced
quadratic form. Note that ¢, (u+v)+ ¢, (u)+ ¢, (v) =s,(u, v) and that the
orthogonal group O, leaves @, invariant. For u, v € H,(X;Z) write u=v
mod 2 provided v = u + 2w for some w € H,(X; Z).

Lemma 8.2. Let u,v € H,(X;Z) be primitive vectors satisfying ®,(u) =
@, (v). Then thereis an h € Oy such that h(u) =v mod 2.

Proof. This is a consequence of a result of Wall [W3, Theorem 6] that since
b} > 2 (in fact > 4 in our case) and X is spin, O, is transitive on prim-
itive vectors with a given norm Q,(u, u). Suppose ®,(u) = ®,(v). Then
Oy, v) = Qy(u,u) +4r for some r € Z. We wish to show that there is
a primitive vector ¥ = v mod 2 with Q, (v, 0) = Q,(u, u), for then Wall’s
theorem provides an 4 € Oy with h(u) = 0 = v mod 2. Since H,(X;Z) =
2aE;®(b+1)H , we can find e, f|, e,, f, € H,(X; Z) such that Q,(e;, €)=
Oy (f;, f)) =0, and Qyle;, f;) =J, ;. Let @ = 5Q,(v, v). Applying Wall’s
theorem we obtain a g € O, with g(v) = ae, + f,. If r =2m define z by

g(z) =e,—mf,.
If r=2(m+a)+1, define z by
g(z)=e,—mf, — (1 +a)e + f.

Now set ¥ = v —2z. Its norm Q. (v, 0) = Q,(u, u). Furthermore, v is
primitive since if r = 2m then Q,(g(7),e) = 1, and in the other case
0y(g(0), e, + f,) = 1. Thus Lemma 8.2 follows. O

Let Spy denote the group of linear transformations of H,(X ; Z,) which
preserve the symplectic form s, , and let O X be the subgroup which preserves
the quadratic form ¢, . There is a homomorphism I': O, — 0+’ x 1nduced
by reduction mod 2.
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Lemma 8.3. The image I'(O,) acts transitively on (p;l(O)\{O} and on q);l(l).
Proof. 1f u, v € Hy(X; Z,) are nonzero vectors such that ¢, (u) = ¢,(v) we

can find primitive vectors &, ¥ € H,(X; Z) which reduce mod 2 to u and v .
Apply Lemma 8.2to # and ¢. 0O

Before continuing, let us recall that Z,- quadratic spaces which correspond to
a symplectic form are classified by their dimension and Arf invariant. (See [S].)
Now H,)(X; Z) = 2aE;®(b+1)H; so its Arf invariant is 0 and (H,(X; Z,), ¢ )
= (8la| + b+ 1)H as a Z,- quadratic space. (Note that 2E; has Arf invariant
0, and so is isomorphic to 8H over Z,.)

Lemma 8.4. The homomorphism T : O, — o, x IS surjective.

Proof. The main theorem of [McL] states that the image of O, in Sp, is
either all of O, x or is a symmetric group on 2n+ 1 or 2n + 2 letters, where
2n = dim(H, (X Z,)). To see that 1t is all of O, ,, we need to describe the
embeddings of §,, 4 and S, o in +) x - (See [LPS p. 34].) For any m the

symmetric group S, fixes the natural symplectic form

(&) )y =>_¢m;

on S(m)={({;,) € (Z,)"|>X¢,=0},and S, actson S(m) by permutation of
the coordinates. Define P, : S(m) — Z, by

1, if#{i|{,=1}=2mod 4,
Pm(C19~-.7cm)={ . {.Il_ }_
0, if #{i|{; =1} = 0 mod 4.

Then P, is a quadratic form on S(m) with associated symplectic form ( , ).
When n = Omod4, the Arf invariant of the Z,- quadratic space
(S2n+1), P, ) is 0550 (S2n+1), P,,,,) and (H. (X Z,), ¢y) are iso-
morphic. The symmetric group S, , only embeds in O, , when n = 0
mod 4, and is then given by the action of S, ., on S(2n + )

For the case of S,, . ,, again start with the action of S, ., on S(2n +2).
The diagonal, d = (1, ..., 1) € $§(2n + 2) is fixed by the action of S, ,.
Thus S$(2n + 2)/span(d) is a S,,,,-space. If n = 3 mod 4 the Arf invariant
of (S(2n+2)/span(d), P,,,,) vanishes, and so (S(2n +2)/span(d), P,,,,) is
isormorphic to (H,(X; Z,), ¢ ) . This gives the embedding of §,, ., in 0, x-
(If n# 3 mod 4 then S2n+2 does not embed in O, )

Let c=(1,1,0,...,0)and ¢’ = (1,1,1,1,1,1,0,...,0) € (Z,)""*".

Then ¢, € S(2n+1),and Py, (c)=1=P,,,,(c). Thereisno o € S2n+1

such that g(c) = ¢’. However by Lemma 8.3, I'(Oy) is transitive on P2n e
Thus I'(O,) is strictly larger than S, ,. A similar argument shows that the

image of O, is also strictly larger than S, O
Let 2m = dim H,(M ; Z,) ; so

n+2°

Hy(X; Z,)) = Hy(M#S® x §*;Z,) = (m + )H

as a Z,-quadratic space. Thus there is a basis {e;, fi|i = 0,..., m} of
H,(X;Z,) such that ¢,(e;) =0 = ¢,(f), and sy(e,, e;) = sy(fis fj) =
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sy(e;, fj) =9, ;- We choose this basis so that ¢; is the mod 2 reduction of

X € H2(S2 X S2; Z) and f; is the mod 2 reduction of y. Let {a,, B} bea
dual basis. Define the families Ri)j and §; in O, x by

R,"j(e,')zej, Ri)j(ej)=€[,
R (S)=f R ()=1,
Ri,j(ek)=ek, R,.’j(fk):fk if k#1i,j
and
Si(e,‘)=f;‘9 S,‘(.f;')zei, . )

It follows from Lemma 8.4 that there are transformations ﬁi’ ; and §; in
Oy such that F(ﬁi’_j) = R, ; and F(§i) = §,. By [W2, Theorem 2] each
transformation in O, is induced from a diffeomorphism of X . Hence the
R i and §; are induced from diffeomorphisms.

We will be working with Symgz(HZ(X; Z,)). Since H,(X;Z) = 0, the
mod 2 Donaldson polynomial invariant Qoyr,u,,x ©3D be viewed as an ele-
ment of Symdzjz(Hz(X ; Z,)) , and the dual basis vectors «; and g . belong to

k k . k

Sym'ZZ(HZ(X; Z,)). Define o; € SymZZ(HZ(X; Z,)),givenby a,(e;, ..., €)=
1, and af = 0 on all other sets of & basis vectors. Similarly define ,B:‘ . The
power af is not the same as the symmetric product of k copies of « ; (which
is 0 if k > 2). As is pointed out by Ruan [R]

k af“ , 1f [ is even,
aa; = s

0, if i 1s odd.

Ruan further points out that SymiZ(Hz(X ; Z,)) 1s generated by monomials

R

where R=(ry,...,r,) and S=(sy,...,s,) with Y (r,+5,)=p.
Theorem 8.5. Let M be a closed simply connected spin 4-manifold with a Don-
aldson polynomial invariant 4, p Of degree d where ( is odd. Let X =
M#S* x S Then
) Cx prH)-r—P,,HYX mod 2 ifd = 2p,

q“"“"X_{ P, ymod 2 ifd is odd,
where €, v € Z,, and Py, x is asum (mod2) of monomials of the form
a By with r,+s,=d+2.
Proof. Write

(+) Gty x = 2 €R.shr.s € Sym; “(H,(X: Z,))

where 4, s are monomials as above and €r

0 or 1. Suppose that a
monomial A, . in this expression has some 2

and €rs = L. Then

R
v
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there are vectors v, ..., vd+2_rl such that each v, is a basis vector ¢, or f

but not e, and /IR,S(ej, Ce s €, U vd+2_r1) = 1. Since all of the other

monomials /1R’,s' vanish on (ej, s €U vd+2_rj), we have
qu’ul‘X(e., e €U vd+2_rj) = 1.

Now ¢, " is invariant under diffecomorphisms of X , and the transforma-

tions R, ; are all induced from diffeomorphisms. Applying Ry ; we get

1= ql3+l,ul,X(eO’ N Ro'j(v,), R Ro,j(vd+2_rj)).
Since ¢, = x, unless all the Ro‘j(vi) = f, =y, Theorem 8.1 implies that this
equals 0. The exceptional case where RO j(v )=ty i=1, ,d+2-— rj
occurs when v, = fj ,i=1, ,d+2—r.,in other words when Aps = /)’

with r, +s5, = d + 2. This means that in (*) no monomial 4, ¢ for Wthh any
rp 2 2 can have a nonzero coefficient, except for those monomlals of the type

Wthh occur in P, . In particular, if any 1, ; with nonzero coefficient is

not of the special type «; Bf’ , then counting its exponents we have
d+2=>) (r;+s)<2m+2=dimH,(X; Z,).

Thus without loss we may assume that d < 2m.
Suppose that there is a monomial A, ¢ with nonzero coefficientin ¢,,, ,
, 7PN

for which = 1 but s ;= 0. Then, as above, there are standard basis vectors

Vs ..., Uy, In Hy(X; Z,), none of which are e; or fj and such that
q£+1,u|,X(ej’ Vs s Vypy) = Ap sle;, v, ..., 0,,) =1

Again applying R, ; we get

V=000, x(€0s Ry (V)5 Ry ((Vg,))-
But ¢, = x and Ro’j(vk) #y for k=1,...,d+ 1;s0 Theorem 8.1 implies
that

Aoi1,u, x(egs Ry ;(v)), ..., Ry (v4,,)) =0,
a contradiction. Thus for each monomial 1, r.s Dot of the form «; B appearing
with nonzero coefficient in g, o , 1f r 96 0, then also s # O Such a /1

has the form
ailﬂil : "aikﬂik
where 2k = d + 2. This already shows that d must be even if g, oy X #
P x-Letd=2p;so k=p+1.
Let 0 =17,---7, €S, | beapermutation, written as a product of transposi-
tions. For any transposition ¢ = (i, j) let R = Rl.‘ Let R=R_o---0 Rr,
If ai.ﬂil ay Bik appears with nonzero coefficient in ¢, , X then

=6, 4 x(€ s fi, s € fik)

= q(+|,ul,X(R(eil)’ R(j;l)’ s R(e,’k)’ R(f;[\))
=it u, xCoiiy Sogiyr oo s €o(iy) fa(ik))‘
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Thus g Ba(i ) Qi Ba(ik) also appears with nonzero coefficient. Since the
1 1
a; and B, commute, if we sum these expressions over ¢ € S, ., then each
expression appears k! = (p + 1)! times. Thus if dpir w x #* Py x»then
oy, ,

1 _ p+1)
Dov1,u,x = z+|,x+k_! Z gy By "'aa(k)ﬁa(k) =P, xt0Qyx mod 2.
g€ES

m+1

and further-

We have already shown that if d >2m then q,,, , v =P, x,
Juy .

more, Q&f’“) =0 mod 2 in that case. O

Proof of Theorem 1.5. If z,, ..., z, € H,(M; Z), then Theorems 1.1 and 8.5
imply
ql’M(zl, ey Zg) qu+l,u|,X(Zl’ e Zy X, V)
_ (p+1)
= (€ xQx  F P )z 24X, )
EGQ;Z)(ZI,...,Zd) mod 2,
since PI+1,X(ZI’ s Zg,x,y)=0. 0

Since the form Q%) lies in Sym%(H,(M; Z)) and since Q¥ = 0 mod 2
M z U1 M

for 2p > rank(H,(M ; Z)), we have

Theorem 8.6. Suppose that M is a closed simply connected spin 4-manifold with
a Donaldson polynomial d, p Of degree d, where ¢ is odd. If b;l = 1mod 4,
or if d > rank(H,(M ; Z)) then 4 y=0mod2. O

We now need to refer to a recent theorem of Y. Ruan [R] which, when
combined with Theorem 1.5, will prove Theorem 1.6.

(8.7) Theorem (Ruan). Let M be a closed simply connected spin 4-manifold
with a Donaldson polynomial 4, p Of degree d, where ¢ is odd. Then the
symmetric product Q,,q, m=0mod 2.

If b;‘} = 1 mod 4, then Theorem 8.7 follows as well from our Theorem 8.6.
Furthermore, note that

0,,0% = (p+ QY mod 2.

Also note that when b;; is odd and M is spin, the mod 2 intersection form on
H,(M ; Z,) is just the standard form on the direct sum of an odd number, say

k , hyperbolic pairs. Thus mod 2, Q(j ' will take on nonzero values for j<k
and will be identically 0 (mod 2) for j >k +1.

Theorem 8.8. Let M be a simply connected spin 4-manifold with a Donaldson
invariant q, .., ¢ odd and with b;} = 7mod 8. Then, d, »y =0mod 2.

Proof. If b}, = 7 mod 8, then the Donaldson invariant dy pr» £ odd has de-
gree 4p for some p. If Qﬁp ) = 0 mod 2, then Theorem 1.5 implies ¢, , =
Omod 2. If Qgp ) # Omod 2, then our comments above imply that also
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}(ép“) # Omod 2. Theorem 1.5 implies g, ,, = €, MQ;;”) mod 2. Then
by Ruan’s result (Theorem 8.7)

2 2p+1
0=0y4, 4= GZ’MQMQ;;)) =(2p+1) CZ,MQ;;H ' mod 2
so that €, =0 and again ¢, ,, =0mod 2. O

Theorem 1.6 now follows from Theorems 8.6 and 8.8.

In summary, the mod 2 Donaldson polynomials vanish except possibly when
either ¢ 1is even or when ¢ is odd, b;‘} = 3 mod 8, and the degree d <
rank(H,(M ; Z)). In [DK, p. 417] it is pointed out that if M is the K3 sur-

face (so b}, = 3) then ¢ = 0\ . Known examples lead to the following
M 5. M M

conjecture.

Conjecture 8.9. Let M be a simply connected spin 4-manifold with a Donaldson
invariant q, ,., ¢ odd. Then 4y p # 0Omod 2 ifandonlyif b, =3 and £ =5.
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