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ABSTRACT. The purpose of these lectures is to highlight what is currently known
about simply-connected smooth 4-manifolds and to discuss very recent advances
in the computations of the Donaldson polynomial invariants. In particular we will
focus on the work of Fintushel-Stern where they attempt to understand the behavior
of the Donaldson invariants in ths presence of immersed spheres. There are other
techniques that can be used to broaden the understanding of smooth 4-manifolds;
most importantly the beautiful recent results of Kronheimer-Mrowka [KM1, KM2,
KMa3)] which are derived from a study of singular connections. However we will
concentrate on our more elementary techniques and ideas and, at the end, discover
that they too lead us to a better understanding of smooth 4-manifolds.

1. OVERVIEW

Our problem is to classify closed smooth 4-manifolds. To avoid the group theoretic prob-
lems arising from the fact that any finitely presented group can occur as the fundamental
group of a smooth closed 4-manifold, we assume our manifolds (unless otherwise specified)
are simply-connected. Most of the classical invariants for 4-manifolds are encoded by the
intersection form @x. This form is an integral unimodular symmetric bilinear pairing

Qx 1 HyX;2)@ Hy(X;2) = Z

obtained by representing homology classes as oriented embedded submanifolds and counting
intersections with signs; it is Poincaré dual to the pairing given by cup product. From the
intersection form one can determine its rank (which is the second Betti number b,(X) =
rankHy(X; Z) = b+ (X) + b~ (X)), its signature = o(X) = b*(X) - b~ (X) (where b*(X)
are the dimensions of the F-eigenspaces of Qx) and its t¥pe (which is even if Qx(z,z) =0
mod 2 for all x, and odd otherwise). A form is definite provided one of b*(X) vanishes, and
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1.4. Wall’s Stability Theorem [W2, W3]. If two simply-connected closed smooth 4-
manifolds have isomorphic intersection forms, then they are “stably diffeomorphic”, that is,
they become diffeomorphic after connect summing with a number of copies of S? x S2. (This
number is unspecified.)

1.5. Wall’s Diffeomorphism Theorem [W2, W3]. If X is a simply connected smooth
4-manifold with Qx indefinite, then the homology induced map

Diff( X#S% x §?) = O < Hy(X#5% x §% 2),Qx >

is an isomorphism.

Given two homeomorphic simply-connected closed smooth 4-manifolds X and Y, it is then
an interesting problem to determine the minimal integer k(X, Y) for which X #x, v)S? x
S? is diffeomorphic to Y#ix,v)S? x S2. Despite some heavy input from gauge theory
([D7, FS5)) it is still reasonable to conjecture that k(X,Y) < 1

The fundamental questions concerning 4-manifolds still remain.

1.8. Existence. Determine the unimodular, symmetric, bilinear integral forms that are
realized as the intersection form of a closed, simply-connected smooth 4-manifold.

1.7. Uniqueness. Given a closed, simply-connected smooth 4-manifold M, determine the
distinct smooth structures on M.

These questions are the subject of active current research.

1.1. Existence. The spectacular work of Donaldson and its derivatives [D1, D3, FS1, FS2]
has shown that there are serious restrictions on the intersection form of a closed, simply-
connected 4-manifold and has made progress towards a verification of the following existence
conjecture:

1.8. 11/8 Conjecture. The intersection form of a closed, simply-connected smooth 4-
manifold must be either

) diagonalizable (over Z), or

ba(X) 5, 11
e even and Gea] > 4%

All complex surfaces satisfy these two conditions. Also, all diagonalizable forms are realized
by the connected sums of £CP?. Although the classification of definite integral forms is an
active area of research and far from an accomplished feat, nature has a way of taking care of
all this. Donaldson’s first monumental piece of work [D1] shows that no non-diagonalizable
definite form can be realized as the intersection form of a closed smooth 4-manifold; his
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FIGURE 1. Geography of 4-manifolds

Sym?(H,(X; Z)), the Donaldson polynomials gx 4 are defined for manifolds with odd b* > 1
and are symmetric polynomials of degree d = 1(b*+1) mod 4 in the 2-dimensional homology
of X, i.e. gx,a € Sym?(Hy(X;Z)). Equivalently, these can be regarded as homogeneous
polynomial functions

dxd: Hz(X,Z) = Z.

Formally, one can define the polynomial g4 by the formula

ax.a(h) = (u(h)?, Md]),

where My is the instanton moduli space of dimension 2d (depending on a choice of a
Riemannian metric on X) and 4 is a natural map from H,(X) to H2(M,). Because My
is usually non-compact, this pairing needs to be more carefully interpreted before it can
be regarded as well-defined: a prescription for evaluation was given in [D6], subject to the
constraint 2d > 3(b* + 1), and by various tricks the construction has since been extended
[FM2, MM1] so as to remove this restriction. It was the idea of Kronheimer and Mrowka
[KM3] to extend this defintion to all degrees d = 3(b* + 1) mod 2 by defining

2gx,a-2(h) = { p(h)*%v, [M4]),
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During the later half of 1993 the paucity of computations took a dramatic shift on two
different fronts.

First, Kronheimer and Mrowka announced in [KM3] a very general Structure Theorem
for the analytic function gx.

Theorem 1.10. If X is a simply-connected §-manifold of simple type, then there erist
finitely many cohomology classes K, ..., K, € H*(X,Z) and non-zero rational numbers
ay, ..., a, such that

= AR QS
dx = exp 2 Za,e
s=1

as analytic functions on H,(X,R). Here Q is the intersection form, regarded as a quadratic
function. Each of the ‘basic classes’ K, is an integral lift of wy(X).

Theorem 1.11. Let X be a simply-connected §-manifold of simple type and let {K,} be
the set of basic classes given by Theorem 1.10. If T is any smoothly embedded, essential
connected surface in X with normal bundle of non-negative degree, then the genus of &
satisfies the lower bound

29-2 > XL + m‘axK,-E.

These outstanding results are an outgrowth of their earlier work concerning singular
connections [KM1, KM2]

Second, Fintushel and Stern introduced the notion of a rational blow-down of a smooth
4-manifold and announced results concerning the relationship between the Donaldson poly-
nomials of a manifold and its rational blow-downs which allowed the computation of the
Donaldson series for many classes of 4-manifolds. At first this construction was introduced
to study regular elliptic surface E(x;m;, ...m,) with holomorphic Euler characteristic x > 2
and r multiple fibers of multiplicities m,, ..., m,. To insure that X is simply connected
we must have r < 2, and in the case r = 2 the two multiplicities must be coprime. First,
starting only from the computation of the Donaldson series for the K3 surface, they showed

de = ox0 () (sinh F)<=?

and

Ie(x)#TP* = &XP (%) (sinh F)*~%cosh E

where F is the cohomology class of the fiber and E is the cohomology class of the exceptional
divisor. From this later formula follows a general blow-up formula for all elliptic (and other)
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to prove (independent of (but motivated by) the work [KM3]) Theorem 1.10. However,
their version of Theorem 1.11 differs. In particular, they prove

Theorem 1.12. Let X be a simply-connected 4-manifold as above and let {K,} be the set
of basic classes given by Theorem 1.10. If T is any immersed 2-sphere with p # 0 positive
double points representing a non-trivial homology class in X (of any square), then

2p-2 > X.% + m’axI(,-E.

Further, if p= 0 and ¥ represents a homology class which is either K; or K; + K; for some
i # 7, then
0>3.2 4+ m’axK,~E.

Otherwise,
-2 2> X5+ m‘axK,-E.

Thus, on the one hand, for homology classes with positive self-intersection Kronheimer-
Mrowka’s Theorem 1.11 is stronger than Fintushel-Stern’s Theorem 1.12 since Kronheimer-
Mrowka deal with genus of representatives and Fintushel-Stern deal with the number of
positive double points. However, Theorem 1.12 also covers homology classes with negative
self-intersection.

In the remaining lectures we will introduce the ideas that go into this latter work of
Fintushel-Stern. Neither will the statements of theorems be their most general nor will
the proofs be complete. We refer the interested attendee to the original articles [FSS8,
FS9](which are, at this very moment, being written). Some of these results are also obtained
by Kronheimer-Mrowka [KM3] through their study of singular connections. In particular,
one important piece of their proof of Theorem 1.10 is a computation of the Donaldson
series for elliptic surfaces without multiple fibers and their blowups (Theorem 2.1). They
too prove a recursion formula, but for surfaces with large positive self-intersection.

2. THREE GAUGE-THEORETIC RESULTS

The whole theory developed by Fintushel-Stern depends upon three seemingly innocuous
gauge theoretic results.

The first result generalizes the computation of the Donaldson series gK3 = exp (%) for
the K'3 surface to the elliptic surfaces E(n), n > 2, with holomorphic Euler characteristic n
and with no multiple fibers. Recall that the K3 surface is diffeomorphic to E(2). It turns
out that this is rather easy and could have been accomplished shortly after the computation
for the K3 surface. Simultaneous to this computation we will compute the Donaldson series
for the blow-up of these elliptic surfaces, i.e. for E(n)#TC?Z.
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and if p = 4k or p= 4k + 2, then

ax(ak).d(T1, ... Tg) = ax,4(z1,. .., za) +
k
23 ﬁqx,c,..#zt (T1y ey Ty 212ty -y Z2e,2e) +
X ,c0,d(Z1, - - -, Za),

where 23,1 = uo — (£ =25+ 1)w, 2,0 = ug+ (£ — 25+ 1)u;, woryy = PD( ;‘-’:’;l U+ Ugpys +
Ugets + o+ + Up_z), Wy = —PD(uy + uz + -++uz_1), and ¢ = —PD( ;‘=o Uj + Uzesr +
Ugepq + -+ Up—z)»

Note that the embedding of B(p) in X is important as can be seen through the SO(3)
Donaldson invariants gy, 4.

Putting the facts that b*(X(p)) = b*(X) and every odd b* = 2k — 1 can be realized
by the elliptic E(k) together with the experimental fact that these elliptic surfaces have
the largest Euler characteristic amongst all irreducible 4-manifolds with a given bt, it is
reasonable to conjecture that all irreducible simply-connected smooth 4-manifolds can be
obtained from the E(k) by a sequence of blow-ups and rational blow downs. In any event, it
would be interesting to characterize those manifolds so obtained for their Donaldson series
can be computed by using 2.1 and 2.2.

The last gauge theoretic result has the most powerful consequences on the structure of the
Donaldson series and on the the minimial number of positive double points of an immersed
surface representing a given homology class. In particular, the following result concerning
embedded spheres of negative self-intersection, together with Theorem 2.1, formally implies
the structure theorems and the theorems concerning the number of positive double points
given in the first lecture. We will discuss these formalities in our fourth lecture. It seems
rather amazing that such a result concerning embedded spheres implies the existence of the
so-called basic classes for simply-connected smooth 4-manifolds.

Theorem 2.3. Let X be a simply-connected 4-manifold with simple type which contains
an embedded 2-sphere S representing a homology class [S] with Q(S,S) negative. Then
there ezists constants A; x and Bj, depending only on Q([S], [S]) such that if Q([S],[S]) =
—(2k 4+ 1), then

ax,a+2%-1(Z1, -+ -, Tay [5]2“_1) =
Aokgx,(s1,d(Z1, -+, Ta) + AL kGx,a41 (21, - - -, Za, [S])
+A249x,a43(Z1, - 1 24, [SP) + Asix,a4s(21, - - -, 24, [S]®)
+oo o Ak kx i (2k-3) (T« - -, Ty [S]PF3)
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IMMERSED 2-SPHERES 13

and if n =1 mod 2 we can write

1
2d+ 1)!""'2“+1 =
Q¢ Q! 3 2t 41 2d+1
2dd,F+CamF +"'+02c+12d ,( t)'F bt oggy PR

What is important here is that the coefficients c; are independent of the degree of the
Donaldson polynomial. This can be seen in several different ways and was first observed by
Peter Kronheimer. Here we outline a proof of this fact more in the spirit of these lectures.

A very special case of our Theorem 2.3 applies to a 4-manifold with an embedded 2
sphere T with Q([T], [T]) = —2 (of which there are many in surfaces with deformations, in
particular the E(n)). This is in fact a theorem originally due to Danny Rubermann and
began our interest in spheres of negative square.

Theorem 8.1. Suppose that T is an embedded sphere with Q([T), [T]) = —2. Let
Zyy.., T4 € Hz(X;Z)
be homology classes that are orthogonal to [T]. Then

ax,a+2(Z1y- - 2o, [T], [T]) = 29x(13,4(1, - - -, Z4)

To see the utility of this theorem in verifying that the coefficients ¢; above are independent
of the degree of the Donaldson polynomials, assume that » = 0 mod 2 and take a T with
F -[T) =0 and write

1 QL Q-
(2d— )1 ¥xmae-2 = Cogam gy + g gy

Now suppose v34-2 € [T]*NF* is a vector of length 2d—2 consisting of elements of Hy,(X;Z).
Then

F*q...

9x,24(v2a-2, [T)?) = (2d)!Co'2'?—; (vag-2, [T]?)

- S e Q)

—2¢9(2d - 2 _
= #Q‘ H(vas-2)
But, by Theorem 3.1
ch
ax,24(V2d-2, [T]?) = 2qx,(1,24-2 (v2q-2) = 2(2d — 2)! de-l(vzd-z)-
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Thus ¢g = ¢f. In a similar fashion we get that c,; = cy; for all j which was what we were
after.

This technique of course generalizes in several directions. But for our purposes we now
have that

dE(2n),2d
de(2n) = Z 22),

) Q- , Q*?
coZ'ﬁ+CzF chi—_l)!+c4F Zm"""

so that
95m) = exp( E e FY.
Similarly,
95(an-1) = exp(5; ZCz. (FE-L
It is here that the beauty of forming the Donaldson series exposes itself; it takes care of

all the excess combinatorial factors.

3.2. The leading coefficient for E(3). To begin an induction, we need a beginning. We
now know that

(1) g5(s) = exp(= ch. JFAE-

To begin, we claim that ¢, = 1. First, it is shown in [FS6] that if c € H?(E(3); Z) satisfies
< ¢,f ># 0 (where f is the homology class of the fiber), then the 0-degree Donaldson
invariant is

(2) 95@)00 = (1) TF
Secondly, another easy special case of our Theorem 2.3 applies to the section of E(3)
which is an embedded sphere S in E(3) with Q([S), [S]) = -

Theorem 3.2. Suppose that S is an embedded sphere with Q([S], [S]) = -3. Letz,,...z4 €
Hy(X;Z) be homology classes that are orthogonal to [S]. Then

ax,4+1(21, .24, [S]) = —gx(s),4(21, - . - 24)

Together, (1),(2), and 3.2 imply that ¢; = 1. So

F22+1

F®
+CS + R X 2t+1(2t+1)'

3) a5 = exp(2)(F + et

3l )
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FIGURE 3. C(n)

FIGURE 4. C(2,3,11)
which is obtained from ¥(2,3,11) by attaching two 2-handles along the framed link in
Figure 3. These two 2-handles represent the homology class f of the fiber and the homology
class s, of a section.

The third piece is the Milnor fiber B(2,3,6n — 13). The fact that B(2,3,11) UC(n) U
B(2,3,6n — 13) is diffeomorphic to E(n) can be seen via Kirby calculus and will not be
discussed here.

Let W(n) = C(n) U B(2,3,6n — 13) with W (n) = —£(2,3,11), so that
E(n) = B(2,3,11) U W(n).

Now 0B(2,3,11) bounds another interesting manifold C(2,3,11) obtained as the union
C(2,3,11) = B(2,3,5) U D, where D is constructed by attaching one 2-handle to £(2,3,5)
along the framed link in Figure 4.

The claim is that

C(2,3,11) UW(n) = E(n — 1)#CP2.

Again, this can be seen via Kirby-calculus and will not be dicsussed here.

We need to keep track of some important homology classes in our various pieces. First,
let f € Hy(E(n); Z) denote the homology class of the fiber and let s, € H;(E(n); Z) denote

the homology class of a section. Let € € H?(D;Z) denote the generator for the homology
class of D so that Q(€,€) = —1. It is a fact that s,_; = s, +e and that e =¢ — f.
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Proof. Now

_ , E? 2\ (=

qE(z)#ﬁ’,z(e) o3) = 2{(1 + )(1 + = )}( 03)=(Q+E )(E 03) = -
and
Q 32
9e(3),3(21, T2,03) = 3-"2'F($1,$2,03) = EgiQ(ltuzz)F(Ua) =2

Thus

9c(2,311),1(8) - qw(3),1(03) = G5y 4557 , (€, 03) = —2
and

98(2,3,11),2(%1, T2) - qw(3),1(03) = qB(3),3(71, T2, 03) = +2.
However B(2,3,11) C E(2), so that since qe(2) = exp(%), then
48(2,3,11),2(21, Z2) = gg(2),2(Z1,22) = @s.
Thus gcz311),1(€) = —as O

If o € FH.(S), let @ € FH;_.(~X) be its dual.

40-1

Lemma 3.4. qW(g)‘“_](O’s ) = 2“-16'4[_1 - Oy,

Proof.

dw(3),4¢~ 1(0:? 1)

= gw(3),4e-1(93"") - gB(2,3,11),2(T1, T2) = GE(3)4041 (21, T2, OF
[} Q F4[ ! 44-1
= (4e+ 1)-C4[_15'(—4£—_1—)!Q(z1,1'2, (2 )
1 2!(4¢ - 1)!
- lear. 4-1
= 2“_10“_1.
0

Lemma 3.5. qC(2,3,ll),3(Ea) =2 Q.
Proof.

qs(z)#ﬁ’ 4 (Eav 03)

2 )@ 00 = 60,22 Q(E)Q (e, DQ(e, 09 + au(-

= 6a, — 2a4 = 4.

=4!
4(02 2
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Proof.
_ _ o
aw(3),ae41(93°7 1, Pt) - gB231)1(B) = G247 402 (& 93, t)
= 2052) 4T 4e(& o3t = —2%q,,
But also
9B(2)#TP° at+2 (& ‘7;['11 pt)
= g0(2,311),1(8) - w(3),4e41 (0371, pt) = ~03 - gw (3) 4241 (0251, pt)
=-2%cqy

Thus Cqp-1 = Qgq¢.
Similarly,

l+l)

aw(3),a+1(95°%") - gB(2,3,11)1(8) = T2 4TP a2 (& 05 FY) = =2%F1a,,

and this also equals (—1)2%+1¢,,.,. Thus Cagp1 = Qyrya.

Further,
qw(3),4t+l(‘7;t-l’ Pt) . ‘IB(z,a,u),a(Ea) =
= 29 ) 4TP" ae42(€03°7Y)
= 2%(3a4; — aqe42)
and

‘IW(a),4¢+1(Ugt+l,Pt) . %(2,3,11),3(53) = (2)(2“641—1) = 2““%1-1 = 2““041

so that 2a4, = 3a4; — ag42 and ay = Qyeq2.

Similarly,
aw(3),4e43(03°+, pt) “gB(2,3,11),3(8%) =
= 252y 4P at4a (05
= 2““(3‘14&2 - a4l+4)
and

aw(3),4e43(03+, Pt) - 4p(2,3.11),3(8%) = (2)(2**%cqp41) = 24¥30,,

so that 2a4¢+2 = 3a4[+2 — Q4¢44 and Qae42 = Qqepq. O

Now that we have a blow-up formula for E(2), i.e. a computation for 9p(2) 4P and since

21

blowing up is an operation performed at a single point, we have a blow-up formula for

any manifold that, say, contains the fiber and section of E(2), i.e. a so-called nucleus
for E(2). This configuration, denoted G, has boundary the homology sphere £(2,3,11)

which, as we have already used, has sparse Floer homology so that simple cut-and-paste
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IMMERSED 2-SPHERES 23

qw(n) of degree congruent to n mod 2. One checks that these relative invariants indeed have
the boundary conditions dual to a3 and a;. Now inductively,

Ip(nr)ycP® = exp(g)sinh"_s(F) cosh(E)

exp( )[sinh"~*(F) cosh(F F) cosh(E) + sinh™~*(F) sinh (F) sinh(E)]

so that the degree congruent to n relative invariants for W (n) are given by

qw(n) = exp(Qv;(")) sinh”~?(F) sinh(F) (a3 + alpha,).
Hence

05(e) = 5ta5.10(e) = exP( ) exp(L2L) inh"*(F) = exp(LEL) int -3 ().

This inductive proof points out the utility of the multiplicative property of the Donaldson
series. (To be PC I should at this point mention TQFT’s).

The relative invariants for C(2, 3, 11) involving the other parity of degrees are not required
for this computation. Indeed, these relative invariants must be treated carefully, for their
boundary conditions need not be irreducible. It is here that the fact that C(2,3,11) is
negative definite brings up the possibility of reducible connections. These do occur and
play an important role in [FKS].

These arguments also show that if we consider SO(3) Donaldson series we get the same
answers if the bundles restrict trivially to fiber. However, if they do not, then let ¢ €
H?(E(n); Z) be an integral lift of the Poincare dual of the second Stiefel-Whitney class of
these bundles. Similar arguments show that

95 = (1) 5 (sz) cosh~2(F)

Further, if the bundles restrict nontrivially to the exceptional curve in the blow-up and,
say, trivially to F, then

24be Qem#er ) . n- .
qs(n)#ﬁ’,c=(—1) exp (—-—2—— sinh 2(F)smh(E’)

To conclude, we thank Tom Mrowka for giving us the courage to show that our Theo-
rem 2.3 implies a blow-up formula under a weaker hypothesis, namely

Proposition 3.11. If X has simple type, and if gx = exp(%‘)C, then

Q
Ix 4P = exXp(—E— x#t" ——E=—)C cosh(E).
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The multiplicity of the surgery is the absolute value of the degree of
Props 0 ¢ : pt X dD? — 9D

Let E(n), denote the result of this operation on E(n). Note that multiplicity 0 is a possibil-
ity. It follows from work of Gompf [G1, Prop.2.1], which uses a construction of Moishezon
[Mn1], that if ¢ and ¢’ have the same multiplicity, there is a diffeomorphism, fixing the
boundary, from E(n), to E(n),. Thus we may use the notation E(n;p) to denote any
E(n), where the multiplicity of ¢ is p.

In E(n;p) there is again a copy of the fiber F, but there is also a new torus fiber, the
multiple fiber. We shall denote its homology class by f,; so in Hy(E(n;p);Z) we have
f = pf,. We can continue this process on other fibers, but to insure that the resulting
manifold is simply-connected we can take at most two log-transforms with multiplicities
that are pairwise relatively prime. So, if we take two log-transforms of order p and ¢
respectively, denote the result by E(n;p, g).

The homology class f of the fiber of E(n) can be represented by an immersed sphere
with one positive double point. Blow-up this double point and take the proper transform
of f so that the class f — 2e; (where e; is the homology class of the exceptional divisor) is
represented by an embedded sphere with square —4. This is just the configuration B(2).
Now the exceptional divisor intersects this sphere in two positive points. Blow-up one of
these points and take proper transforms. There results the homology classes uy = f—2e,—e,
and u; = e; — e, which is just the configuration B(3). Continuing in this fashion we see
that B(p) naturally embeds in E(n)#,_lé—ﬁz. The key observation is:

Proposition 4.1. E(n;p) is obtained from E(-n)#:,,_q@2 by rationally blowing down B(p).

Proof. To see that E(n;p) results from blowing down B(p), we offer the sequence of Kirby
calculus moves in Figure 6 and Figure 7. For this recall that the neighborhood of the
immersed sphere with one positive double point representing f is just a neighborhood of
a cusp fiber (see [FS6]). This neighborhood is just O-framed surgery on the right-handed
trefoil knot. The first picture is then a handlebody picture for the cusp neighborhood
blown-up p — 1 times with the configuration B(p) represented by the homology classes
(which are represented by spheres) ug = f--2e; —e; —---—€p_1, u; = €; — €3, U = €3 — €3,
<+ Up_1 = €,_2—€,_;. In the second picture we add the handle from Figure 5 and then blow
down, keeping track of the dual 2-handle which is labelled with 0-framing. If in the final
picture one replaces the handle with a dot on it by a 1-handle, there results the handlebody
picture for the log-transformed cusp neighborhood (cf. [G1]). O
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FIGURE 7. Logarithmic Transform=Rational Blowdown
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We now easily compute gg(2;5) on X \ B(2).

9E(22) = Ip2)4TP® ~ YE(2)#TP° f-2¢

= exp(—g—) cosh(E) — (_1)11_-3:)&23(@1 exp(—;z) cosh(F)
= 2exp(%)cosh(E).

While E' is not a cohomolgy class in EY(2;2), the appropriate classe is E + 3(F — 2E) = £
(since we can add multiples of classes in the neighborhood of the —4 sphere), i.e. the

multiple fiber. So
_ Q F. Q, sinh(F)
ge(2;2) = 2exp( 2 ) cosh( 2) = exp( > )sinh(g)

4.3. Recursion Relations as 0.D.E.’s for gx. To compute gx(p) for large p requires an
important preliminary observation about the Donaldson series. If S € H,(X;Z), then the
interior product ¢s(gx,4) € Sym?=!(H,(X)) given by

(¢s(gx,a))(@1ye ., Tamr) = d - gx,a(21y - oy Taoyy S)

is a derivation. Further

(ts(gx.a)) () _ gx.a(-S)
d! (d-1)!
so that ¢s acts as a derivation on the Donaldson series. We then define

0 _ ts(gx,q)
a5 = ; d!
An easy induction argument shows that
9% Qy Q& e =20 (2K (2k — 2t)!
(5) F5% *P(3) —EXP(E)Z;Q (5,5)5%| o, P
and
O%H Q) Qi heriq oy aaes [2k+ 1) (2K - 20)!
(6) Wexp(g)—eXP(E)gQ (5,5)8 2%+1) (k= )]

where § is the Hom dual of S. Also
a .
%cosh(n) =sinh(k)(S - k)

and 5
35 sinh(k) = cosh(x)(S - k).

These are indispensable formula for all of our later work.
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+(Ez - v)(Es - w) + (B4 - v)(By - w) + (Es - v)(E4 - w)] sinh®(w) cosh? (u)
(Ex - v)(E: - w) cosh® (u) — %(a - v)(Es - w) sinh*(u)}

1
2
= exp(%){cosh“(u) + (2 cosh*(u) + 3sinh? (u) cosh?(u)]

+%[4 cosh*(u) + 14sinh?(u) cosh?(u) + 2sinh*(u)]}

= exp(%)[S cosh*(u) + 10sinh®(u) cosh? (u) + sinh*(u)]
_ Q _ Q, sinh(5u)
= exp( > )[2 cosh(4u) + 2 cosh(2u) + 1] = exp( 2) Snh(w)
Since u - ‘5( =1,u-7= -1, and cosh is an even function, we then have

_ Q,sinh(F)
qB(2;5) = exp( 2 )m—)

The computation of the Donaldson series for E(n;p, q) is now a matter of careful differ-
entiation, using Theorem 2.2 to determine which derivatives to take. We refer the listener
to [FS8] for the detailed combinatorics.

4.5. Horikowa Surfaces. To further illustrate the power of Theorem 2.2 we compute a
few more examples. Here the goal is to find, for n > 4, a pair of disjoint B(n — 2) in E(n)
with the uo as sections of E(n) and for j > 0, u; € fL. If we let E,, be E(n) with one
B(n - 2) blown down, an application of Theorem 2.2 shows that if 7 is odd, then

9., = exp(%) sinh(k)
and if n is even, then

qe,., = exp(g—) cosh(k)
with k? = n—3. If E,, | were an algebraic surface, this computation shows that it is minimal.
However, it is easy to check that this violates the Noether inequality, so the E,; are not
homeomorphic to any complex surface.

Let E,  be E(n) with both B(n — 2) blown down. Another application of Theorem 2.2
shows that if n is odd, then

gg,, =23 exp(%) sinh(x)
and if n is even, then
5. = 2" exp(2) cosh(x)

with k? = 2n — 6. However, from our construction it will be clear that E, . is in fact a
Horikowa surface. Note this generalizes our earlier computations where n = 4,
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(3.10, 3.11) state that Ix4TP® = ©€XP (Q—X’F”—’) Ccosh(E). Let z,,...2, € Ho(X;Z)
be a basis so that each z; can be represented by an immersed sphere with p, positive
double points and 7, negative double points (if X is simply-connected any class can be so
represented). Choose p,n € Z so that p > band p > p,, n > n, forall 1 <t < b. Then in
X = X#b(,,+,,)@—132 the classes Z, = z—2e,, — 2,0 —+--—2€,,,1 < t < b, can be represented
by embedded spheres with Q(Z., £:) = Q(z, z;) — 4p = r(z., p), which is negative if gx # 0.
Now apply Theorem 2.3 to these classes. Using Section 4.3, these recurrence relations for
g3 (valid for classes orthogonal to the %,) translates, if r(z.,p) = —(2lc + 1), to the O.D.E.

§2k-1 H2k-3 H2k=(2t+1)
(7) R ooTdx = {Alka =53 T +At,k_6z2k e T <Ak 11:3 Yax + Acxgx Y
t

and if r(z, p) = 2k, to the O.D.E.

azk 92k-2 az(k r) o2
(8) EEY. ek dx = {Alka~2k s+t AL 8 —a=n T Ak 1Lk 332 33 19% + Al klx 2,

It is important to note that these coefficients only depend upon k, and hence they only
depend upon Q(z:,z,) and p. The differentiation formulas (5) and (6) for exp(2) now
imply that if we write gz = exp ( ) C, then C also satisfies constant coefficient O.D.E.’s
which, if r(z;,p) = —(2k + 1), are given by

§%*-1 & §2k-3 92— (2r+1) . )
(9) a'i?k ¢ {alka»zk 3+ +ark5‘2T'W+ Qg k ~!}C+ak,kDi-,

and if r(z., p) = 2k, are given by:

a2k 92k-2 §2(k-r) 92 , N , .
(10) 922 5735 C = {a}, ) +oot arka - T 1,;:3_:2:2 + @, }C + a1 4 Ds,.

There are two difficulties. First, these are not constant coefficient O.D.E.’s because of the
appearance of the D;,; second these O.D.E’s are only valid for classes orthogonal to the Z,.
To remedy both of these problems we blow-up one more time. For 1 < ¢t < b, let #, = &, — e
in X #CP These classes are again represented by spheres with self-intersection one less
than before and for which we have O.D.E’s as above. Here is where we first explicitly utilize
a blowup formula. This formula (Proposition 3.11) shows that the new C is C"cosh(E) and
the new D is Dsinh(E). Now differentiate (using the fact that =2— a(: 5= = £ - 2£) and equate
the coefficients of cosh(E) to obtain new O.D.E.’s for the original C that do not involve D
and are valid on all of C (since #, + Q(&:, £/)e €< & >4).

A similar trick (i.e. using the blow-up formula, differentiating, and equating the coeffi-
cients of the various products of the cosh(E ;)) shows that for each basis vector z, there is
a constant coefficient O.D.E of degree r(z.,p)+1, if 7(z,, p) is odd, and of degree r(z,,p) — 1
if r(z.,p) is even. Further, the coefficients only depend upon r(z;,p); in particular they
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k-1 n n
— @k > bisinh(I;) (K; - [S])*-Cr+V) _ g, > +b;sinh(K;)
r=1 i=1 Jj=1

on [S]t. (This uses the fact that gx(s) = exp(%) 2_j=1%£b;sinh(K;).) Unless these equa-
tions are trivial on [S]* and K; - [S] # 0 for some 7, then we can factor out the b; sinh (K;)
and have that the K - [S] are characteristic roots for the ODE (9). Since these are uni-
versal ODE’s, by plugging the Donaldson series for E(2k + 1) into (9), we see that these
characteristic roots all satisfy the inequality

-22> Q([S], [S]) + maz,{IK, . [S]I}

More generally, suppose z € H,(X ;Z) is represented by an immersed sphere with J/
positive double points and n negative double points. Then, in X = X#,CP #,CP" the
homology class z = z — 2¢; — -+ — 2¢, is represented by a sphere S with Q([S],[S]) =
Q(z, z) — 4p, which is negative if gx # 0. Now the blowup formula Proposition 3.11 implies
that the basic classes K, for X are of the form K;te - -+ epn. The simple inequality
above asserts that

=22 Q([S], [S]) + maz,{|K, - [S]|},

=22 QUSLISD + mazi{|(K;j £ &1+ £ epyn) - ( — 26, — -+ — 26,)]}.

This also satisfies the inequality
2p - 22 Q([S], [S]) + maz;{K; - [S]}.

The exceptions, i.e. when the equations are trivial on [S]* and K. 5 +[S]# 0 for some j, are
handled by the exceptions in the statement of Theorem 1.12.

5.2. The unknotting number of torus knots. Let T'(p, q) denote the (p, g) torus knot.
Consider the Brieskorn homology sphere Z(p,q,2pq — 1) which bounds the Milnor fiber
B(p,q,2pg - 1). Further, —%(p, g, 2pg ~ 1) bounds the even manifold S(p,q,2pg — 1) with

intersection form ((1) _12 with respect to the basis of 2-handles obtained by doing a 0-

framed surgery on T'(p, g) and then —2-surgery on its meridian. Let H, denote the class with
0 self-intersection and let S denote the class with self-intersection —2. Since S is represented
by a 2-sphere, X (p,q,2pq ~ 1) = B(p, q,2pg - 1) U S(p, q, 2pq — 1) is an algebraic surface
with large diffeomorphism group with respect to its canonical class & (whose homology class
resides in S(p, ¢,2pg— 1)). Again, since S is represented by a 2-sphere, k = 2aH, + a5 for
some a € Z. Further,

e(X)= (- 1)(g - 1)(2pg— 2) +4
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facilitates these evluations of the Donaldson polynomials at points of X. Although the
resulting coefficients are not initially computed, since they are universal, we can use our
computations for the E'(n) to compute them. First some preliminaries.

Let P be a principal SU(2) or SO(3) bundle over X. Since we need to alternate between
the cases of SU(2) and SO(3) bundles, it will be convenient throughout to use SO(3) as
structure group and to identify an SU(2) bundle with its associated (adjoint) SO(3) bundle
with w, = 0. This causes no loss in generality. Suppose that the moduli space Mx(P) of
anti-self-dual connections on P has dimension

dim Mx(P) = —2p,(P) - 3(1 + b%) = 2d.

Then there is a Donaldson invariant gx p € Sym3(H,(X;Z)). It is obtained from a homo-
morphism p : Hy(X;Z) — H?(Bx(P); Z) which is described in [D6]. (B (P) is the space of
gauge equivalence classes of irreducible connections on P.) For each choice of an oriented
surface X; representing the homology class z; € H,(X; Z), there is a codimension 2 subman-
ifold V; of By (P) which is a cocycle representative of u(z;). These cocycle representatives
can be chosen so that the intersection

Mx(P)nVln'an

is transverse (hence 0-dimensional), compact, and oriented. Donaldson’s polynomial invari-
ant gx,p(21,..., 24) is the algebraic number of points in the above intersection, and depends
(up tosign) only on the classes z; and the diffeomorphism type of X. The sign is determined
by the orientation of Mx (P), and this is in turn determined by the orientation of X and a
choice of orientation on H2(X;R). (See [D5].)

Now suppose X = Z U N. Consider a collar neighborhood (neck) N x [-1, 1] in X,
and suppose that we have a sequence of generic metrics {gn} on X which stretch the
length of the neck to infinity and whose limit is the disjoint union of generic metrics on
Ny and Z,. It follows from Uhlenbeck’s weak compactness theorem [U] that any sequence
An € Mx(P,g.)NViN.--NV, has a weak limit Ay II Az in the disjoint union of moduli
spaces for N; and Z,. Both Ay and Az limit asymptotically to flat connections on dN.
(These limiting anti-self-dual connections need not necessarily have exponential decay.) In
situations where the limit of {A,} is necessarily a strong limit, i.e. where there is no
bubbling or loss of energy in a tube N x R, this process can be reversed to obtain all of
Mx(P,gn) " ViN-.-NV, for large enough n. (See [Mr], [T], [MMR].) This is what we
mean by the “Mayer-Vietoris Principle”. Roughly, the Donaldson invariant of X can be
computed as a sum of products gn[A] - gz[A] of relative invariants where [A] runs over the
character variety x(Tp).

Suppose, in reverse, that we are trying to glue together anti-self-dual connections over Z
and N to obtain anti-self-dual connections over X. A first problem which arises concerns
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where e(B) is the Euler number of B ([APS1], [FS3]). Note that since X = M U, B then
dim Mx = dim Mg[A] + hy(L) + dim Mp[A).

To indicate some of the ideas that go into the proofs of Theorem 2.2 and Theorem 2.3
we conclude by proving the simplest version of Theorem 2.3, namely Rubermann’s result;

Theorem 8.2. Suppose that T is an embedded sphere with Q([T), [T]) = —2. Letz,,...z4 €
H(X;Z) be homology classes that are orthogonal to [T). Then

ax,d(z1, .. -zaz2, [T, [T)) = 29x,(1),4-2(21, . . .74)

Proof. Write X = QU N. Note that N = L(2,-1) = RP3. Since b*(Z) > 0, generically
there are no reducible anti-self-dual (ASD) connections on Q. However, since b*(N) = 0
there are indeed nontrivial reducible ASD connections in complex line bundles L™, m € Z,
with ¢,(L™) = m represented by a harmonic 2-form and with L™|sy the flat line bundle
with holonomy —1 on the meridian curve. In particular L is determined by the non-trivial

'01 _01) of 1 (ON) = Z, into SO(3) so that ad(L) = L@L s a trivial

bundle. Thus hy, = h; = 3. Let C 2 L be the trivial bundle. Note that for reducible
connections on N, ¢; € H(N;Z) = H,(N;0N;Z) = Z and that ¢,(L) = ¥ is a generator.
Then —4p, (L) = c;(LO L) = —c3(L) = 3

representation \ = (

Also, on Q
dim M., (Q) = 8¢cq - g(e(Q) +0(Q)) - % - %—“— = 8cq - 3(1 + 0% (X))
and on N

dim M., (N) = 8cy — g(e(N) +o(N)) - 92& + P—z" =8cy - 3.

If we have A4; € M(X,g;)NViN... Va_2NVr N Vr o, then stretching the neck we get that
in the Uhlenbeck limit A; — Aq L1 Ay +r bubbles on Q + s bubbles on N, where Ag € Mg
Ay € My. Further dimMq + dimMy +8r + 85+ 3 < 2d.

The next step is a sequence of dimension counting arguments to determine r, s, and the
irreducibility of Ag and Ay.

If Aq and Ay are both irreducible, then dimMgq > 2(d - 2 - 2r) and dimMy >
2(2 - 2s) so that (2d — 4 — 4r) + (4 — 45) + 87 + 85 + 3 < 2d which is impossible.

If Aq is flat and Ay is irreducible, then 2r > d—2 and dimMgq = 0-3(1+b*(Q)) so
that —=3(1+6%(Q))+(4—4s)+(4d—8) +85+3 < 2d; i.e. 2d—3(1+b*(X))—1+4s < 0. But
to guarantee compactness we need that k > 2(1+b*(X))+1, so that 2d—3(1+b*(X)) > 4.
So we cannot have Aq flat and Ay irreducible.
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¢; = —2 complex line bundle over S? and VT,? is just another section. Thus V'I‘Ig A, = -2
and

qx‘,,(zl, e Ty, [T], [T]) = —2 . IQ.

This again is a general phenemena we will have in the proofs of our more general theorems.
We will have that our original gx 4 can be written as a product of a universal constant coming
from a reducible computation on N times a relative invariant on Q. The final task is to
identify this relative invariant with an absolute (but different) invariant of X. For the case
at hand we will just attach the trivial connection to M,‘_g(Q) and claim that we get a
computation for gx (r),d~2(Z1, ... Ta-2).

To see this, we pass to SO(3) bundles over Q and note that M, _; ¢(Q) = M, _;(Q) and
that the boundary value for these SO(3)-connections is trivial since adA = ¥, the trivial
connection. So glue on the trivial connection from N (there is no obstruction). This gives
us an SO(3)-bundle over X with w, # 0 since there is a twist in the gluing (afterall we
are ending with a bundle with fractional ¢;). This w, is the unique non-trivial element
¢ € H?(X;Z,) which restrict trivially to both @ and N. The Poincare dual of w, is just
the mod 2 reduction of [T]. Thus

qx'd($1, o T2y [T], [T]) = :i:2qx,[1-],d_2(zl, . ..’Dd).

Since this 2 is universal, a test on one example shows that it must be +2. O
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