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1. Introduction

The introduction of the Seiberg - Witten monopole equations ([SW1],[SW2],[W]) has
served to make the study of smooth 4-manifolds more accessible. Many of the important
earlier theorems regarding Donaldson invariants of smooth 4-manifolds have more easily
proven analogues in Seiberg-Witten theory [J]. Further, new fundamental results have
quickly appeared, most notably the proof of the Thom conjecture [KM], the verification
of the nontriviality of the Seiberg-Witten invariants for symplectic manifolds [T1], and
the results of C. Taubes which relate Seiberg-Witten invariants with the theory of pseudo-
holomorphic curves and certain Gromov invariants for symplectic manifolds ([T2],[T3]).

A few days after an MIT lecture in which Witten introduced these monopole equations
to the mathematical public, Cliff Taubes visited Cal Tech and UC Irvine and described to
us these equations. Shortly thereafter, Tom Mrowka travelled to UC Berkeley to connect
with Peter Kronheimer. They quickly worked out a Weitzenbock argument to show that
for minimal surfaces of general type the canonical class is a diffeomorphism invariant and
that the Seiberg-Witten invariant vanished for manifolds with positive scalar curvature.
Although this had already been realized by Witten [W], this got us all excited - for this
was a result that we had expected but could not yet prove using Donaldson theory.

Both of us had just completed a series of results concerning Donaldson invariants in
which we studied the effect of embedded spheres on the Donaldson invariants. In effect, we
showed that understanding cut and paste arguments for 4-manifolds which are split along
ordinary lens spaces provided insights into the structure of the Donaldson invariants
([FS1],[FS2], [FS3]). Cliff Taubes called the second author and pointed out that lens
spaces have positive scalar curvature and that all the gluing arguments necessary for
our work were much more trivial in this newer theory. Initially, the three of us, and
independently Kronheimer and Mrowka, quickly recast all of our earlier work in this
newer setting. Most of this will appear in [J].

The first author was partially supported NSF Grant DMS9401032 and the second author by NSF
Grant DMS9302526
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The first part of this paper is partly historical and reports on one of the early successes
— a proof using the Seiberg-Witten invariants of the immersed Thom conjecture for the
projective plane. Recall that the classical Thom Conjecture states that the genus of a
smoothly embedded surface F in CP? representing d times the generator H of Hy(CP?; Z)
must be at least the genus of a nonsingular complex curve of degree d. I.e.

(d—1)(d—2)
o) > C=24=2),

Instead of representing 2-dimensional homology classes by embedded surfaces, one can
represent them by immersed 2-spheres. This leads to what we call the Immersed Thom
Conjecture. In this paper we shall discuss a proof of following theorem.

Theorem 1.1 (The Immersed Thom Conjecture). Suppose that a 2-sphere S is im-
mersed in CP? with p positive double points, and suppose that its image represents
dH € Hy(CP?% Z). Then

Within a few days of our discovery of a proof of this theorem, Kronheimer and Mrowka
announced their proof of the full Thom conjecture [KM] which implies the immersed
version; first remove all the positive double points of the immersion by adding handles to
increase the genus by exactly p and then blow up to remove the negative double points
and follow the proof of [KM]. However, our proof also gives new information about

representing homology classes in the rational surface CPF‘)#qﬁs2 by immersed spheres.

Theorem 1.2. Let o =dH + ) {a,E; € HQ(CP2#q(—3—f’—2; Z). Then ifd > 2 and
q
d? —3d> Z(af —a;)+2p
1

the class o cannot be represented by an immersed 2-sphere with p positive double points.

The question of representability by smoothly embedded 2-spheres (p = 0) has been well-
studied in the literature in the case where - & > 0 where one may apply Donaldson’s
theorems about the realization of intersection forms. See [L] for a survey of results. The
chief interest of the above theorem is where «v- & < 0. This is not implied by [KM].

Tom Mrowka also had an early proof of Theorem 1.1.

The purpose of the second part of this paper is to apply the proof of Theorem 1.2
together with the blowup formula for Seiberg-Witten invariants (Theorem 1.4 below whose
proof we outline in §4) to manifolds with T > 1 to obtain a very general adjunction
formula for immersed spheres:
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Theorem 1.3 (Generalized Adjunction Formula for Immersed Spheres). Suppose
that X is an arbitrary smooth 4-manifold with bt > 1 and that L is a characteristic line
bundle with SWx (L) # 0 and dim Mx (L) = 3°1_, £;(¢; + 1) with each integer £; > 0. If
x # 0 € HXX;Z) is represented by an immersed sphere with p positive double points,
then either

2p—22x2+|x-L|+4Z£i, p>r

i=1

P ™
p-222 |z L[ +4Y L;+2 > 4, p<r
i=1 i=p+1
or
SWy(L) = {SWX(L+ 2), ifz:L20
SWx(L —2z), ifz-L<O0.
Here SWx (L) is the Seiberg-Witten invariant for L and dim Mx (L) = (1 (L)?~(3sign+
2e)(X)) is the formal dimension of the moduli space Mx (L) of solutions to the Seiberg-
Witten monopole equations. Note that in general there are several ways to write any even
number as a sum of triangular numbers £(¢ + 1). Theorem 1.3 is optimized by letting r
be as large as possible.

Theorem 1.4 (Blowup Formula). Suppose that X is an arbitrary smooth 4-manifold
with b+ > 1. If dim Mx (L) — r(r +1) > 0, then
SWX(L> = SWX#@z(L + (27" + 1)E)

Here we confuse line bﬂi%es with their first Chern classes and write the line bun_dle25
additively. Also E € H?*(CP *;Z) is the Poincaré dual of the exceptional divisor of CP -.
Theorems 1.3 and 1.4 were discovered before the proof of Theorem 1.1.

2. Seiberg-Witten Invariants

Suppose we are given a spin® structure on an oriented closed Riemannian 4-manifold
X. Let W+ and W~ be the associated spin® bundles with I = det W+ = det W~ the
associated determinant line bundle. Since ¢;(L) € H2(X;Z) is a characteristic cohomol-
ogy class, i.e. has mod 2 reduction equal to wy(X) € H?(X;Z,), we refer to L as a
sharacteristic line bundle. We will confuse a characteristic line bundle I with its first
Chern class L € H?*(X;Z). For simplicity we assume that H2(}M; Z) has no 2-torsion so
‘hat the set Spin®(X) of spin® structures on X is precisely the set of characteristic line
sundles on X.

Clifford multiplication, ¢, maps 7* X into the skew adjoint endomorphisms of W oW —
mnd is determined by the requirement that c(v)? is multiplication by —|v|?. Thus ¢ induces
L map

c:T*"X — Hom(WH, W~).
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The 2-forms A% = A+ @ A~ of X then act on W leading to a map p: AT — su(W*). A
connection A on L together with the Levi-Civita connection on the tangent bundle of X
induces a connection V4 : (W) — T'(T*X ® WT) on WT. This connection, followed
by Clifford multiplication, induces the Dirac operator Dy : rw+) — I(W~). (Thus
D4 depends both on the connection A and the Riemannian metric on X.) Given a pair
(A, ¢) € Ax(L) x (W), i.e. Aa connectionin L and ¢ a section of W, the monopole
equations of Seiberg and Witten [W] are

(1) Dgyp = 0
p(Ff) = (¥®¥ )

where (1 ® ¥*), is the trace-free part of the endomorphism ¢ ® ¥*.
The gauge group Aut(L) = Map(X, S 1) acts on the space of solutions, and its orbit
space is the moduli space Mx (L) whose formal dimension is

2) dim M (L) = i(cl(L)2 _ (3sign(X) + 2e(X)).

If this formal dimension is nonnegative and if b+ > 0, then for a generic metric on X the
moduli space Mx (L) contains no reducible solutions (solutions of the form (A,0) where
A is an anti-self-dual connection on L), and Mx (L) is a compact manifold of the given
dimension ([W],[KM]).

The Seiberg-Witten invariant for X is the function SWx : Spin®(X) — Z defined as
follows. Let L be a characteristic line bundle. If dim Mx (L) < 0 or is odd, then SWx (L) is
defined to be 0. If dim Mx (L) = 0, the moduli space Mx (L) consists of a finite collection
of points and SWx (L) is defined to be the number of these points counted with signs.
These signs are determined by an orientation on Mx (L), which in turn is determined by
an orientation on the determinant line det(H°(X;R)) ®det(H'(X;R))@det(HZ (X;R)).
If dim Mx (L) > 0 then we consider the basepoint map

Mx (L) = {solutions (A,¢)}/Aut®(L) — Mx (L)

where Aut®(L) consists of gauge transformations which are the identity on the fiber of
L over a fixed basepoint in X. If there are no reducible solutions, the basepoint map
is an S! fibration, and we denote its euler class by 3 € H?*(Mx(L);Z). The moduli
space Mx (L) represents an integral cycle in the configuration space Bx(L) = (Ax (L) x
T(W+))/Aut(L), and if dim Mx (L) = 2n, the Seiberg-Witten invariant is defined to be
the integer
SWx(L) = (8", [Mx(L)]). :
Note that the space Ax (L) x (W) is contractible and Aut(L) = Map(X, S1) acts freely
on Ax (L)X (T(W*)\{0}). Since S' is a K(Z, 1), if we further assume that HY(X;R) =0,
then the quotient
By (L) = (Ax(L) x (C(WH)\ {0})) /5"
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of this action is homotopy equivalent to CP>. So if there are no reducible solutions, we
may view Mx (L) C CP®. Under these identifications, the class 8 becomes the standard
generator of H?(CP™;Z).
If b7(X) > 2, the map
SWx : Spin®(X) — Z

is a diffeomorphism invariant ([W],[KM]); i.e. SWx (L) does not depend on the (generic)
choice of Riemannian metric on X. To see this, let C denote the (connected) space of
metrics on X and for g € C let Mx (L) denote the corresponding moduli space. As in
Donaldson theory (cf. [DK]) consider the parametrized moduli space

Mx (L) = {(4,%,9)|(4,¥) € Mx,4(L)} C Bx(L) x C.
We have a Fredholm projection
m: M (L) = Mx(L)\ { reducible solutions } — C

and, in fact, the ‘generic’ metrics are precisely the regular values of (an open dense set).
Any path v joining two generic metrics go and g; in C can be perturbed to be transverse
to this projection. Then 7~ 1(v) is an oriented manifold of dimension dim Mx (L)+1in
Bx(L)x[0,1], and, provided that none of the moduli spaces My v(¢y(L) contain reducible
solutions, m~!(vy) is an oriented cobordism between My g0(L) and Mx 4, (L). So

SWx (L, g0) = (8", [Mx g0 (L)]) = (6", [Mx,q: (L)]) = SWx (L, g1)

Thus the problem lies with reducible solutions.

The curvature F4 of a connection A on the complex line bundle L is a closed 2-form
representing the cohomology class [F4] = 2me;(L) € H*(X;R). If A is anti-self-dual
with respect to a metric g on X then d*Fy = xd* Fy = — xdF4 = 0. Thus if A is
g-anti-self-dual, F4 is g-harmonic. Identify H?(X;R) with the g-harmonic 2-forms, and
let

HY(X;R)=H} &N,

be its decomposition into the +1 eigenspaces of the x-operator of g. Then A is g-anti-
self-dual if and only if F4 = 2m¢;(L) € ’H . Since the codimension of the vector subspace
H, of H*(X;R) is b", if b* > 1 the lattlce point ¢;(L) will not lie on H; for a generic
metnc g and L will admit no g-anti-self-dual connections. If b+ > 2 the same will be true
for paths of metrics as in our argument above. (Rigorous proofs of these facts can be
given by using Sard-Smale theory (cf. [DK]).) Thus, if b* > 2, generic paths of generic
metrics will admit no reducible solutions of the Seiberg-Witten equations and SWx will
be a diffeomorphism invariant.

For the proof of Theorems 1.1 and 1.2 we are interested in manifolds with bt = 1 and
we need to keep track of the metric in our notation: SWx (L, g). As above, the line bundle
L will admit a g-anti-self-dual connection provided ¢;(L) € H, . Since bJr =1, Hf =
so that up to scale there is a unique g-self-dual harmonic 2- form wg. Since ’H+ and 'H‘
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are L2-orthogonal, L admits a g-anti-self-dual connection if and only if ¢;(L) - wy = 0.
The self-dual harmonic 2-form

wy, € P({a € H*(X;R)|o- a > 0})

is called the period point of the metric g. Reducible solutions to the Seiberg-Witten
equations appear only for those metrics g whose period points wg lie in the hyperplane
c1(L)*. This hyperplane separates P({o € H2(X;R)|a-« > 0}) into two chambers given
by the inequalities ¢1(L) - wy, > 0 and ¢1(L) - wy < 0. Any two generic metrics go and
g1 whose period points lie in the same chamber can be connected by a path of metrics
in that chamber, and the argument above shows SWx (L, go) = SWx(L, g1). Thus for a
fixed characteristic line bundle L, as a function of g the invariant SWx (L, g) takes on at
most two possible values.

To understand what happens as the period points of a path v of metrics cross the hy-
perplane ¢;(L)* transversely at a single point we utilize the Kuranishi model of the
parametrized moduli space 7~1(y) (cf. [DK], [D1]). In case the formal dimension
dim Mx (L) = 0, it models the one-parameter family of moduli spaces My,g, (L) near
a reducible solution (4,0) € Mx g, (L) as the zero set of the map z — |z|* + ¢ from
C — R. Thus

SWx(L,g-1) = SWx(L,g41) £1

depending on the direction that the path crosses the hyperplane. The same argument
extends to the case where dim Mx (L) > 0 resulting in a simple ‘wall-crossing formula’.

3. The Proofs of Theorems 1.1 and 1.2

We begin by proving Theorem 1.1. Suppose that there is a smooth regular immersion
S$? — CP? which has p positive and n negative double points. Further assume that this
immersion represents the class dH and that

@) p:(d—l)z(d—2)_1:d;3d

and look for a contradiction. (In case there are fewer positive double points just increase
the number of positive double points by connect sums with 2-spheres representing 0 € Hs
immersed with a pair of ‘cancelling’ double points.)

The first step is to convert the immersion in CP? into an embedding in CP?#(p +
n)@2 by blowing up. Let E denote the generator of Hz(—CTQ; Z) represented by the
exceptional curve. Blowing up at a double point of our immersion will remove the double
point in the connected sum with CP’. This process adds one copy of £F to each sheet
of the immersion at this point. If the double point is positive, both copies are —F, and if
the double point is negative, then one copy is E and the other is —F. Thus if ¥ C X is
represented by an immersed 2-sphere with r double points, then by blowing up at a double

point we obtain an immersed sphere with r — 1 double points in X #CP2 representing
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X -2F € HQ(X#E?]SQ; Z) if the double point is positive, and representing ¥ if the double
point is negative.

Let X be the rational surface obtained by blowing up CP? a number N = p+n+gq
times so that

(a) The homology class

Z:dH—QiEi—}q:Ej
j=1

i=1

is represented by an embedded 2-sphere in the rational surface X = CP?*#N @2,
and
(b) ¢ is chosen so that the self intersection 3 - ¥ = d2 — dp — g < 0.

The assumption (3) implies ¥ - % = 6d — d? — g. Now let

N

which is the negative of the canonical class of the rational surface X. Since K = alX)=
(3sign + 2e)(X), it follows from the dimension formula (2) that dim My = 0. For the
characteristic line bundle K — 2%, the dimension formula (2) shows

dimMg_ sy =dimMg +% - - 3. K.

However by (3),
E~K:3d~2p-q:6d—d2-—q:z'z

so also dim Mg _ox = 0. Note that if we were to change assumption (3) by increasing the
right hand side (so that there should not be a contradiction}, then the resultant formal
dimension of My 5 would be negative and the following discussion would not apply.
Since b (X) = 1, each of the bundles determines a hyperplane K+ and (K —2%)+
and corresponding chambers of the projectivization of the positive cone of H?(X;R). We
next wish to determine the Seiberg-Witten invariants SWy (K,g) and SWx(K - 2%, g).
Since the Fubini-Study metric on CP? (and on @2) has positive scalar curvature, we
zan glue these together on the connected sum, as explained in [GL], to obtain a metric
>f positive scalar curvature on X. If we take a sequence of metrics {g;} shrinking the
iize of the necks in the connected sum to zero, we obtain the wedge of the Fubini-Study
netrics on CP? 11 CP11-.- 11 CP°. The limit of the period points wg, is a harmonic
elf-dual 2-form on CP2IICP 11 - -- i) @2; thus up to scale, it is H. Write g, for

1, t large; so we see that wy + 1s approximately equal to H. Since g, has positive scalar
urvature, SWx (K, g+) =0 and SWx (K —2%,¢g,) = 0. But K - wg, ~K-H=3>0,
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and (K —2%) -wy, ~ (K —2%)-H = 3-2d <0, provided d > 2. Since Theorems 1.1 and
1.2 are trivial for d = 1, we assume that d > 2. The wall-crossing formula then implies:

0, K wg>0

4 SWx (K, g) =
) x(K.9) {il, if K - wy <0

+1, ifK-w, >0

5 SWx (K — 25, g) =
) x( 9) {o, it K -w, <0.

To complete our argument we consider a tubular neighborhood U C X of the smoothly
embedded 2-sphere representing the homology class X. The boundary of U is the lens
space L(p, —1). We write X = Xo U L(p, —1) X (—¢,6) UU. The neighborhood U admits
metrics of positive scalar curvature; so we can obtain a family of generic metrics on X:
gr = go U gr» Ugy where g1, and gy have positive scalar curvature, and g1, makes
the neck isometric to L(p,—1) x (=r,7): Let X§ = Xo U L(p,1) x [0,00) and Ut =
UUL(p, —1)x [0, 00). The Mayer-Vietoris sequence gives an isomorphism j* : H*(X;R)
H?(X):R)® H2(U";R). Let j*(K) = Ko + Ky. An argument similar to the one given
above shows that for the b* = 1 (metrically) cylindrical end manifold X", a metric admits
an anti-self-dual connection on the line bundle with ¢; = Kj if and only if its period point
is orthogonal to Ko, and for a generic metric this condition does not hold. Thus we may
choose gg so that

C= }L’E&’gr!xg - Ko #0.

Since the necks have positive scalar curvature, there is a gluing theory for obtalning
solutions to the Seiberg-Witten equations on X from solutions on X and U*, and this
theory parallels the gluing theory for solutions of the anti-self-duality equations on a
connected sum. (See [W] and [J].)

Since the neighborhood U¥ has positive scalar curvature, the only solution of the
Seiberg-Witten equations for K is the reducible solution (A,0) where A is an anti-self-
dual connection on K|y+. Similarly, the only solution on U + for K — 2% is the reducible
solution (A’,0). Note that the line bundles K and K — 2% agree on X and so we may
identify the moduli spaces My+ (K)= My + (K — 2%) = M,. Since

0 = dim Mx (K) = dim My s (K) + dim My+ (K) + 1

and
dim Mx (K - 2%) =0,

the formal dimensions of the moduli spaces M+ (K) and My+ (K —2X) are equal. In fact
an index calculation using the Atiyah-Patodi-Singer formula shows that both dimensions
are equal to —1. It follows from the gluing theory that for the metric g, with r large

My 4 (K) = Mo x {(A,0)} = Mo x {(4,0)} = Mx g, (K - 2%).
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Hence, counting points in these 0-dimensional moduli spaces we obtain for large r,
(6) SWx(K,gr) = SWx(K — 2%, g,) (mod 2).

However, since - < 0, the intersection form of U is negative definite, so lim wg lu+ =
r—00
0. This means that
lim wy - (K -2¥)= lim w, -K =C.
r—00 00
Hence for large r, wy, - (K —2%) and wy, - K both have the same sign as C. This contradicts
(6) and (4) and (5) and completes the proof of Theorem 1.1.
The proof of Theorem 1.2 follows easily by examining the above proof.

4. Outline of the Proof of Theorem 1.4

If L is a characteristic line bundle on X, then, for a nonnegative integer k, LE(2k+1)E
is a characteristic line bundle on X #@2. Computing dimensions, we have

dim M

vyop(L % (26 + 1)E) = dim Mx (L) — k(k + 1).

If dim Mx(L) = 0, then

M 2(£E)]/S™.

X#@z(Lﬂ:E) = [Mx(L) X M

CcP
Since CP has a metric of positive scalar curvature, the only solution: on E are the
reducible solutions (A1p,0). Thus MX#@z(L + E) = [Mx(L) x {(:A4p,0)}]/St
Mx (L) x {(A+g,0)} = Mx (L) with (A4,v) being identified with (A# A 3, +0). Thus,
when dim Mx (L) =0, SWx (L) = SWX#ﬁz(L +FE).

If dim Mx (L) > 0, we need to compute using the basepoint fibrat on. So assume
dim Mx (L) = 2d, then SWx (L) = (8%, [Mx(L)]). Let k be an integer so ' hat k(k+1) < d;

hence dim MX#@z(Li(Qk—f—l)E) = 2d—k(k+1) > 0. To simplify notat on, let L, = L=+
(2k+1)E. If k > 0 it is no longer the case that ~X#@2(Lk) = Mx(L) x M—@z(i@k%-

1)E); although it still is the case that MC—Pz(:I:(2k + 1)E) is a point. For this reducible

solution over GP - there are complications arising from H? of the deformation complex
which gives rise to the obstruction bundle for gluing in reducible solutions. Formally, this
s the same as for Donaldson theory (cf. see Theorem 4.53 of [D2]). To study solutions
of the form (A, ¥)#(A+(2k+1)5,0), the model is as follows. There is a C*5™ fbration 3
wer My (L) x M@z(:t(Qk +1)E) = Mx(L) x {(Ai(2k41)5,0)} with an S'-equivariant
iection @ so that

®71(0) = My, 5p=(Ln).
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The bundle £ is pulled back from the (trivial) bundle over the point (At or+1)®: 0) whose

. . . == 2 IR ..
total space is the cokernel of the twisted Dirac operator on CP . Thus ¢ is trivial (but
not equivariantly). Thus its quotient

¢ = Mx(L) xg C5

is a C™5 -bundle over Mx (L) with a section ® so that $71(0) = MX#C—Pz(Lk).

The bundle £ is clearly associated with the basepoint fibration; hence £ = 57 2

(where (3 is the line bundle associated to the basepoint fibration over M x(L)). Thus, view-
ing Mx (L) as a subset of Bx#EF—,z(Lk) (by identifying (A, ¢) with (A#A4 2k+1)E, ¥#0))
we see that the homology class [$7*(0)] is just the zero set of the basepoint induced fi-
bration £ over Mx(L). Recalling dim MX#@z(Lk)ﬂ =d- k(igl—), we have:

(5T My g (L)) = (855 [27(0)] >=< 5% [Mx(L)])

so that

SW

wpope(LE (2k+ 1)E) = SWx(L).

O

5. The Proof of Theorem 1.3

Lemma 5.1. Suppose that X is a smooth 4-manifold with b* > 1, and S is an essential
embedded sphere in X of nonnegative self-intersection. Then SWx : Spin®(X) — Z is
the zero map.

Proof. If $-S > 0, then S has a tubular neighborhood with bt = 1 and boundary a lens
space. Furthermore, the complement of S also has bt > 0; so the proof follows exactly as
for the connected sum theorem. (Cf. [W].)

If §.S = 0, then form the connected sum X=X #6?2 with exceptional curve E.
For each positive integer n the class nS + E has self-intersection —1 and is represented
by an embedded sphere in X. Let U, be a regular neighborhood of this sphere, and let
Y, = (X \ U,) U B%. Thus X = anl;&C_P—2 where E,, = nS + E is the exceptional class.
Assume that there is a characteristic line bundle L on X with SWx (L) # 0. Then by
Theorem 1.4, SWs(L + E) # 0. But L + E = L, + E, where, again by Theorem 1.4,
L, = L—nS is a characteristic line bundle on Y,, and SWy, (L) # 0. Using Theorem 1.4
one last time, we see that SWs(L, — E,) # 0, and L, — E, = L - E—-2nS. If S
is homologically nontrivial, this process gives infinitely many characteristic line bundles
{L—E—2nS} on X with nontrivial Seiberg-Witten invariants, and this is a contradiction
W]. O

The proof of Theorem 1.3 follows from Theorem 1.4 and

154



FINTUSHEL & STERN

Lemma 5.2 (Fundamental Lemma). Suppose X is a smooth 4-manifold with an em-
bedded sphere S with self-intersection —r < 0. Let L be a characteristic line bundle with
SWx (L) #0 and write

|IS-Li=kr+R

with0 < R<r-—1. If k>0, then

_jSWX(LHS) ifL-S>0

SWx(L) |SWx(L-25) ifL-S<o.

Proof. Note that the hypothesis £ > 0 holds if and only if §- S + |S - L] > 0 (which is a
violation of the ordinary adjunction formula).

Suppose S+ L > 0 so that S- L = kr + R. Then just as in the proof of Theorem 1.4,
the regular neighborhood N of the sphere S has a metric of positive scalar curvature so
that there is just the reducible solution (A, 0) for L|y. Write

X =XgUN.

Again, (L+285)|x, = Lx, and there is just the reducible solution (Ayv,0) for (L+2S5)|n.
The exact same proof as for the blowup formula Theorem 1.4 shows SWx (L) = SWx (L).
The proof when S - L < 0 is the same with L + 25 replaced by L — 2S. J

To prove Theorem 1.3 suppose that z € Hy(X;Z) is represented by an immersed sphere
with p positive and n negative double points. Let L be a characteristic line bundle over
X with SWx (L) # 0 and with dim Mx (L) = 37_, £;(¢; + 1). Suppose first that r < p.
For simplicity, assume that - L > 0. (If - L < 0, a similar argument will apply.) Then
in X = X#(p+ n)@{ T=zx-—2 Zle F; is represented by an embedded sphere. Let
L=1+ }:;:1(2€j +1)E; + Eri1+ -+ Epyp. Apply the Fundamental Lemma 5.2:
either 2 +Z- L < =2 or SW(L + 2%) = SW(L) # 0. Now

z7° =z? — 4p

E~f:x~L+4Z€j+2p.

j=1
So in the first case

x2+m-L+4Z€jS2p—2.

Jj=1
Otherwise
SW(L + 27) # 0.

Furthermore, the blowup formula, Theorem 1.4, says

SW(L +27) = SWx (L + 2z).
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In case p < 7, let X be X blown up m = max{p + n,r} times, and let T = z —
23 Ei— 3,1 Eiand L=L+); ,(2;+1)Ej+Er41+ -+ Ep. Then the above
proof goes through. O

Call a characteristic line bundle with nontrivial Seiberg-Witten invariant a Seiberg-
Witten class. Farther, X is said to have Seiberg- Witten simple type if dim My (L) = 0 for
any Seiberg-Witten class L. It is an open question whether all 4-manifolds with bt > 1
have Seiberg-Witten simple type. Theorem 1.3 can be used to give criteria for a manifold
to have Seiberg-Witten simple type. For example, if X contains an embedded sphere S
with S-S = —2 and such that S - L = 0 for every Seiberg-Witten class L, then X has
Seiberg-Witten simple type. For, since (L£2S5)-S # 0, L+2S can’t be a Seiberg-Witten
class. Thus the first case of Theorem 1.3 must hold, and this implies dim Mx (L) = 0.

Iterations of Theorem 1.3 also give interesting results. For simplicity, assume z2 >0
and choose the Seiberg-Witten class L so that z - L > 0 (otherwise choose —L). Then
either .

2> +x-L+4> b, p>r
=1

Y4 s
p-2>a’+e-L+4> Li+2 Y 4 p<r
=1 1=p+1
or L+ 2z is also a Seiberg-Witten class. Note then that dim Mx (L +2z) —dim Mx (L) =
22+ x-L > 0. In this latter case apply Theorem 1.3 with L replaced by L + 2z to obtain
the stronger adjunction formula

,
2p-2>32% +o L+4) &, p>r

i=1

r T
2p—223x2+x-L+4Z€§+2 Z g, p<r

i=1 i=p+1
(where 4577, £ > 437, 4;) or else L + 4z will also be a basic class. This process
must terminate since there are only finitely many Seiberg-Witten classes [W]. So in this
situation we have an even stronger adjunction formula for  and L. Thus, for example,
if z is represented by an immersed sphere with 2p — 2 = x2, then X has Seiberg-Witten
simple type. There are other variations on this theme that can be useful in showing that

a manifold X has Seiberg-Witten simple type.
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