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Abstract. In these lectures we will discuss techniques for con-
structing simply-connected smooth 4-manifolds and computing
their Donaldson invariants. There are 37 Exercises (which can be
solved by the diligent reader) and 24 Problems whose solutions
should advance our understanding of smooth 4-manifolds.4 Most
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LECTURE 1
Overview

1.1. Classical invariants

Our problem is to classify closed smooth 4-manifolds. To avoid the group theoretic
problems arising from the fact that any finitely presented group can occur as the
fundamental group of a smooth closed 4-manifold, we assume our manifolds are
simply-connected. Most of the classical invariants for 4-manifolds are encoded by
the intersection form Qx. This form is an integral unimodular symmetric bilinear
pairing

Qx:Hg(X;Z)@HQ(X;Z) Y/

obtained by representing homology classes as oriented embedded submanifolds and
counting intersections with signs; it is Poincaré dual to the pairing given by cup
product. From the intersection form one can determine its rank (which is the
second Betti number by(X) = rankHy(X;Z) = b*(X) + b~ (X)), its signature
= o(X) = b*(X) — b= (X) (where b*(X) are the dimensions of the +-eigenspaces
of Qx) and its type (which is even if Qx(z,z) = 0 mod 2 for all z, and odd
otherwise). A form is definite provided one of b*(X) vanishes, and is indefinite
otherwise. Note that the Euler characteristic e(X) of X is b+ (X)+b~(X)+2. Also,
a simply-connected 4-manifold with even intersection form is a spin 4-manifold (i.e.
wz(X) = 0). Further, @Qx4y = Qx ® Qy. Given a basis for Hy(X;Z) we can
represent Qx as a symmetric integral matrix with determinant equal to +1.
The standard examples of 4-manifolds and their intersection forms are:

s Qse =10

CP? Qcpz = (1)

S2xS? Qgoyse = <‘1) (1)) =H
K3 Q3 =Es® Es®3H

Here K3 is the Kummer or K3 surface which is diffeomorphic to the quartic
surface in CP3 and Ej is the intersection form for the Eg plumbing manifold:

149



LECTURE 1. OVERVIEW 151

1.1.7. Uniqueness. Given a closed, simply-connected smooth 4-manifold M, de-
termine the distinct smooth structures on M.

These questions are the subject of active current research.

1.2. Existence

The early work of Donaldson and its derivatives ([D1],(D3],[FS1],[FS2]) has shown
that there are indeed restrictions on the intersection form of a closed, simply-
connected 4-manifold and has made progress towards a verification of the following
existence conjecture:

1.2.1. 11/8 Conjecture. The intersection form of a closed, simply-connected
smooth 4-manifold must be either

e diagonalizable (over Z), or

ba(X) 11
e even and el >3-

Exercise 1. Complex surfaces and their connected sums satisfy the 11/8 Conjec-
ture.

All diagonalizable forms are realized by the connected sums of +CP?. Although the
classification of definite integral forms is an active area of research and far from an
accomplished feat, nature has a way of taking care of all this. Donaldson [D1] first
showed that no non-diagonalizable definite form can be realized as the intersection
form of a closed smooth 4-manifold; shortly thereafter he [D3] showed that if the
form nEg ® mH, n # 0, is realized, then m > 3. The K3-surface realizes m = 3.

There has not been much progress on the 11/8 Conjecture beyond the original
work of Donaldson. One approach to these existence questions amounts to con-
structing 4-manifolds with a given Euler characteristic, signature, and type; i.e. it
is a geography question. For a long time the only manifolds around were complex
manifolds and their connected sums. A long standing conjecture held that this was
all there was; i.e., every smooth simply connected closed 4-manifold is the connected
sum of manifolds, each admitting a complex structure with one of its orientations.
(For this conjecture, the 4-sphere was considered as the empty connected sum.)
In 1990 this was disproved by Gompf and Mrowka [GM] who produced infinite
families of examples of 4-manifolds homeomorphic to the K3 surface and which
admit no complex structure with either orientation. Then in 1991 Fintushel and I
[FS6] constructed irreducible 4-manifolds that (with either orientation) were not
homeomorphic to any complex surface. Here, by an irreducible 4-manifold we mean
that for each splitting as a connected sum X;#X>, one of the X; is a homotopy
sphere (thus avoiding the 4-dimensional Poincaré conjecture). In these lectures we
will give more elementary constructions of such manifolds. This work will suggest
an even stronger conjecture.

1.2.2. 3/2 Conjecture. The intersection form of an irreducible simply-connected
closed smooth 4-manifold has the property that 2e(X) — 3|o(X)| > 0.

Figure 1 illustrates those regions for which irreducible simply-connected closed,
smooth 4-manifolds are known to exist. The co-ordinates mimic those for the
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Problem 6. Find an example of a smooth simply-connected 4-manifold with bt >
1 with at most finitely many smooth structures.

1.3. Uniqueness (The Donaldson Invariant)

No reasonable Uniqueness Conjecture has emerged. (However unreasonable ones
will emerge during these lectures.) Herein lies the current active work in this area.
Here, we are studying smooth 4-manifolds which have the same intersection form
(and hence are homeomorphic).

Exercise 6. The intersection form of a simply-connected smooth 4-manifold is
completely determined by its rank, signature, and type.

Thus a new invariant is required and this begins another of Donaldson’s contri-
butions. Given an oriented simply connected 4-manifold with a generic Riemannian
metric and an SU(2) or SO(3) bundle P over X, the moduli space of gauge equiva-
lence classes of anti-self-dual connections on P is a manifold Mx (P) of dimension

8ca(P) —3(1+b%)
if P is an SU(2) bundle, and
—2p(P) — 3(1+b%)

if P is an SO(3) bundle. It will often be convenient to treat these two cases
together by identifying Mx (P) and Mx(ad(P)) for an SU(2) bundle P. Over
the product Mx (P) x X there is a universal SO(3) bundle P and there results a
homomorphism p : Hy(X) — H*"{(Mx(P)) obtained by decomposing the class
—1p(P) € H*(Mx x X). (Homology is always taken to have real coefficients
unless it is otherwise adorned.) The basic idea of Donaldson’s theory is that one
should evaluate cup products of classes in the image of 1 against the fundamental
class of M x (P). To do this, one first needs to orient Mx (P). This is accomplished
by orienting H2(X) (see [D5]). If P is an S0O(3) bundle, we fix an integral lift of
wy(P) € H?(X;Z,) and always identify such a lift with its Poincaré dual c €
Hy(X;Z). The Pontryagin number p;(P) is congruent to c? (mod 4). If ¢ and
¢ are two integral “lifts” of wo(P), then the difference in induced orientations is

given by (—1)(*7° )*. We say that c and ¢’ are equivalent if they are congruent

C—C,

(mod2) and if (-1)(53 )> — 4+1. The combination of the orientations of X and
H? (X) together with an equivalence class c of lifts of wo(P) is called a “homology
orientation” of X. (In case P is an SU(2) bundle, one chooses ¢ = 0.) For a Kéhler
surface X with Kahler class K x, there is a natural orientation induced from the
Kihler structure and a choice of a lift ¢ gives an orientation which differs from this
one by (—1)(+eKx) [D5].

The moduli space M x (P) is, in general, noncompact and needs to be compact-
ified before a fundamental class can be defined. The Uhlenbeck compactification
Mx (P) is well-suited to this. However, this compactification is a stratified space
and is not usually a manifold. Thus, to define a fundamental class one needs to
insure that the singular set has codimension at least 2. This turns out to be the case
when either wo(P) # 0 or when wz(P) =0, d > 3(1+4b%). In practice, one is able
to get around this latter restriction by blowing up X and considering bundles over
X a‘;&—Cﬁ2 which are nontrivial when restricted to the exceptional divisor [MM].
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to —c? + (1 +b%) (mod 2). The Donaldson series D, = Dy is defined by

00 A d
Dx.(a) = DX,c(exp(a)) = Z l))(+l(a)
d=0 ’

for all & € Hz(X). This is a formal power series on Hz(X).

The first general properties of the Donaldson invariant were given by Donaldson
[D6]. These include a vanishing theorem (Dxxy = 0 if both b*(X) > 0 and
b*(Y) > 0), and a non-vanishing theorem (Dx(h") > 0 (r >> 0) if X is an
algebraic surface and h is an ample divisor).

We can use these theorems, together with Donaldson’s first theorem (Theorem
A) to determine, in certain instances, if a 4-manifold is irreducible.

Exercise 7. If X is spin and Dx # 0, then X is irreducible.

Exercise 8. If X is not spin with Dx # 0 and X = X;#X5, then one of the X;
has a negative definite intersection form.

Problem 7. Determine if a minimal algebraic surface is irreducible. More gener-
ally, when X = X#X>, determine if one of X; or X» a connected sum of @2’3. 3

The Donaldson invariant Dy is a refinement of the intersection form Qx, and
it too has its incumbent existence and uniqueness questions.

Problem 8. (Partially solved (cf. Theorem 1.3.1)) Which elements D € A*(X)
occur as the Donaldson invariant for some smooth 4-manifold X; which formal
power series on Hy(X) occur as the Donaldson series of a smooth 4-manifold?

Problem 9. Are there examples of non diffeomorphic simply-connected smooth 4-
manifolds X and Y with Dx = Dy. Potential examples are the Horikowa surfaces
which are discussed in the last lecture.

Problem 10. Determine canonical procedures for producing all simply-connected
smooth 4-manifolds so that the resulting Donaldson invariants can be computed.

From the outset it was clear that the Donaldson polynomial invariants defined
for a smooth 4-manifolds X, one for each SU(2)-bundle over X, were powerful tools
to distinguish homeomorphic but non diffeomorphic smooth 4-manifolds. It was also
clear that they were very difficult to compute. Initially, pages of detailed algebraic
geometry ([B],[Fr]|,(FM2],[MO]), or analysis and topology ([GM],[MMZ2],[SS])
led to the computation of just the first one or two non-trivial coefficient of these
invariants for special (elliptic) surfaces. This, however, was sufficient to show that
the deformation type of elliptic surfaces coincides with their diffeomorphism classi-
fication ([B],[MM2], [MO],(Fr],[FS10]). A (recent) major breakthrough was the
discovery of Peter Kronheimer and Tomas Mrowka (Theorem 1.3.1) that there are
universal relations that relate these invariants defined on different moduli spaces.
Then by considering the generating function determined by these invariants, i.e.
the Donaldson series, these relations translated to, under a technical assumption
called simple-type (defined below), a differential equation satisfied by the Donald-
son series. This gave structure to the seemingly disparate Donaldson invariants.
At bottom Kronheimer and Mrowka showed that for each smooth 4-manifold with

3Added in proof. Every minimal symplectic 4-manifold is irreducible: cf. Taubes, The
Seiberg-Witten and Gromov invariants, Math. Res. Letters (2) 1996, 221-238.
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classes K1, ... , kp € Ha(X,Z) and nonzero rational numbers a1, ... , ap such that

P
Dx = exp(Q/2) Zase""

s=1

as analytic functions on Ha(X). Each of the ‘basic classes’ ks is characteristic, i.e.
ks =z -z (mod 2) for all x € Hy(X; Z).
Further, suppose ¢ € Hy(X;Z). Then

p C2 Kg*'C
Dx. = exp(Q/2) Z(—l) * ase"s
s=1

Here the homology class ks acts on an arbitrary homology class by intersection, i.e.
Ks(u) = Ks - u.
Theorem 1.3.2 (Kronheimer and Mrowka [KM1, KM2]). If u € H3(X;Z) is

represented by an embedded surface of genus g with self-intersection u? > 0, then
for each s

29 — 2> u? + |k - ul.

Theorem 1.3.3 ([FS9]). Let X be a simply connected 4-manifold of simple type
and let {ks} be the set of basic classes as above. If u € Ho(X; Z) is represented by
an immersed 2-sphere with p > 1 positive double points, then for each s

(1) 2p—2 >u’+ |k - ul

Theorem 1.3.4 ([FS9]). Let X be a simply connected 4-manifold of simple type
with basic classes {ks} as above. If the nontrivial class u € Ho(X; Z) is represented
by an immersed 2-sphere with no positive double points, then let

{ks|s=1,...,2m}

be the collection of basic classes which violate the inequality (1). Then ks-u = +u?
for each such k. Order these classes so that ks -u = —u? (> 0) fors=1,...,m.
Then

146t

m m

by ke —
E ase® st — (=1)"z E ase "% = 0.
s=1 s=1

Problem 11. Determine whether the basic classes &, satisfy k2 = 30(X)+2e(X).4

Problem 12. Determine whether, up to multiples, the basic classes represent the
first Chern class of some symplectic structure on X. °

Problem 13. Does X have big diffeomorphism group with respect to the basic
classes kg7

Problem 14. Determine whether every simply-connected smooth 4-manifold with
b* > 1 has simple-type.

Known examples suggest:

4Added in proof. True for symplectic manifolds (Taubes, The Seiberg-Witten and Gromov
invariant, Math. Res. Letters 2 (1995), 221-238).

5Added in proof. False in general, cf. footnote to Problem 5. For symplectic manifolds, there
are some restrictions (cf. Taubes).



LECTURE 1. OVERVIEW 159

Here is another hint to show how to construct B, in Exercise 13. The second
construction begins with the configuration of (p — 1) 2-spheres

p+2 2 2

in (p — 1)CP? where the spheres (from left to right) represent
2hy —ha+ -+ hp_1, hi+hg, hg+hs,...,hp_2+ hp_1

where h; is the hyperplane class in the ith copy of CP2. The boundary of the
regular neighborhood of the configuration is L(p?,p — 1), and the classes of the
configuration span Hz(CP?; Q). The complement is the rational ball B,.

Suppose that C, embeds in a closed smooth 4-manifold X. Then let X, be the
smooth 4-manifold obtained by removing the interior of C, and replacing it with
B,. We call this procedure a rational blowdown and say that X, is obtained
by rationally blowing down X. Note that b*(X) = b*(X,) so that rationally
blowing down increases the signature while keeping b* fixed.

The principal gauge-theoretic result here is:

Theorem 1.3.5 ([FS10]). Suppose that X has simple type and

Dx = exp(Q/2) Z ase™.

s=1

Let C, C X and let X, be its rational blowdown. Then

Dy, = exp(Q/2) Y  bse™
s=1

where the bs depend only on the intersection numbers u; - ks, ¢ = 1,...,p— 1,
and by = 0 unless Ok, € pZ,2. The basic classes ks € Hy(Xp;Z) are the unique
extensions of the . O

In short, the Donaldson invariants for X, are completely determined by those of
X; i.e there are rational blowdown formulas.

Problem 17. Determine rational blowup formulas.

Many such configurations embed in the E(n) so that we can construct several
manifolds in the regions graphed in Figure 1 and compute all their Donaldson invari-
ants. It turns out that another surgical procedure called a topological logarithmic
transformation of order p can be viewed as a rational blowdown of a naturally oc-
curring C(p) in X #p_lﬁz so that the blowup formula and the rational blowdown
formula computes the resulting Donaldson invariants (cf. [FS10]). In particular we
can compute all the Donaldson invariants of the elliptic surfaces E(n;my,...m;)
with multiple fibers of order m;. In particular

_ Q\ (sinh F)™+r—2
DE(n;m;,...m,) = exp ( 2 Hi Sinh(F/m,) .

As an amusing corollary we compute the Donaldson series of the Gompf-
Mrowka examples K = K(p1,q1;D2,92;P3,93) [GM] and find that



LECTURE 2
—2 Spheres and the Blowup Formula

2.1. Ruberman’s theorem

We begin by studying the behavior of the Donaldson invariant of a 4-manifold
with a homology class 7 represented by an embedded 2-sphere S of self-intersection
7.7 =—2. Let (1)* denote {a € H2(X)|7-a =0} and let

A(1h) = Ax(r) = Sym.(Ho(X) @ (7))

Theorem 2.1.1. (Ruberman [R]) Suppose that T € Hy(X;Z) with -7 = =2 is
represented by an embedded sphere S. Then for z € A(tt), we have D(t%2) =
2D, (z).

Proof. Write X = Xy U N where N is a tubular neighborhood of S, and note
that ON is the lens space L(2,—1) = RP3. Since b*(X() > 0, generically there are
no reducible anti-self-dual (ASD) connections on Xo. However, since b*(N) = 0
there are indeed nontrivial reducible ASD connections in complex line bundles \™,
m € Z, with ¢;(A\™) = m represented by a harmonic 2-form and with A™|sx the
flat line bundle with holonomy —1 on the meridian curve, i.e. {c;()),7) = —1. In
particular \ is determined by the non-trivial representation ¢ which generates the
character variety of SU(2) representations of 7 (ON) = Z3 mod conjugacy. (Of
course, (2™ is trivial, and ¢?™*! = (.) Let C = A0 be the trivial bundle. Note
that for reducible connections on N, ¢; € H?(N;Z) = Hy(N;ON;Z) = Z and that
c1(A) = v is a generator. Then —4p;(A) = c2(A D X) = —c3(A) = 3.

The structure of the moduli spaces My (A™@®A™) and M, have been studied
in [MMR)] and [T1]. In our setting (the boundaries are lens spaces) an anti-self-
dual connection has a well-defined limiting flat connection on the restriction of the
bundle to 8N = —8Cy and, for a generic metric on Xy, the moduli space of anti-
self-dual connections M., [(™] on X, with energy cx, and asymptotic value ¢™
contains no reducible connections and is a smooth manifold of dimension

hem m
dim M., [C™] = 8ex, — g(e(Xo) +0(Xo)) — CT - ”‘T = 8ex, — 3(1+b%(X)).
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A standard dimension counting argument (cf. [D6]) shows that if we choose a met-
ric on X with long enough neck length, N x [0, T], then all the intersections take
place in a neighborhood U of the grafted moduli space Mx, [C]#{Ax} where A, is
the reducible anti-self-dual connection on A @ ), and Mx,[¢] is the 0-dimensional
cylindrical end moduli space on Xy consisting of anti-self-dual connections which
decay exponentially to the boundary value ¢. Let mx, be the signed count of points
in Mx,[¢]. A neighborhood of Ay in the moduli space My (X @ ) is diffeomor-
phic to (C x5 SO(3))/SO(3) = C/S! = [0,00). Here S* acts on SO(3) so that
S0(3)/S* = S? and on C with weight —2. Thus the neighborhood U is

(Mx, ] x (C xs51 50(3)))/SO(3)

where “/\;[ x,[¢]” denotes the based moduli space.
Now V1 N(C xg1 SO(3)) = {0} x5 SO(3), and the intersection of V; with all
of My is

(Mx,[¢] x ({0} x51 SO(3)))/SO(3) = A.
Fix a point p € Mx,[¢], let SO(3) - p denote its orbit in Mx, [¢], and let
A, = (SO(3) - p x ({0} xs1 SO(3)))/SO(3) = S

Identify A, with a transversal in A, and compute the intersection number V,-A, =
tp. Since ¢, is independent of p € Mx, [(], we have D(7?) = ¢,-mx,. The constant
tp is computed in [FM2] as follows. Note that A, = {0} x51 SO(3) C C x g1 SO(3)
is a zero-section of the ¢; = —2 complex line bundle over 5§52 and Vs is another
section. Thus V, - A, = —2; and so D(72) = —2myx,.

To identify the relative invariant myx,, view Mx,[(] as M x, o[ad(¢)], an SO(3)
moduli space. Since ad(¢) is the trivial SO(3)-representation, we may graft con-
nections in M, o[ad(¢)] to the trivial SO(3) connection over N, and since b%; = 0,
there is no obstruction to doing this. We obtain an SO(3) moduli space over X
corresponding to an SO(3) bundle over X with wy Poincaré dual to 7. (This is
the unique nonzero class in H?(X; Z,) which restricts trivially to both N and Xj.)
Thus for z € A(t1), we have D(7% z) = £2 D, ( z). (Note that since 7-7 = —2, we
have D_, = D,.)

To determine the sign is an (important) technical matter that we refer the
reader to [FS8).

For the case of the SO(3) invariants the proof of Theorem 2.1.1 can be easily
adapted to show:

Theorem 2.1.2. Suppose that 7 € Hy(X;Z) with 7 -7 = —2 is represented by
an embedded sphere S. Let ¢ € Hy(X;Z) satisfy ¢- 7 = 0 (mod 2). Then for
z € A(t1) we have D (72 z) = 2 Doyr(2). O

These same ”neck-stretching” and ”dimension counting” techniques can be
utilized to prove some elementary facts concerning the Donaldson invariants of
blowups. These can be found, for example in [FM2, Ko, L]. Let X have the

Donaldson invariant D, and let X = X #CP~ have the invariant D.

Exercise 14. Let e € Hg(é—l:_’z; Z) C Hy(X;Z) be the exceptional class, and let
¢ € Hy(X;Z). Then for all z € A(X):

1. D (e?**12) =0 for all k > 0.
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and bc+e. To see this we establish some notation. Let X = X #C_P2 and let
e € Hy(X) denote the homology class of the exceptional divisor. Since by = b%,

the corresponding Donaldson invariants D = Dx and D = D '+ have their (possible)
nonzero values in the same degrees (mod 4). We recursionly show that there are
polynomials Bi(z) satisfying

D(e* 2) = D(Bi(x) 2)

and polynomials Si(z) such that

D.(e*) = D(Sk(x)).
Exercise 14 can be restated as
Exercise 15. Compute By, Bz, S1, S3, B2;+1, and Sa;.

Now blowup X twice. The class e; — e is represented by a sphere with self-
intersection —2; so use Theorem 2.1.1 and Theorem 2.1.2 to show

Exercise 16. D, ¢, 1e,((€1 +€2)52(e; — €3)2) = 2D.((e; + e2)*1?).
Exercise 17. D,((e1 + e2)*"2(e1 — €2)2) = 2D 1e, 4o, (€1 + €2)512).
Exercise 18. Si.3 is determined by Si,...,Sk+1, Bo, . .. Br+2 for all even k > 2

Exercise 19. B4 is determined by By,..., Bk+2,51,...Sk+1 for all even k > 0.
(Hint: Expand both sides of Exercises 16 and 17)

Using Exercise 15 to start the induction, there is now a recursion scheme which
determines Bi(z) and Sk(z). Here’s a Mathematica exercise.

Exercise 20. Show Bjy = —5122% — 96022 — 408 and

Bso(z)=134,217, 728 '3 + 4,630, 511,616 2'* + 68,167,925, 760 2°
— 34,608,135,536,640 27 — 39, 641,047,695, 360 2°
— 9,886,101, 110, 784 2° + 543,185, 367, 552 =

To actually find a closed form for By (z) and Sk(x) requires a bit more work and
for this we use a result for embedded 2-spheres of self-intersection —3. Again, it’s
proof similar to that of Theorem 2.1.1.

Theorem 2.2.1. Suppose that T € Hy(X;Z) is represented by an embedded 2-
sphere S with self-intersection —3. Let w € Hy(X;Z) satisfy w-7 = 0 (mod 2).
Then for all z € A(tt) we have

Dw(T z) = _Dw+'r( z)'

To conclude we use the relations given in Theorem 2.1.1, Theorem 2.1.2 and The-
orem 2.2.1 to obtain a relation key to solving the recursion scheme given in above.
This relation was first proved by Wojciech Wieczorek using different methods. His
proof will appear in his thesis [Wk].
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and

S@,t) =Y Su(x):
k=0

This will amount to solving an ordinary differential equation.

2.4. The ODE

Note:
k
D(exp te) z Z €k+n = D(Bg4n(z )Z, z)

- Zn_n D(B(z,1) Z) = D(B™(z,t)2)

where the last differentiation is with respect to t. On X = X #2CP°, we get
D(ex_p(t1e1+t262)z) = D(B(z,t1) B(x,t2)z). Now apply Corollary 2.2.2 toe; —ey €
Hy(X;Z). Since for any t € R the class te; +te; € (e; —ez)*, we have the equation

3) D(exp(te; + tez) (e1 — e2)* 2) + 4 D(z exp(te; + tey) (e1 — €2)? 2)
+ 4 D(exp(te; + teg) z) =
But, for example,

k 4
e} exp(te; +tey) = (Z ekt L) <Z '52‘) = %(exp(tel)) exp(tez)

Arguing similarly and using (2)
D(exp(te; + tea) (e1 — €2)* 2)
= D((2B¥(x,t) B(z,t) — 8 B" (z,t) B'(z,t) + 6 (B"(z,1))?) 2)
=2D((BY B -4B" B +3(B")?)2)
where B = B(z,t). Completing the expansion of (3) we get
2D((BYB—-4B" B +3(B")?+4z(B"B- (B')*)+2B%2)=0
for all z € A(X). This means that the expression
YB-4B" B'+3(B")? +4xz(B"B - (B')?) + 2 B?
lies in the kernel of D : A(X) — R.
Thus the “blowup function” B(z,t) satisfies the differential equation
BWB-4B" B +3(B")?+4x(B"B-(B')?)+2B*=0

modulo the kernel of D. Of course, the fact that this equation holds only modulo
the kernel of D is really no constraint, since our interest in B(z,t) comes from the
equation D(exp(te)z) = D(B(z,t)z).

Exercise 21. Modulo the kernel of D, the logarithm f(t) of B(z,t) satisfies the
differential equation

(4) 462 +4zf"+2=0

with the initial conditions f(0) = f'(0) = f”(0) = f"'(0) = 0. (Hint: Let B =
exp(f(t)). The initial conditions follow from Exercise 15.)

2) di
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(which follow easily from [Ak, p.199]). Using them, our formula for B(z,t) becomes

2z
Ba,g) = e Femt L)
The above addition formula for the sigma-function implies that
o(t +ws) = o((t —w3) + 2w3) = —e?Plo(t — ws).
Thus

_tszenst O'(t —w3) . _ t2z

B(z,t) = —e @) e~ o3(t),

the last equality by the definition of the quasi-periodic function 3. In conclusion,
Theorem 2.5.1. ([FS8]) Modulo the kernel of D, the blowup function B(z,t) is
given by the formula

t2z

B(z,t) = e~ 8 o3(t). O

The indexing of the Weierstrass functions ¢; depends on the ordering of the roots
e; of the equation 4s® — g5 — g3 = 0; the sigma-function we are using corresponds
to the root —%.

These ideas also show

Theorem 2.5.2. ([FS8]) Modulo the kernel of D, the blowup function S(z,t) is
given by the formula

S(z,t) = e~ Fa(t).

2.6. The simple-type condition

An elliptic function is a doubly-periodic function, so it is interesting to see what
happens when one of the periods goes to infinity. This gives a degenerate case
of the associated Weierstrass functions. The squares k2, k’ % of the modulus and
complementary modulus of our Weierstrass functions are given by

_:c—\/z2—4 K2 — 2Vz2 — 4
z+ Va2 -4 z+VzZ—4

(All the formulas involving elliptic functions can be found in [AK].) These degener-

ate when z = 2 and then k2 = 1 and k' = 0. The corresponding complete elliptic
integrals of the first kind are

/1 ds _/1 ds
0o V(1 -52)(1—-k2s2) Jo 1-3s2
ds

;o ! ds _ !
o /0\/(1—32)(1—1«232)_/0 -2

k2

K
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Theorem 2.6.2. ([FS8])If X has c-simple type,

A~

D. = D, e % coshE.
Depe = -D.-eFsinhE. O
Exercise 25. If X has simple-type, determine the basic classes of X #@2.

All of this from relations involving spheres with self-intersection —2. There is
another application that we will discuss in the next lecture.



LECTURE 3
Simple-Type Criteria and Elliptic Surfaces

3.1. Manifolds with big diffeomorphism group

Using Theorem 2.1.1 we show that for many manifolds the homogeneous parts
of Dx are related, show these manifolds have simple-type. For a 4-manifold X
and a class k € Hy(X;Z), let Diff,(X) be the group of orientation-preserving
diffeomorphisms f of X which satisfy f.(k) = . Also, let Aut(X), be the group
of automorphisms of Hy(X; Z) which preserve the intersection form Q. Then X is
said to have a big diffeomorphism group with respect to x if the image of Diff, (X))
in Aut(X) has finite index. For example, the simply connected minimal elliptic
surfaces with p, > 1 have a big diffeomorphism group with respect to their canonical
class [FM2]. It follows from the assumption of big diffeomorphism group with

respect to « that for each d, the degree d homogeneous part Dg?,)c of the Donaldson
invariants Dx . and Dx (%) (and hence D x,c) are polynomials in the intersection
form @ and the class k when viewed as linear maps Sym, (Hz(X)) — R. If 3(1 +
b%) =0 (mod 2) we can then write

1 ~(2d) Qd Qd—l NZ
@al X T gt iw T
d—t 2t 2d
toegama e T T
and if (1 +b%) =1 (mod 2) we can write
2 X
1 A(2d+1) d
@d+1)IX = Ggagite

d—t K2t+1 (2d+1

+ + -0 Cadyl

G 5at (g — ¢)l (2t + 1) 2d+ 1)

Our next Proposition states that if X contains an embedded 2-sphere of self-
intersection —2 which is orthogonal to &, the coefficients c; are independent of

the homogeneous degree. Related results were first observed by Peter Kronheimer
(unpublished).
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Thus ¢y = —cg and so ¢ = ¢ In a similar fashion we get that cp; = c5; for all j.

Finally consider Dﬁ?d‘”

group we can write

1 d—1 d—2 2
A e e O
(2d — 2)! 2¢-1(d —1)! 24-2(d — 2)! 20
Proposition 2.2.2 implies that

Dx(a?éc*) = 8Dx(a2da2—2—) 4 Dx(a??).

= Dggd)(%). Because X has a big diffeomorphism

+ .

Expanding as above, and using the fact that cj = co, we get é = ¢o, and continuing
as above, & = c¢; for all i. This completes the proof in the SU(2) case with
1(1+b%) =0 (mod 4). A similar proof suffices when (1 +b%) # 0 (mod 4), and
the same proof also works in the SO(3) case.

3.2. A simple-type criteria
A related argument shows that these manifolds have simple-type.

Theorem 3.2.1. ([FS9]) Let X be a simply connected 4-manifold which has a big
diffeomorphism group with respect to a class kK € Hy(X;Z), and let w € Ho(X; Z).
Suppose that o € Hy(X;Z) is represented by an embedded 2-sphere of square —2
such that 0 -k = 0, and 0 - w = 0 (mod 2). Then X has w-simple type. If w? +
2(1+b%) =0 (mod 2) then

)2
Dx. = exp(Q/2) Z c2i,wm ’
and if w? + 3(1+b%) =1 (mod 2) then

Dx,. = exp(Q/2) Y caiv1 o

21+l
@i+1) "

Proof. For simplicity of notation, consider the SU(2) case w = 0 with 1(1+b%) =0
(mod 4) as above. Then Proposition 3.1.1 shows that for each d = (1 + b*)

(mod 4) the homogeneous invariants Dg?d“)(%) = [7&?"*2) and Dg?d) share the
same coefficients in that

2i
(2d) K

— D - ;

2d! 262 2d i(d— ,)l (2i)!

1 (2d+4)( ) di-:l c Qd+1 : K%
(2d +2)! #9d+1-i(d + 1 —q4)! (20)!
The technique of Proposition 3.1.1 also shows that
1 ( 2det 8) dffc d+2—i 2
(2d + 4)! ) %odt2=i(d+ 2 — i)l (20)!°
independent of degree. Thus also,
d . .
1 (2dt4),2° it kY 1 (20
ryl -)= i5d=: ST Tony = Dx™;
salx () § iodig— g (20)  (2d)!
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E(n-— 1)#6?2 and using the blowup formula. Here’s where a little topology helps
out. It turns out that E(n), n > 2, can be decomposed as

E(n) = B(2,3,11) UW (n).
That is,

Exercise 26. The Milnor fiber B(2,3,11) embeds in E(n), n > 2. (Hint: The
Milnor fibers are nested: B(p1,p2,-..,pr) C B(p},ph, .. .,p,) whenever p; < p; for
all j and E(n) = B(2,3,6n—1)UG,, where G,, is a so-called Gompf nucleus [G1].)

Now 0B(2,3,11) bounds another interesting manifold, C(2,3,11) obtained as
the union C(2,3,11) = B(2,3,5) U D, where D is constructed by attaching one
2-handle to X(2,3,5) This follows since —%(2,3,5) is —1 surgery on the left hand
trefoil knot and —X(2,3,11) is —3 surgery on the same knot.

Exercise 27. C(2,3,11)UW(n) = E(n — 1)#@2.

This is our inductive construction: replace C(2,3,11) in E(n — 1)#6_]5_’2 by
B(2,3,11) to obtain E(n).
We are after the following computation:

Theorem 3.5.1. ([FS9]) The Donaldson series of the elliptic surfaces E(n) are
gien by

Diny,e = (~1)3 D00 exp(Q/2)sink™ (f)  if ¢-f=0 (mod 2),
Dpn).c = (-1)3E DD exp(Q/2) cosh™*(f)  if c-f=1 (mod 2).
where f € Ho(E(n); Z) is the homology class of the fiber.

This result has also been obtained by Paulo Lisca [Li] and Kronheimer-Mrowka
[KM1].

Exercise 28. Determine the basic classes for E(n).

The idea of the proof is simple; suppose ¢ - f = 0 (mod 2). Since elliptic
surfaces have a big diffeomorphism group with respect to their fiber and simple-
type, it follows by Theorem 3.1.1 that Dg(,) = exp(Q/2)K where K is a formal
power series in f. Assume inductively that

D) c = (~1)3EH=2¢1) exp(Q/2) sinb™2(f)
K3 = E(2) starts the induction. The blow-up formula says that
L2+ (n-2)c . Ln—
Dy yucp?e = (-1)2 T2 exp(Q/2) sinh™ ~*(f) cosh(e)

But C(2,3,11)UW(n) = E(n — 1)#@2. The thing to show is that by replacing
C(2,3,11) by B(2,3,11) replaces cosh(e) by sinh(f). Since the Floer homology,
HF,(X%(2,3,11)) is a copy of Z in odd dimensions and vanishes in even dimensions
[F'S3], this becomes a fun exercise. A technical point here is that when you stretch
the neck of E(n — 1);l;éC_P2 along ¥(2,3,11), the trivial connection doesn’t occur
as asymptotic value —guaranteeing the fact that reducible connections in the nega-
tive definite manifold C(2,3,11) do not complicate the picture. The proof here is
interesting, and is again typical of many of our arguments in [FS9].



LECTURE 4
Elementary Rational Blowdowns

4.1. Elementary rational blowdowns

There are two directions in which to generalize our basic relations Theorem 2.1.1
and Theorem 2.2.1. The first, as we have mentioned before, is to prove relations
for spheres of arbitrary self-intersection. This is done in [F'S9] and results in The-
orem 2.3.1. This in turn implies the general structure theorems and adjunction
formulas for the Donaldson invariants mentioned in the first lecture. Here’s an-
other fruitful generalization. Suppose S is a sphere with self-intersection —4 and
let N (=C3)) be a tubular neighborhood of S so that X = Xo U N.

Exercise 29. N bounds the Euler class —2 non-orientable S!-bundle over RP?,
a rational ball Bs.

Let X2 be the result of replacing N by Bs.
Proposition 4.1.1. For all z € A(X3),
Dx,(2) = Dx(z) — Dxs)(2)-

Proof. We outline the proof. Let L = dN and x(L) = {¢° = 9,¢,¢?%,¢3} be
the character variety of L. The only characters which extend across By are 9
and ¢2. Thus Dx,(z) = +Dx,[9](2) £ Dx,[¢](z). By stretching the neck of X
along L, dimension counting shows that Dx,[9](z) = Dx(z) (for the dimension
of My = —3). To determine Dx,[¢](z), we do as in Theorem 2.1.1 and glue in
the trivial bundle over N with a twist to obtain Dx,[(](z) = £Dx [s)(2). Again,
a delicate (but important) point is to get the correct signs. For this we refer to
[FS10]. Now the fun begins!
Consider E(4) with S being the section. Since

Dgw) = exp(%) sinh?(F)

and
S242F.s
2

0O

exp(%)coshz(F) = —exp(=) cosh?(F),
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we have f = p f,. Continue this process on other fibers, but to insure that the
resulting manifold is simply-connected we can take at most two log-transforms
with multiplicities that are pairwise relatively prime. Let the orders be p and q and
denote the result by E(n;p,q).

The homology class f of the fiber of E(n) can be represented by an immersed
sphere with one positive double point (a nodal fiber). Blow-up this double point
(i.e. take the proper transform of f) so that the class f — 2e; (where e; is the
homology class of the exceptional divisor) is represented by an embedded sphere
with square —4. This is just the configuration C;. Now the exceptional divisor
intersects this sphere in two positive points. Blow-up one of these points, i.e. again
take a proper transform. There results the homology classes up = f — 2e; — ez and
u; = e; — ey which is just the configuration C3. Continuing in this fashion, C,
naturally embeds in N#,_1CP_ C E(n)#p_lﬁz.

An important example of a rational blowdown is:

Theorem 4.2.1 ([FS10]). The rational blowdown of the above configuration C, C
E(n)#(p—1)CP" is diffeomorphic E(n;p).
When p = 2, this was first observed by Gompf [G3|

We can now easily compute Dg(,2y on X \ Co.

Dg@p2) =D D 0)4TP% -2

—2¢)2 (f—2e
= exp(%) cosh(E) — (—1) ==

EQ)#CP> —

exp(%) cosh(E)
=2 exp(%) cosh(E).

While E is not a cohomology class in F(2;2), the appropriate class is E + %(F -
2E) = £ (since we can add multiples of classes in the neighborhood of the —4
sphere), i.e. the multiple fiber. So

Q
2

sinh(F)
sinh( g)

)

9) Dg22) = 2exp(%) cosh(g) = exp(

4.3. The basic computational theorem

To compute Dy, for large p requires an important preliminary observation about
the Donaldson series. For u € Hy(X) and F € A*(X), the interior product
L F(v) = (deg(v) + 1) F(uv)
is a derivation. On the formal power series F on Hy(X) defined by F(a) =
F(exp(ax)) this induces
0.F(a) = F(uexp(a)).

This is just the formal derivative of F in the direction u. Similarly, for higher
order derivatives, 05F(a) = F(u*exp(a)). Note that the linearity of F implies
that 8y4+.,F = 0, F + 6, F.

An induction argument shows that

k
(10) 0%* exp(Q/2) = exp(Q/2) Z(u L)kt (2k) (2k — 2t)!
t=0

2t ) 2k=t(k — ¢)!
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We begin by reexpressing these equations. Let {w;} be a standard basis for QP~1,
and let A be the (p — 1) X (p — 1) matrix whose ith row vector is

A.L' = Wp—(i+1) — Wp—i, 1= 1,...,p— 2
Ap1 = “2wi—wo—-—wp_1
We have u; = A*(w;) - e and up—1 = f + A*(wp—1) - € , where e = (e1,...,€p_1).
Our linear system is equivalent to
Px = ACJ
wherex = (z1,...,Zp—1) and €; = (€5,1,...,€5p-1). (The matrix P is the plumbing

matrix for Cp.) Hence x = P~ Ae;.
We claim that P(A!)~! = —A. This can be checked on the basis

{we —wi,...,wp_1 —wp_2,wp_1}

using

A(w;) = —wp_1 — Wp—(i41) + Wp—i, 2< i< p—1 (wo =0),
A(wr) = —2wp—1 + wp—2
Pw;) = wiy1 = 2w; +wi—1, i #p—1
Plwp-1) = —(p+ Dpo1 + wp-2.
It follows that A*P~1A = —I. Thus
ki+C=rKs+ Y zui= (s +A'X)-e+a, 1 f =(ej—€))-e+zp1f=ap1f.
To compute z,_; note that

Aey = (GJ,p—z —€Jp—1,€Jp-3 —€Jp—2,.-.,€J1 — €2, —2€51— €52 — " — GJ,p—1)

so that if (P~1),_; denotes the bottom row of P~
- 1 1 1
Tp1 = (P7Y)p_1(Aes) = ——p§(1,2,...,p— 1) - (Aes) = ;Ze“ = 5|J|.

Thus fe_;|xc =ky+( = %|J|f as forms: Hy(X,;Z) — Z. The homology class k;+¢
is in fact an integral class &; = |J|fp € H2(Xp; Z) which is the unique extension of
KJ|xc

In an arbitrary smooth 4-manifold X, define a nodal fiber to be an immersed
2-sphere S with one singularity, a positive double point, such that the regular
neighborhood of S is diffeomorphic to the regular neighborhood of a nodal fiber
in an elliptic surface. (There need not be any associated ambient fibration of X.)
Given such a nodal fiber S, one can perform a ‘log transform’ of multiplicity p by
blowing up to get Cp, C X#(p— 1)C—P2 withup_1 =5 —2e; —ea—---—ep_1, and
then blowing down C,. We denote the result of this process by X.

Throughout, we use the following notation. If X has simple type, and

Dx = exp(Q/2) Z ase™,

then we write Kx = ) ase”s.
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This means that the sum of the coefficients of the expression for Dx, in Proposi-
tion 4.4.21is ) ; by =p.

An interesting observation is that if p is any positive odd integer, then a multi-
plicity 2p log transform can be obtained as the result of either a multiplicity p log
transform on a nodal fiber of multiplicity 2, or by a multiplicity 2 log transform on
a nodal fiber of multiplicity p. Thus

(p=1)/2
Dimap = exp(Q/2)(e? +e ) (bpo+ D bpai(ef2/P e 2/2/7))
i=1
(p-1)/2 ' _
exp(Q/2)(bpo + Z bp.oi(€Xfr + e=21r))(ef?/2 4 e F2/2)

i=1

since we already know the formula for a log transform of multiplicity 2. We compare
coefficients using fo = pfop, fp/2 = fop, and fp = 2fop.

Assume for the sake of definiteness that p =1 (mod 4) and let r = (p — 1)/4.
In the top expansion, the coefficient of e*P/2r is b, o and b, o; is the coefficient of
et(P+2)f2p and e*(P~%)f2» In the second expansion, the coefficient of e*/2» is by,
and by, o; is the coefficient of e*(47~1)f2r and e*(47+1f2r. To simplify notation, let
(m); be the coefficient of e™f2» in the top expansion and (m), its coefficient in the
bottom expansion. Then,

bpo = (@)1 =(P)2=bp2r =(p—2)2=(pP—-2)1=bp2=(p+2)1
=(@+22=bpor+1) =(P+4)2=(+1=bpa=(-41=(p—4):
=bp2r-1) =(P—6)2=(p—6)1 =bps="""
and we see inductively that when p is odd, all the b, o; are equal. Lemma 4.4.4 now
implies
(p-1)/2
bpo +2 Z bp.2: = p.

=1

It follows that each by 2 =1,i=0,...,(p —1)/2.

Similarly, if p is even, let ¢ = p— 1. Expanding D g(n;pq) We see that all b 2;_1,
i=1,...,p/2 are equal; and so again each b, 2;_; = 1.
Theorem 4.4.5. Let X be a 4-manifold of simple type and suppose that X contains
a nodal fiber S orthogonal to all its basic classes. Then

sinh(S)
Dx = 2)Kx - —————.
Xp exp(QXp/ ) X smh(S/p)

Proof. If, e.g., p is odd,

Dx, = exp(Qx,/2)Kx -(1+ 2cosh(25/p)+ 2cosh(4S/p)+---
+ 2cosh((p —1)S/p))

exp(Qx, /2)Kx - %

As a result we have the calculation of the Donaldson series for all simply con-
nected elliptic surfaces with p, > 1.



LECTURE 5
Taut Configurations and Horikowa Surfaces

5.1. Taut configurations

Consider a 4-manifold X of simple type containing the configuration C,. By The-
orem 1.3.3 for each 2-sphere u; in C, and each basic class k of X, we have
(15) -2 > u? + |u; - K|

except in the special case described in Theorem 1.3.4 where 0 > u? + |u; - &|. The
only examples known where the special case arises are in blowups. This was the
situation in the previous section where we studied log transforms. In this section,
we assume that we are not in the special case. We say that a configuration is tautly
embedded if (15) is satisfied for each u; of the configuration and each basic class x
of X. Thus, if C, is tautly embedded, then for every basic class &, u; - k = 0 for
i=1,...,p—2and |up_1 - K| < p.

Theorem 5.1.1. Suppose that X is of simple type and contains the tautly embedded
configuration Cp. If

Dx = exp(Q/2) ) a.e"
then the rational blowdown X, satisfies
DXP = exp(Q/Z) Z t‘zse'_"’
where
__J2r ey, Jupy-ksl=p
as =
0, |up—1 : "isl <p
Furthermore, if |up—1 - ks| = p then K2 = k,2 + (p — 1).

Proof. An algebraic topological observation is that if ks -u,—1 # 0, £p then @, = 0.
For ks - up—1 = 0 note that since the x, are characteristic p must be even. For the
model, consider Example 4; the smooth 4-manifold Y = E(p + 1)#(p — 1)@2
contains the configuration Cj, with u} = ep,_; — €,_(;41) for 1 < ¢ < p—2 and
u,_, = 8+ e; where s a section of E(p + 1) (oriented so that s - f = 1) which
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n—2, u; - f =0. Furthermore, the rational blowdown of this pair of configurations
is the Horikawa surface H(n).

Proof. It follows from our description of H(n) that there is a decomposition
H(n) =B,_oU Dn_g UB,_2

where Dn_z is the branched cover of D, _s. Rationally blow up each B,_s; this
is then the 2—fold branched cover of F,,_3 with B,,_> blown up. The result is the
complex surface Cp,_o U D,,_o UCpr_y which, by computing characteristic numbers,
is just E(n). The first case n = 4 gives the example H(4) = W, above. The
Horikawa surfaces H(n) lie on the Noether line 5¢2 — ¢, + 36 = 0, and of course the
elliptic surfaces E(n) lie on the line ¢? = 0 in the plane of coordinates (c?,cz). Let
Y (n) be the simply connected 4-manifold obtained from E(n) by blowing down just
one of the configurations Cp,—3. Then ¢;(Y(n))? =n —3 and cp(Y(n)) = 11n + 3;
so Y'(n) lies on the bisecting line 11¢? — ¢, + 36 = 0. The calculation of Donaldson
invariants of Y (n) and H(n) follows directly from Theorem 5.1.1.

Proposition 5.2.2. The Donaldson invariants of Y (n) and H(n) are:

D _ Jexp(Q/2)sinh()\,), n odd
Yin) exp(Q/2) cosh(M,), m even
D _ )23 exp(Q/2) sinh(k,), n odd
H(m = Y gn-3 exp(Q/2) cosh(k,), n even
where A2 =n — 3 and k2 = 2n — 6. O

Corollary 5.2.3. The simply connected 4-manifolds Y (n) are not homotopy equiv-
alent to any complex surface.

Proof. If Y (n) were homeomorphic to a complex surface, this computation shows
that it would have to be minimal, since the formula for Dy (,) does not contain a
factor cosh(e) where €2 = —1. Certainly the surface in question could not be elliptic
since ¢;(Y (n))? # 0. But neither could the surface be of general type since Y (n)
violates the Noether inequality. Thus Y'(n) is not homeomorphic to any complex
surface.

D. Gomprecht [Gt] has computed the value of the Donaldson invariant Dx (F¥)
for any Horikawa surface X and k large, where F' is the branched cover of the fiber
f of F, n—3-.

Certain of the Horikowa surfaces have two deformation types. Let K(r) be the
double cover of Fy branched over a smoothing of 6s; + 4rf and let K’(r) be the
double cover of o, branched over a disconnected branch locus which is a smoothing
of 5s; [[s—. These are surfaces with ¢? = 8 — 8 and c, = 40r — 4 and Horikowa
has shown that they are deformation inequivalent. If r is even these surfaces can
be distinguished by the type of their intersection form. However, if 7 is odd, both
these surfaces have odd intersection form and hence are homotopy equivalent.

Problem 20. Are the two deformation types of Horikowa surfaces diffeomorphic?
A related problem is

Problem 21. Are there restrictions on self-diffeomorphisms f of a minimal Kéhler
surface X (of nonnegative Kodaira dimension) with canonical class Kx beyond
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