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The anticancer compound JTE-607 reveals 
hidden sequence specificity of the mRNA 3′ 
processing machinery

Liang Liu    1,2,12, Angela M Yu    3,12, Xiuye Wang1,11, Lindsey V. Soles    1, 
Xueyi Teng4, Yiling Chen4, Yoseop Yoon1, Kristianna S. K. Sarkan    1, 
Marielle Cárdenas Valdez1, Johannes Linder5, Whitney England6, 
Robert Spitale    6,7,8, Zhaoxia Yu9, Ivan Marazzi4, Feng Qiao4, Wei Li    4, 
Georg Seelig    3,10  & Yongsheng Shi    1,2 

JTE-607 is an anticancer and anti-inflammatory compound and its active form, 
compound 2, directly binds to and inhibits CPSF73, the endonuclease for the 
cleavage step in pre-messenger RNA (pre-mRNA) 3′ processing. Surprisingly, 
compound 2-mediated inhibition of pre-mRNA cleavage is sequence specific 
and the drug sensitivity is predominantly determined by sequences flanking 
the cleavage site (CS). Using massively parallel in vitro assays, we identified 
key sequence features that determine drug sensitivity. We trained a machine 
learning model that can predict poly(A) site (PAS) relative sensitivity to 
compound 2 and provide the molecular basis for understanding the impact 
of JTE-607 on PAS selection and transcription termination genome wide. 
We propose that CPSF73 and associated factors bind to the CS region in 
a sequence-dependent manner and the interaction affinity determines 
compound 2 sensitivity. These results have not only elucidated the 
mechanism of action of JTE-607, but also unveiled an evolutionarily conserved 
sequence specificity of the mRNA 3′ processing machinery.

Almost all eukaryotic mRNA 3′ends are formed through an endonu-
cleolytic cleavage followed by polyadenylation1,2. Pre-mRNA 3′ pro-
cessing is not only an essential step in gene expression, but also an 
important mechanism for gene regulation. Approximately 70% of 
human genes produce multiple mRNA isoforms by selecting differ-
ent PASs, a phenomenon called alternative polyadenylation (APA)3–5. 
Distinct APA isoforms from the same gene can produce functionally 
different proteins and/or be regulated differently. APA is regulated in 

a developmental stage- and tissue-specific manner and misregulation 
of APA contributes to many human diseases3–5. It remains poorly under-
stood how APA is regulated in physiological or pathological contexts 
and pharmacological tools are needed to manipulate APA for research 
and therapeutic purposes.

PASs are defined by several cis-elements, including the AAUAAA 
hexamer, the U/GU-rich downstream elements and other aux-
iliary sequences1,2. These cis-elements are recognized by multiple 
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We next performed similar in vitro cleavage assays on other PASs. 
Surprisingly, we found that different PASs displayed different sensi-
tivities to compound 2. For example, cleavage was observed for SVL, 
the PAS from SV40 late transcript, even at the highest concentration 
tested of compound 2 with an estimated IC50 >100.2 μM (Fig. 1c). There-
fore, the IC50 of L3 and SVL PASs differ by over 100-fold. Similar to L3, 
mRNA 3′ processing complex assembly on SVL PAS was not affected 
by compound 2 (Extended Data Fig. 1). In total we performed in vitro 
cleavage assays with 40 different PASs and found that their IC50 values 
varied widely (Fig. 1d). To begin to understand the molecular basis for 
such variations, we first asked whether the compound 2 sensitivity of 
a PAS is determined by its strength, that is, the efficiency by which it 
is processed by the pre-mRNA 3′ processing machinery. We measured 
the percentage of pre-mRNA cleaved in vitro in the absence of com-
pound 2 and compared this value, designated as PAS activity, with its 
IC50. Our results detected poor correlation between the two measure-
ments (r = 0.30) (Fig. 1d and Supplementary Table 1). We concluded 
that the cleavage of different PASs displays differential sensitivities 
to compound 2 in vitro and that the drug sensitivity of a PAS is not 
determined by its strength.

CS sequence is a major determinant of JTE-607 
sensitivity
As PASs display sequence-dependent sensitivity to compound 2 in vitro, 
we next wanted to map the specific PAS region(s) that determine its 
drug sensitivity. To this end, we divided the PAS sequence into three 
regions: the AAUAAA hexamer and upstream sequence, the CS region 
(20 nucleotide (nt) regions centered at the cleavage site) and the down-
stream sequence (Fig. 2a). Among PAS sequences we tested previously, 
L3 (IC50 = 0.8 μM; Fig. 1a) and SVL (IC50 = 100.2 μM; Fig. 1c) showed the 
lowest and the highest resistance to compound 2, respectively. There-
fore, we constructed a series of chimeric PASs between them by replac-
ing one or more of the three regions in one PAS by their counterparts in 
another, and measured their IC50 values as described above. Replacing 
the upstream sequence of L3 PAS with that of SVL did not result in a 
major change in IC50 (chimera 1, IC50 = 2.1 μM; Fig. 2a and Extended 
Data Fig. 2a). However, replacing both the upstream sequence and 
the CS of L3 with those of SVL dramatically increased the resistance 
to compound 2 (chimera 2, IC50 = 89.6 μM; Fig. 2a and Extended Data 
Fig. 2b), suggesting that the CS region plays a major role. On the other 
hand, replacing the upstream sequence of SVL with that of L3 led to a 
significant decrease in drug resistance (chimera 3; Fig. 2a and Extended 
Data Fig. 2c), although its IC50 (39.5 μM) was still almost 50-fold higher 
than that of L3. Replacing both the upstream sequence and CS of SVL 
with those of L3 led to an almost 15-fold decrease in IC50 (chimera 4, 
IC50 = 6.7 μM; Fig. 2a and Extended Data Fig. 2d), again highlighting a 
major role for the CS region. By contrast, the downstream sequence 
did not seem to play a major role (compare L3 and chimera 4 or SVL and 
chimera 2; Fig. 2a). Given the major impact of the CS region on com-
pound 2 sensitivity in both backgrounds, we swapped the CS regions 
alone between L3 and SVL. The results showed that replacing the L3-CS 
region with that of SVL changed its IC50 to 47.8 μM, an almost 60-fold 
increase (L3-SVL CS, Fig. 2a.b). Even more dramatically, the opposite 
change in SVL reduced its IC50 to 0.8 μM (SVL-L3 CS; Fig. 2a,c), identical 
to that of L3. These results demonstrated that the CS region is a major 
determinant of compound 2 sensitivity in both backgrounds. In addi-
tion, the upstream sequence also contributes to the drug sensitivity 
in a context-dependent manner, whereas the downstream sequence 
does not appear to play a significant role. Therefore, we focused on 
the CS region for the rest of the present study.

Characterization of the sequence–drug 
sensitivity relationship by MPIVA
We next wanted to comprehensively define the relationship between the 
CS region sequence and compound 2 sensitivity. To this end, we designed 

trans-acting factors, including cleavage and polyadenylation specific-
ity factor (CPSF) and cleavage stimulation factor (CstF), which in turn 
recruit other mRNA 3′ processing factors to assemble the pre-mRNA 3′ 
processing complex. Pre-mRNA cleavage is carried out by the endonu-
clease CPSF73 (ref. 6), which, together with CPSF100 and symplekin, 
forms the nuclease module of the CPSF complex mCF7. CPSF73 pref-
erentially cleaves after CA or UA sequences8. Although the sequences 
flanking the CS display distinct and well-conserved nucleotide compo-
sition patterns9–11, it remains unknown what role, if any, these sequences 
play in pre-mRNA 3′ processing.

CPSF73 has emerged as a drug target for treating a variety of 
diseases. For example, a number of small molecule drugs for treating 
Toxoplasma gondii (causes toxoplasmosis)12, African trypanosomes 
(causes sleeping sickness)13 and Plasmodium spp. (causes malaria)14, 
target the CPSF73 homologs in these pathogens. JTE-607 is a small 
molecule that inhibits the production of multiple cytokines by mam-
malian cells15–17 and administration of JTE-607 results in improve-
ments in several inflammatory diseases15–17. Furthermore, JTE-607 
has anticancer activities and specifically kills the cells of myeloid 
leukemia and Ewing’s sarcoma18,19. JTE-607 was also shown to inhibit 
breast cancer cell migration and invasion20. JTE-607 is a prodrug and 
is hydrolyzed to compound 2 upon entering the cells by the cellular 
enzyme CES1 (refs. 18,19). Compound 2 specifically binds to CPSF73 
near its active site to inhibit its activity18. In addition to its potential 
clinical application, JTE-607 has quickly become an important tool 
for research21,22. However, it is unclear if all pre-mRNA 3′ processing 
events in the human transcriptome are equally affected by JTE-607 
and it is unclear why this compound is active only against specific 
cancer types.

Although the JTE-607 target, CPSF73, is universally required for 
pre-mRNA 3′ processing, we have found that JTE-607-mediated inhibi-
tion of pre-mRNA 3′ processing is sequence specific both in vitro and 
in cells. We have identified the CS region as a major determinant of 
drug sensitivity. Using massively parallel in vitro assays (MPIVAs), we 
have comprehensively characterized the relationship between the CS 
sequence and JTE-607 sensitivity, and identified key sequence features 
that determine drug sensitivity. Using the MPIVA data, we trained a 
machine learning model, C3PO, that can accurately predict JTE-607 
sensitivity of a PAS based on its CS region sequence. We demonstrated 
that C3PO can help to explain the effect of JTE-607 on PAS selection and 
transcription termination genome wide. Together, our study not only 
characterized the properties of an anticancer and anti-inflammation 
compound, but also revealed a previously unknown sequence specific-
ity of the mRNA 3′ processing machinery.

Sequence-specific mRNA 3′ processing inhibition 
by JTE-607
To better understand the mechanism of action for compound 2, the 
active form of JTE-607 (ref. 18), we characterized its effect on pre-mRNA 
processing in an in vitro cleavage assay using HeLa cell nuclear extract 
(NE). We first performed in vitro cleavage assays with L3, the PAS of the 
adenovirus major late transcript, in the presence of dimethyl sulfoxide 
(DMSO) or increasing concentrations of compound 2 (0.1, 0.5, 2.5, 12.5, 
62.5 and 100 μM). Our results showed that the cleavage of L3 PAS was 
strongly inhibited by compound 2 with a half-maximal inhibitory con-
centration (IC50) of 0.8 μM (Fig. 1a). To determine whether compound 
2-mediated inhibition of pre-mRNA cleavage occurs at the cleavage 
step and/or the earlier pre-mRNA 3′ processing complex assembly step, 
we monitored pre-mRNA 3′ processing complex assembly on L3 PAS 
in the presence of DMSO or increasing concentrations of compound 
2 using an electrophoretic mobility shift assay (EMSA). The pre-mRNA 
3′ processing complex assembled indistinguishably under all condi-
tions tested (Fig. 1b). These results suggest that compound 2 does not 
interfere with pre-mRNA 3′ processing complex assembly, but blocks 
cleavage of the L3 PAS.

http://www.nature.com/nsmb
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an MPIVA strategy (Fig. 3a). Using L3 (sensitive) or SVL (resistant)  
PAS as backbones, we replaced the original cleavage site sequence 
with a YA (Y is U or C), which is the preferred cleavage site sequence 
for CPSF73, and randomized the 23-nt flanking sequence. Exchanging 
UA or CA at the cleavage sites in L3 or SVL did not have a significant 
effect on compound 2 sensitivities (Extended Data Fig. 3a,b). These 
two libraries, called L3-N23 and SVL-N23, contained ~3 million PAS 
variants each and were transcribed into RNAs. The RNA pools were 
used for in vitro cleavage and polyadenylation assays in the presence 
of DMSO (control) or compound 2, including low (0.5 μM), medium 
(2.5 μM) and high (12.5 μM) concentrations. As shown in Fig. 3b, the 
PAS RNA pool was efficiently cleaved in vitro in the presence of DMSO 
and the cleavage efficiency gradually decreased in the presence of 
increasing concentrations of compound 2. The starting PAS RNA pool 
and the cleaved RNA pools under different conditions were subjected 
to high-throughput sequencing using the Illumina platform (Fig. 2b). 
The 12-nt sequence upstream of the CSs in the sequencing reads was 
used to identify the corresponding full-length sequence and only 

unambiguously identifiable sequences were kept for further analyses 
(Fig. 3a; see Methods for details). For each variant, a resistance score 
was calculated as the log(ratio) between its frequency in compound 
2-treated samples and that in DMSO-treated samples. As shown in Fig. 3c  
and Extended Data Fig. 3c, the resistance scores of all variants were con-
centrated in a narrow peak centered at ~0 at low compound 2 concen-
trations (L3: −0.04 ± 0.31; SVL: −0.05 ± 0.28) but diverged more at high 
inhibitor concentrations (L3: −0.12 ± 0.53; SVL: −0.09 ± 0.43), suggest-
ing that, as expected, drug sensitivities are better distinguished at higher 
drug concentrations. Furthermore, we compared the resistance scores 
of all variants and their cleavage efficiency (log(ratio) between the fre-
quency of a PAS variant in library 2 and that in library 1) and found that 
there was no significant correlation (Fig. 3d and Extended Data Fig. 3d),  
which was consistent with Fig. 1d. Thus, both our low-throughput 
in vitro assays and high-throughput screen results demonstrated that 
the compound 2 sensitivity of a PAS is not dependent on its strength.

Based on the resistance scores in the high compound 2 concen-
tration condition, we obtained a list of the top 1,000 most sensitive 
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Fig. 1 | Compound 2-mediated inhibition of mRNA 3′ processing in vitro 
is sequence dependent. a, In vitro cleavage assay on L3 PAS with increasing 
concentrations of compound 2 and its IC50 quantification. Radiolabeled RNAs 
from the reactions were extracted and resolved on 8 M urea gel and visualized by 
phosphor imaging. The compound 2 concentrations used are 0.1, 0.5, 2.5, 12.5, 
62.5 and 100 μM (n = 2 biological replicates and both measurements are shown 

as dots). b, EMSA with L3 PAS in the presence of increasing concentrations of 
compound 2. The concentrations used are the same as those used in a. c, In vitro 
cleavage assay on SVL PAS with increasing concentration of compound 2 and its 
IC50 quantification (similar to a). d, PAS activity and IC50 correlation of 40 in vitro 
tested PASs.
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and resistant PASs from both the L3-N23 and the SVL-N23 libraries. 
We selected four variants in each background, two sensitive and two 
resistant, and tested them using in vitro cleavage assay and our data 
validated the screen results (Fig. 3e and Extended Data Fig. 3e,f). It was 
noted that some of the variants (for example, Fig. 3e, top left) were more 
sensitive to compound 2 than the original L3 whereas other variants dis-
played greater resistance than SVL (for example, Fig. 3e, bottom right), 
indicating that our screens selected variants with a wide range of drug 
sensitivities. It is interesting that the CS region of sensitive and resistant 
PASs showed distinct patterns. The CS regions of sensitive L3 variants 
are generally G/U rich, especially in the region upstream of the cleavage 
site (Fig. 3f, top). In contrast, resistant CSs contained alternating U-rich 
and A-rich sequences mainly in the region upstream of the cleavage 
site (Fig. 3f, bottom). Very similar patterns were observed on an SVL 
background (Fig. 3g), suggesting that the CS region sequence can deter-
mine compound 2 sensitivity independent of other regions. Consistent 
with the nucleotide compositions, our motif analyses of the sensitive 
and resistant variants detected U/G-rich and A/U-rich motifs, respec-
tively, in both the L3 and the SVL libraries (Extended Data Fig. 4a,b).  

These results defined the key sequence features in the CS region that 
determine compound 2 sensitivity.

Predict JTE-607 relative sensitivity by machine 
learning
We next used our MPIVA data to train a machine learning model with 
the goal of predicting compound 2 sensitivity of any PAS based on 
its CS region sequence. Our model, called cleavage and counterac-
tion with compound 2 on polyadenylation outcomes (C3PO), is a 
three-layer convolutional neural network (CNN) that is based on the 
Optimus 5′-architecture that we have previously used to predict poly-
some profiles from 5′-untranslated region (UTR) sequences (Fig. 4a and 
Methods)23. C3PO uses the 25-nt CS sequences as inputs and predicts 
compound 2 sensitivity, which is calculated as the log(ratio) between 
each variant’s percentage representation in the DMSO-treated and 
compound 2-treated libraries (Fig. 3a). C3PO was trained on the pro-
cessed MPIVA datasets from both the L3 and the SVL RNA contexts and 
model performance was assessed on held-out variants from both RNA 
contexts. We used the variants with high-read coverage in the input 
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Fig. 2 | CS region is a major determinant of compound 2 sensitivity.  
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and DMSO-treated data (libraries 1 and 2) as our test set to minimize 
the impact of measurement noise (Methods). C3PO performed better 
on higher doses of compound 2 with Pearson’s r of 0.56, 0.74 and 0.84 

for 0.5 μM, 2.5 μM and 12.5 μM, respectively. We explored variations 
of convolution-based machine learning architectures (Supplementary 
Table 2) and this trend was consistent. This was expected because drug 
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resistance is better detected at higher drug doses (Fig. 3c). Owing to the 
better model performance at the highest dose of 12.5 μM, we focused 
further analyses on this regimen.

To test the performance of C3PO, we compared the compound 2 
resistance scores (log(12.5 μM/DMSO)) of 30 distinct PASs measured 
by in vitro cleavage assays as shown in Fig. 1d (PASs that contain the 
same CS region sequences were combined to avoid redundancy) and 
those predicted by C3PO. The C3PO predictions showed strong and 
positive correlation with experimental measurements with a Pearson’s 
r of 0.84 (Fig. 4c and Supplementary Table 3). This is very similar to 
its performance on the MPIVA dataset (compare Fig. 4c with Fig. 4b,  
12.5 μM panel). These results strongly suggest that C3PO can accurately 
predict compound 2 sensitivity of PAS sequences in vitro.

We next wanted to identify sequence motifs that predict com-
pound 2 sensitivity by extracting filter position weight matrices  
(Fig. 4a). The position-specific effect on compound 2 sensitivity of 
each filter was quantified by measuring the correlation with drug 
sensitivity at each position across the CS region. Filters associated 
with higher resistance (dark-red color) learned motifs that were A/U 
rich, whereas lower resistance filters (dark blue) typically learned 
motifs with higher G/U content (Fig. 4d). Sequence motifs strongly 
associated with compound 2 sensitivity predictions are positioned 
such that they begin upstream of the CS (Fig. 4d–f and Extended Data 
Fig. 4c). Layer 2 filters learn to use combinations of layer 1 filters for 
predictions of drug sensitivity. The 15-mers learned by layer 2 filters 
also showed A/U-rich and G/U-rich motifs for resistant and sensitive 
PASs, respectively (Fig. 4e and Extended Data Fig. 4d). It is interesting 
that both resistance- and sensitivity-associated motifs are enriched in 
the region upstream of the CS (Fig. 4f).

Given the known function of RNA secondary structures in pre-mRNA 
3′ processing24, we investigated its potential impact on compound 2 sen-
sitivity. We compared the minimum free energy (MFE) structures for the 
top 10,000 resistant and sensitive sequences (Extended Data Fig. 5a,b). 
The differences between ΔG (Gibbs free energy) values for the resistant 
and sensitive sequences were modest, but statistically significant with 
P values of <2.2 × 10−308 and 1.58 × 10−26 for L3 and SVL, respectively. The 
difference between base-pairing probabilities for resistant and sensitive 
sequences also show different global patterns between the L3 and SVL 
backbones, indicating that background-specific secondary structural 
features may contribute to drug sensitivity (Extended Data Fig. 5c,d). 
Taken together with C3PO’s ability to accurately predict compound 2 
sensitivity with sequence alone, our results suggest that sequence is 
the primary determinant of compound 2 sensitivity whereas secondary 
structure may play a minor role.

We further explored the usage of machine learning models to 
characterize compound 2 sensitivity and its relationship with pro-
cessing efficiency. First, we compared the cleavage efficiency meas-
ured by our MPIVA assays with that predicted by APARENT2 (ref. 25),  
a highly accurate deep learning model for predicting cleavage/
polyadenylation efficiency that was trained using massively parallel 
reporter assays in mammalian cells. We saw good correlation between 
APARENT2-predicted cleavage efficiency and our MPIVA data with a 
Pearson’s r of 0.60 for the L3 background and 0.72 for the SVL back-
ground (Fig. 4g). These results suggest that the CS region sequence 
can have a significant impact on cleavage efficiency and the cleavage 
efficiency values measured by our MPIVA system are highly consistent 
with measurements obtained in cells. Finally, we compared the resist-
ance score predicted by C3PO with the cleavage efficiency predicted 
by APARENT2 for all CS variants and observed poor correlation with 
Pearson’s r = 0.42 and 0.24 for L3 and SVL, respectively (Fig. 4h). This is 
consistent with our in vitro cleavage assay (Fig. 1d) and MPIVA results 
(Fig. 3d and Extended Data Fig. 3d) and provided further evidence that 
the compound 2 sensitivity of a PAS is not dependent on its strength.

We have also trained C3PO on L3-N23 and SVL-N23 libraries sepa-
rately. These models achieved similar prediction performance on 

variants in their respective backgrounds (Supplementary Fig. 6a,d) 
and identified similar motifs for sensitive and resistant sequences 
(Extended Data Fig. 6c,f). However, their performance decreased when 
predicting compound 2 sensitivities in another background (Extended 
Data Fig. 6a,d). In addition, although the sequence upstream of the CS 
plays the most important role for the L3-N23-based model (Extended 
Data Fig. 6b) and the combined model (Fig. 4f), sequences immedi-
ately downstream of the CSs are also important for the SVL-N23-based 
model (Extended Data Fig. 6e). There were also noticeable differences 
between PASs with CA or UA CS sequence (Extended Data Fig. 7c–h). 
Finally, we note that high concentrations of compound 2 treatment 
activated cleavage downstream of the normal CS, albeit at extremely 
low frequencies (Extended Data Fig. 7a,b), so should have little impact 
on the modeling of overall drug sensitivity.

Sequence-specific effect of JTE-607 in human cells
To determine whether the sequence-specific sensitivity to compound 
2 observed in vitro was true in cells, we performed two genome-wide 
analyses. First, we analyzed the global APA profiles of human HepG2 
cells treated with DMSO (control) or JTE-607 for 4 h using PAS sequenc-
ing (PAS-seq), a high-throughput RNA 3′sequencing method for quan-
titatively mapping RNA polyadenylation26. JTE-607 treatment induced 
significant APA changes in 921 genes, of which 847 genes (92%) shifted 
from a proximal PAS to a distal one (blue dots; Fig. 5a and see Methods 
for details). An example was shown in Fig. 5b: the proximal PAS was 
predominantly used for Ptp4a1 transcripts in DMSO-treated cells. How-
ever, polyadenylation shifted to a distal PAS in JTE-607-treated cells, 
leading to 3′-UTR lengthening; 74 genes showed APA changes in the 
opposite direction (red dots; Fig. 5a), as exemplified by Paqr8 (Fig. 5c).

Why did JTE-607 induce the opposite APA changes in different 
groups of genes? Given our finding that JTE-607-mediated inhibi-
tion of mRNA 3′ processing is sequence specific, we hypothesized 
that JTE-607 treatment would decrease the relative usage of the more 
sensitive PASs in a given gene whereas that of resistant PASs would be 
less impacted, leading to a net shift to more resistant PASs. To test this 
hypothesis, we predicted the resistance scores of all annotated PASs 
in the human genome using C3PO and compared the scores of the 
proximal and distal PASs of the 921 genes that displayed significant 
APA shifts in JTE-607-treated cells. It is interesting that, for the 847 
genes that showed a shift to the distal PAS in JTE-607-treated cells, their 
proximal PASs are significantly more sensitive to JTE-607 than their 
distal ones (P < 2.2 × 10−16, Student’s t-test, Cohen’s d = −0.38; Fig. 5d, 
left). The opposite trend was observed for the 74 genes that showed a 
distal-to-proximal shift (P = 0.0046, Student’s t-test, Cohen’s d = 0.47; 
Fig. 5d, right). Therefore JTE-607 indeed inhibited the relative usage 
of more sensitive PASs, resulting in higher relative usage of resistant 
PASs. These data confirmed that JTE-607 modulates PAS selection 
globally in a sequence-dependent manner in human cells and that 
JTE-607-induced APA changes are influenced by the relative drug sen-
sitivities of the alternative PASs.

In addition, we also monitored transcription termination by nas-
cent RNA sequencing using 4-thiouridine-labeled RNA (4sU-seq) in 
HepG2 cells treated with DMSO or JTE-607. As mRNA 3′ processing 
is coupled to transcription termination, transcription termination 
efficiency at PAS can be used as a proxy for mRNA 3′ processing effi-
ciency27. Our 4sU-seq analyses showed that JTE-607 treatment induced 
a global transcription termination defect (Fig. 6a). However, the levels 
of JTE-607-induced transcription read through (RT) varied widely 
at different PASs (Fig. 6a). For example, RT increased dramatically 
downstream of the PAS of the Eif4ebp1 gene (Fig. 6b, left) whereas 
little change was observed for the Cox8A gene (Fig. 6b, right). Thus, 
4sU-seq data further demonstrated that mRNA 3′ processing displayed 
sequence-specific sensitivity to JTE-607 in human cells.

We then tested whether JTE-607-induced, gene-specific transcrip-
tion termination defects can be attributed to the differential drug 
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sensitivities of PASs through two analyses. First, we selected genes with 
the top 1,000 resistant or sensitive PASs based on the C3PO-predicted 
resistance scores. To avoid complications from neighboring genes, we 
selected genes that do not overlap with other genes in the 1-kb down-
stream region for our analyses. The average normalized 4sU-seq signals 
at genes with the top 1,000 resistant PASs showed that transcription 
terminated efficiently at these PASs in both DMSO- and JTE-607-treated 
cells, and an increase in RT levels was observed downstream of the PASs 
(Fig. 6c, red arrow). By contrast, for genes with the top 1,000 sensitive 
PASs, their global 4sU-seq signals revealed significantly higher RT in 
JTE-607-treated cells compared with DMSO-treated cells (Fig. 6d, red 
arrow), suggesting that JTE-607 induced significant inhibition of mRNA 
3′ processing at these PASs. The JTE-607-induced increase in RT levels 
was significantly higher at the sensitive PASs than the resistant sites 
(Fig. 6e, P < 2.2 × 10−16, Wilcoxon’s test). Second, based on our 4sU-seq 
data, we identified 1,000 genes with the most significant RT and another 
1,000 with the least RT using a computational tool called ARTDeco28. 
When comparing the PASs of these gene groups, we observed that the 
genes with the lowest JTE-607-induced RT displayed significantly higher 
C3PO-predicted resistance scores than those with high RT (Extended 
Data Fig. 8). Together, our PAS-seq and 4sU-seq analyses suggest that 
JTE-607 inhibits mRNA 3′ processing and transcription termination in a 
sequence-dependent manner and that C3PO-predicted drug sensitivity 
can provide a basis for understanding the global effect of JTE-607 on 
PAS selection and transcription termination.

We also wanted to compare the effect of JTE-607-mediated inhi-
bition of CPSF73 with that of CPSF73 depletion. Liu et al. recently 
showed that UBE3D is required for CPSF73 stability and UBE3D 
knockdown led to efficient CPSF73 depletion20. Therefore, we com-
pared the APA changes caused by JTE-607 and those caused by UBE3D 
knockdown. Our analysis showed that UBE3D depletion led to wide-
spread APA changes, characterized primarily by 3′-UTR lengthening 
(Extended Data Fig. 9a), which is consistent with other studies of 
CPSF73 knockdown29. UBE3D knockdown and JTE-607 resulted in APA 
changes in overlapping as well as distinct sets of genes (Extended Data 
Fig. 9b). These results indicate that JTE-607-mediated inhibition of 
CPSF73 and CPSF73 depletion impact mRNA 3′ processing through 
different mechanisms.

Nucleotide composition of the resistant and sensitive human PASs 
revealed distinct patterns. JTE-607-resistant PASs have alternating  
U- and A-rich regions (Fig. 6f, left) whereas the JTE-607-sensitive PASs 
are generally U/G rich (Fig. 6f, middle). These patterns are very consist-
ent with the top resistant and sensitive PASs from our MPIVA screen 
(Fig. 3f–g). It is interesting that the average nucleotide composition of 
the CS regions of all annotated human PASs also displayed alternating 
U- and A-rich regions (Fig. 6f, right), suggesting that a portion of the 
human PASs is potentially resistant to JTE-607. Furthermore, a compari-
son of the resistant and sensitive PASs revealed that the resistant PASs 
are more conserved than the sensitive PASs (Extended Data Fig. 10a). 
Finally, gene ontology analysis of the genes expressed in HepG2 cells 

**

Distal

PtoD DtoP

–6

–6 –3 0 3 6

–3

0

3

6

log(JTE.p/JTE.d)

lo
g(

D
M

SO
.p

/D
M

SO
.d

)

Proximal to distal
(PtoD): 847

Distal to proximal
(DtoP): 74

a b

dc

****

–1.0

–0.5

0

0.5

1.0

Proximal ProximalDistal

Re
si

st
an

ce
 s

co
re

Ptp4a1

PAS Proximal Distal

Paqr8

DMSO

DMSO

JTE-607

JTE-607

PAS Proximal Distal

DMSO

DMSO

JTE-607

JTE-607

PA
S-

se
q

PA
S-

se
q

–1.0

–0.5

0

0.5

1.0

Fig. 5 | JTE-607-induced APA changes in cells are sequence specific. a, A scatter 
plot showing JTE-607-induced APA changes in cells. b,c, PAS-seq tracks of two 
example genes: Ptp4a1 (b) and Paqr8 (c) (n = 2 biological replicates and the 
positions of the proximal and distal PASs are marked). d, Boxplots comparing the 
C3PO-predicted resistance scores for the proximal (Prox) and distal (Dist) PASs 

of the Prox-to-Dist (847 genes) and Dist-to-Prox (74 genes) genes. ****P < 0.0001; 
*P < 0.05 (two-sided Student’s t-test). Cohen’s d: Prox-to-Dist: −0.38; Dist-to-
Prox: 0.47. For all boxplots, box limits give the interquartile range with whiskers 
extending by a factor of 1.5 and the center line showing the median.

http://www.nature.com/nsmb


Nature Structural & Molecular Biology | Volume 30 | December 2023 | 1947–1957 1955

Article https://doi.org/10.1038/s41594-023-01161-x

containing the top 1,000 sensitive and resistant PASs revealed different 
enriched functional categories (Extended Data Fig. 10b).

Discussion
In the present study, we characterized JTE-607, a new inhibitor of the 
endonuclease for mRNA 3′ processing, CPSF73. Although CPSF73 is 
universally required for mRNA 3′ processing, we have unexpectedly 
discovered that compound 2 inhibits the cleavage step of mRNA 3′ 
processing in a sequence-dependent manner both in vitro and in 
cells, and that the CS region sequence is a major determinant of drug 
sensitivity. We have characterized the relationship between the CS 
region sequence and compound 2 sensitivity using MPIVA coupled 
with machine learning. Our machine learning model C3PO can predict 
compound 2 sensitivity based on CS sequence and provides the basis 
for understanding the impact of JTE-607 on APA and transcription 
termination in human cells. Therefore, our study not only has provided 
new insights into the fundamental mechanism of mRNA 3′ processing, 
but may also have important implications for the use of JTE-607 as a 
research and therapeutic tool.

What is the molecular mechanism for the sequence-specific sensi-
tivity to compound 2? As both compound 2 and the CS region RNA bind 
to CPSF73 at or near its active site18,30, these interactions are competi-
tive and most likely mutually exclusive (Fig. 7). As the CPSF73 affinity 
for compound 2 is constant, the outcome of this competition is thus 
determined by the affinity of the CPSF73–CS region RNA interaction. 
Based on the structure of the histone mRNA-cleavage complex30, which 
contains the nuclease module consisting of CPSF73, CPSF100 and 
symplekin, these proteins form an RNA-binding channel that can bind 
to an ~20-nt CS sequence (Fig. 7). Other mRNA 3′ processing factors 
can also be involved, including Fip1 and PAP. Fip1 is known to bind to 
U-rich sequences near the AAUAAA hexamer31,32 and the compound 
2-resistant CS sequences contain U-rich sequences (Fig. 3f,g). Finally, 
an early study showed that PAP is required for in vitro cleavage of L3 
PAS, but not for SVL, and that the CS region sequences determine the 
PAP dependency33. Given the important roles for the CS region in deter-
mining both PAP dependency and compound 2 sensitivity, it is possible 
that PAP is involved in binding to CS-region sequences. Based on these 
results, we propose that CPSF73 and other mRNA 3′ processing factors 
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form an RNA-binding channel that directly binds to the CS region in 
a sequence-specific manner, and that the affinity of this interaction 
determines the compound 2 sensitivity of a PAS (Fig. 7).

The nucleotide composition in the CS region has been con-
served from yeast to human9–11 and this pattern is highly similar to 
that of the compound 2-resistant PASs (Fig. 6f). In addition, compound 
2-resistant PASs are more evolutionarily conserved than the sensitive 
sites (Extended Data Fig. 10a). It remains unclear what, if any, selec-
tion pressure favors PASs that are resistant to a small molecule, that 
is, not present in most environments. One possibility is that the CS 
region sequence may impact transcription termination. According to 
our model, the resistant PASs interact with CPSF73 and other mRNA 
3′ processing factors more strongly (Fig. 7). As the mRNA 3′ process-
ing machinery is known to directly bind to RNA polymerase II34–36, 
such interaction could contribute to slowing down of the polymer-
ase, thereby promoting termination. Thus, a subset of PASs may have 
evolved to promote transcription termination by binding to CPSF73 
more strongly via their CS and the compound 2 resistance is an unin-
tended consequence.

Our results may have implications for understanding how JTE-607 
specifically kills myeloid leukemia and Ewing’s sarcoma cell lines. As 
mentioned earlier, JTE-607 is a prodrug and is converted to compound 
2 by the cellular enzyme CES1 (ref. 18). Although cellular CES1 levels 
may contribute to the cell-type specificity, previous studies showed 
that CES1 level is a poor predictor for JTE-607 sensitivity18. Thus, the 
molecular basis for cell-type-specific toxicity of JTE-607 remains 
unknown. Based on the results reported in the present study, we pro-
pose two possible mechanisms for explaining the cell-type-specific 
drug sensitivity. First, the potency for JTE-607-mediated inhibition of 
mRNA 3′ processing may be cell-type specific. Our model suggests that 
the drug sensitivity is determined by the interaction affinity between 
the CPSF73 and other mRNA 3′ processing factors and the CS region 
sequence. If cell-type-specific mechanisms can modulate the specific-
ity of this interaction, they can alter JTE-607 sensitivity globally. This 
could result from cell-type-specific expression levels or posttransla-
tional modification of CPSF73 and other mRNA 3′ processing factors 
that bind to the CS region. A recent study has provided support for this 
model37. Alternatively, the sequence specificity of JTE-607 is similar 
among different cell types. However, cells of myeloid leukemia and 
Ewing’s sarcoma may be uniquely dependent on one gene or a subset 
of genes with PASs that are highly sensitive to JTE-607. For example, a 
recent study identified PDXK, an enzyme in the vitamin B6 metabolism 
pathway, as a unique acute myeloid leukemia dependency gene38. If the 

PASs of such dependency genes are sensitive to JTE-607, the expression 
of these genes would be repressed by JTE-607 treatment, leading to cell 
death in specific cell types. Further studies are needed to distinguish 
between these models.
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Methods
Cell culture
HepG2 cells were cultured in Dulbecco’s modified Eagle’s medium 
(DMEM) supplemented with 10% (v:v) fetal bovine serum (FBS) at 37 °C 
in a 5% (v:v) CO2-enriched incubator. HeLa S3 cells were maintained in 
MEM Joklik Modification supplemented with 2.4 mM sodium bicar-
bonate and 8% (v:v) newborn calf serum in a spinner flask at 37 °C with 
ambient CO2. For JTE-607 treatment, 20 μM final concentration of 
JTE-607 (Tocris) in DMSO was added to the cell culture medium and 
incubated at 37 °C for 4 h.

In vitro mRNA 3′ processing assay
HeLa NE was made as previously described39. All PASs were cloned into 
the pBlueScript II KS+ vector. RNA substrates were synthesized by 
run-off in vitro transcription (IVT) using T7 polymerase (New England 
Biolabs (NEB)) in the presence of [α-32P]UTP according to the manufac-
ture’s protocol. For in vitro cleavage reaction with compound 2, NE was 
pre-incubated with 10% DMSO or compound 2 in 10% DMSO for 30 min 
on ice. Each 10 μl reaction contains 20 c.p.s. (counts per s) of radiola-
beled RNA, 44% (v:v) NE, 8.8 mM Hepes, pH 7.9, 44 mM KCl, 0.44 mM 
MgCl2, 0.2 mM 3′-dATP (Sigma-Aldrich), 2.5% (v:v) polyvinyl alcohol 
(PVA), 40 mM creatine phosphate and 4 mM 2-mercaptoethanol. The 
reaction mix was incubated for 90 min at 30 °C. RNA was extracted, 
resolved on an 8% urea–polyacrylamide gel electrophoresis (PAGE) 
and visualized by phosphor imaging. The IC50 was calculated using 
the equation: [Inhibitor] versus normalized response − Variable slope 
on Prism.

EMSA
In vitro cleavage reactions, 10 μl, without PVA were incubated for 
20 min at 30 °C, heparin was added to 0.4 μg μl−1 and the reaction was 
incubated for an additional 5 min on ice and resolved on 4% native PAGE 
in 1× Tris-glycine running buffer, pH 8.3 at 100 V for 4 h in an ice bath. 
The gel was dried and visualized by phosphor imaging.

MPIVA
DNA oligos containing 23 random nucleotide CS was purchased from 
IDT and PCR amplified to generate double-stranded (ds)DNA. The 
dsDNA library was cloned into pBlueScript II KS+ vector by Gibson 
Assembly (NEB) and electroporated into ElectroMAX DH5α (Thermo 
Fisher Scientific). Library quality control was determined as previously 
described40. RNA pools were synthesized by IVT using T7 polymerase 
(NEB) followed by RQ1 DNase treatment (Promega). The RNA pool 
was purified by phenol–chloroform extraction and was either poly-
adenylated (for input) or 3′-dATP blocked (for DMSO and compound 
2 treated) by Escherichia coli PAP (NEB). The RNAs were incubated in 
600-μl reactions containing 6 pmol of RNA, 44% (v:v) HeLa NE, 8.8 mM 
Hepes-OH, pH 7.9, 44 mM KCl, 1.44 mM MgCl2, 1 mM ATP, 2.5% (v:v) PVA, 
20 mM creatine phosphate, 4 mM 2-mercaptoethanol and either 1% 
DMSO or compound 2 in DMSO. The reaction mixture was incubated 
for 90 min at 30 °C. Polyadenylated RNAs were isolated using NEBNext 
Poly(A) mRNA Magnetic Isolation Module (NEB) and reverse tran-
scribed using SuperScript III reverse transcriptase (Invitrogen) with an 
anchored oligo dT primer. The complementary DNA library was bead 
purified (Beckman Coulter) and amplified using a library-specific for-
ward primer and reverse primer containing Illumina adapter sequences 
and a linker. The amplified libraries were resolved on a 2.5% low melting 
point agarose gel and extracted.

All MPIVA read 1 and 2 FASTQ files were merged using bbmerge 
v.38 with ‘maxloose = t’41. Untreated RNA sequencing (RNA-seq) reads 
established the sequences of the full randomized PAS region con-
tained in the IVT pool. Then 25-nt randomized regions were clustered 
using starcode v.1.4 (ref. 42) to account for sequencing errors and 
determine consensus sequences. The expected cleaved lengths of the 
25-nt consensus sequences for L3 and SVL backbones (13 nt and 12 nt, 

respectively) were used as unique identifiers of the full randomized 
region. If any identifiers were not unique within L3 and SVL libraries, 
then these sequences were removed from subsequent analyses.

Next, RNA-seq reads from DMSO- and drug-treated libraries were 
locally aligned against shared reporter regions and PAS consensus 
sequences. Only reads with a unique consensus sequence alignment 
were kept and used to determine cut sites. Additional checks and cor-
rections were performed to ensure that cut sites were not mis-assigned 
inside the poly(A) tail. Then, 158,298 L3 variants and 103,018 SVL vari-
ants were left after filtering for sequences with at least 50 reads in the 
DMSO libraries. A pseudocount of 1 was then added to variants in L3 
2.5 μM, L3 12.5 μM and SVL 12.5 μM owing to drug-mediated dropout of 
variants in the DMSO libraries. This pseudocount avoids having unde-
fined drug sensitivities resulting from log(0). Each variant that passed 
these checks was counted and converted to a percentage by dividing 
by the total number of kept reads. Drug sensitivity for each variant in 
each dose of compound 2 was defined as the log(ratio) of normalized 
reads from drug-treated RNA-seq divided by the normalized reads 
from DMSO-treated RNA-seq. Within a given drug dose, sequences 
with higher log(ratios) are more resistant than those sequences with 
lower log(ratios).

MFE folding of IVT RNAs. MFE predictions were done with RNA-
Structure v.6.4′s Fold43 using the entire IVT RNA sequence. ΔG values 
of each MFE were determined with RNAStructure’s efn2 with argu-
ment ‘--simple‘. ΔG values from the top 10,000 resistant and sensitive 
sequences were compared (‘Quantification and statistical analysis’).

C3PO machine learning architecture and training. The architecture 
chosen for predicting drug sensitivity is based on a previously pub-
lished three-layer CNN for predicting polysome profiles23. The model 
takes in 25-nt one-hot-encoded sequences followed by:

•	 First convolution layer: 120 filters (8 × 4), batch normalization, 
ReLU (rectified linear unit) activation, zero padding to maintain 
the same length input and output and 0% dropout.

•	 Second convolution layer: 120 filters (8 × 1), batch normaliza-
tion, ReLU activation, zero padding to maintain the same length 
input and output and 0% dropout.

•	 Third convolution layer: 120 filters (8 × 1), batch normalization, 
ReLU activation, zero padding to maintain the same length input 
and output and 0% dropout.

•	 Dense layer: 80 nodes, batch normalization, ReLU activation and 
10% dropout.

•	 Output layer: three linear outputs.

The Adam optimizer44 was used for model fitting with a mean 
squared error loss function, batch size of 64 and sample weights based 
on the DMSO read depth.

Sequences were assembled into test and training sets to mix highly 
covered variants from both RNA contexts (L3 and SVL) into the test and 
training sets. Within each RNA context, sequences were ordered by 
DMSO read depth, split based on the sequences’ number in this order-
ing into odd and even lists and then concatenated. Finally, the L3 and 
SVL sequences were interleaved to make an even coverage between 
RNA contexts in the test set. The test set consisted of the top 4,120 
sequences and the training set the remaining sequences. The test set 
size was chosen because it reflects 2% of the variant space in SVL which 
contains fewer variants than L3.

Ten iterations of training with six epochs were conducted to 
account for slight variations in model performance resulting from 
training algorithm stochasticity. Performance between iterations 
was evaluated by the square of Pearson’s r (R2) between meas-
ured and predicted compound 2 sensitivity in the test sequences. 
The best performing iteration was kept and used in further  
analyses.
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Exploring additional machine learning architectures and training. 
Additional machine learning and training pipelines were explored 
based on CNNs and dilated residual metworks. With the C3PO CNN 
architecture, training was done with four to eight epochs and this 
number of epochs performed relatively similarly on the test set (Sup-
plementary Table 2). We also explored using a validation set (4,120 
sequences) derived from the training set to determine an early stop-
ping criterion for the number of epochs trained, and this performed 
similarly to the models trained with a preset number of epochs. Among 
the three drug doses predictions, 12.5-μM predictions performed 
better, leading us to train models for only this dose. However, 12.5-μM 
prediction performance between the three- and one-dose predictions 
was negligible, so we used the model with three dose predictions.

Hyperband training45 with the CNN architecture was also per-
formed to ascertain potential optimal hyperparameter values. Hyper-
parameters were allowed to range from 1 to 5 on-dimensional (1D) 
convolutional layers with ReLU activation and batch normalization, 
8–140 (step 16) number of filters, followed by pooling choices of aver-
age, maximum or none and dropout rates of 0–0.5 (step 0.1). These 
convolutional layer(s) are followed by a Flatten layer and one to three 
dense layers. Each dense layer can be of size 20–200 (step 20) with ReLU 
activation, batch normalization and dropout rates of 0–0.5 (step 0.1). 
Learning rate parameters were also allowed to range between 1 × 10−5 and 
1 × 10−1. Training was allowed to stop early based on the validation set’s 
mean squared error and a minimum delta of 0.001 and patience of five 
epochs. Hyperband training was done with an output layer for all three 
drug doses and for predicting only 12.5-μM compound 2 resistance.

We tested the residual neural network (ResNet) architecture with 
predicting both compound 2 sensitivity and cleavage patterns with the 
hypothesis that learning sequence features that affect CS usage would 
improve the compound 2 sensitivity predictions. Input to the ResNet is a 
one-hot-encoded, 25-nt sequence and is followed by 20 residual blocks, 
where each block contains 2 layers of dilated convolutions and a skip 
connection. More specifically, there are 5 residual groups where each 
residual group contains 4 residual blocks with 32 channels and convolu-
tional filters of size 3. Each residual block is encoded the same as APAR-
ENT2 (ref. 25) where each block has two 1D convolutional layers with 
batch normalization, ReLU activation and a filter dilatation rate. There 
are additional skip connections from between each residual group and 
the last convolutional layer and produce a vector of length 26, s(x). The 
26th position is for all cuts outside of the 25-nt randomized region. For 
training and accounting for any background sequence biases, a boolean 
is passed to indicate whether the data point is from the L3 or SVL back-
ground, which is multiplied with a position-specific weight matrix and 
linearly combined with s(x). We also kept APARENT2′s random shifting 
of the input sequence and cleavage distribution during training to force 
the network to not simply learn the designed expected cleavage position 
in each library. These scores containing library-specific information 
are sent to four different linear dense layers for separate predictions 
of cleavage profiles of all four drug doses and softmax transformation 
is applied to each. For compound 2 sensitivity prediction, s(x) under-
goes average pooling and the library indicator is concatenated before a 
linear dense layer for final output. Kullback–Leibler divergence is used 
as the loss function for cleavage profiles and mean squared error for 
compound 2 sensitivities. Total loss is a weighted average of half from 
compound 2 sensitivities and the other half split evenly between the four 
cleavage profiles. The ResNet was trained with Keras’s implementation 
of the Adam optimizer, batch size of 64 and stopping criteria based on a 
validation set (4,120 sequences) derived from the training set.

We first tried 1, 2, 4, 2 and 1 as dilatation rates for the 5 residual 
groups and performed similarly to previously trained CNNs but did 
not outperform C3PO (Supplementary Table 2). We also tried lower 
dilatation rates of 1, 2, 2, 2 and 1 as well as 1, 1, 1, 1 and 1, which performed 
worse. Using the dilatation rates 1, 2, 4, 2 and 1, we trained for exactly 7 
epochs and did not find improved performance. We also increased the 

cleavage profile length to 27 to separately model cuts found at positions 
greater than the 25-nt randomized region in position 26, and position 
27 is filled when a sequence is not found at a given compound 2 dose 
(that is, sensitive sequences that drop out at higher compound 2 doses). 
Finally, we increased the weight of compound 2 sensitivity predictions 
to 75% of the total loss. These ResNet variations did not lead to a better 
performance than C3PO (Supplementary Table 2).

Convolutional layers 1 and 2 activation analysis. Convolutional lay-
ers 1 and 2 were analyzed similarly to a previously published analysis of 
a CNN (APARENT)40. In brief, every filter in both convolutional layers 
was correlated with predictions of drug sensitivity at the 12.5-μM dose. 
The top 5,000 input sequences from the training set that achieved 
maximal filter activation were put into a position weight matrix and 
used to generate position-aware consensus sequence logos46. Pearson’s 
r plots of each filter’s activations with predicted 12.5 μM compound 
2 sensitivity at each position are plotted below these filter-specific 
sequence logos. Layer 1 filters are 8 positions wide and layer 2 filters are 
15 positions wide. Note that the convolutional layers in C3PO contain 
even zero padding to maintain an input/output size of 25.

APARENT2 predictions and comparisons. APARENT2 predictions of 
log(odds) of cleavage at the expected cleavage position versus else-
where were done on all MPIVA sequences, centered at their expected 
cut site. Predictions with read depth of at least 150 in the Input libraries 
were kept for further analysis. APARENT2 predictions were compared 
against the log(odds) of expected cleaved DMSO read counts and input 
read counts, which estimates the in vitro cleavage efficiency. In addi-
tion, APARENT2 predictions were compared against the log(odds) of 
expected cleaved 12.5 μM compound 2 and input read counts which 
estimates the in vitro drug resistance.

Motif analysis. The top 10,000 resistant and sensitive sequences 
were converted into their 6-mer counts and significant 6-mers were 
determined (‘Quantification and statistical analysis’). The nucleotide 
content of significant resistant and sensitive 6-mers are shown next to 
their respective axes (Supplementary Fig. 6).

4sU-seq
HepG2 cells were treated with DMSO or 20 μM JTE-607 (Tocris) for 
3 h at 37 °C. Then, 500 μM 4sU (Sigma-Aldrich) was added to the  
DMSO-/JTE-607 containing medium and cells were incubated at 37 °C 
for an additional 1 h. Cells were lysed in TRIzol (Invitrogen) and total 
RNA was extracted following the manufacturer’s protocol. The 4sU RNA 
enrichment and library preparation were done as previously described47. 
All sequencing reads were mapped to human hg19 using STAR48.

PAS-seq
HepG2 cells were treated with DMSO or 20 μM JTE-607 (Tocris) for 4 h 
at 37 °C and total RNA was extracted by TRIzol. PAS-seq library prepa-
ration and data analyses were performed as previously described49.

Quantification and statistical analysis
Pearson’s r and R2 (square of Pearson’s r) are used in Figs. 1–4, Extended 
Data Figs. 2, 3, 6 and 7 and related text, as well as Supplementary Models 
Table. Potential inequality of the top 10,000 resistant and sensitive 
sequences’ MFE ΔG values were tested using a two-sided Student’s t-test 
with unequal variance. The 6-mers in the top 10,000 resistant and 
sensitive sequences were found to be significant by a binomial test with 
a null hypothesis of probability of success = 0.256 and alternative 
hypothesis of >0.256. The P-value threshold was adjusted by the number 
of possible k-mers, 46, and thus significant 6-mers must have P values 
≤ 0.05

46
. Cohen’s d and Hedge’s g calculations were used to determine the 

effect size of the difference between two group means and calculated 
using the Python package pingouin50.
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Reporting summary
Further information on research design is available in the Nature  
Portfolio Reporting Summary linked to this article.

Data availability
All deep sequencing data from the present study have been deposited 
in the Gene Expression Omnibus under series accession no. GSE218977. 
Source data are provided with this paper.

Code availability
The codes for machine learning analysis from the present study have 
been deposited to GitHub at https://github.com/angelamyu/C3PO.
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Extended Data Fig. 1 | Compound 2 does not affect 3′ processing complex assembly on resistant RNA. Electrophoretic mobility shift assay (EMSA) with SVL PAS in 
the presence of increasing concentration of Compound 2. Same concentrations as Fig. 1a and b were used. n=2 biological replicates.
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Extended Data Fig. 2 | In vitro cleavage for L3 and SVL chimeras. In vitro cleavage of L3-SVL chimeras 1 (a), 2 (b), 3 (c) and 4 (d) with increasing concentration of 
Compound 2 and their IC50, similar to Figs. 1 and 2. n = 2 biological replicates and both measurements are shown as dots.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Development and validation of MPIVA. (a-b) In vitro 
cleavage on (a) L3 (UA to CA mutant) and (b) SVL (CA to UA mutant) and their  
IC50. Compound 2 concentration used is the same as Figs. 1~2. (c) A density plot 
for the resistance scores of all variants in SVL-N23 library. The low, medium, 
and high groups represent the screens in the presence of 0.5, 2.5, and 12.5 μM 
Compound 2. (d) A scatter plot comparing the cleavage efficiency log(frequency 

in Library 2/frequency in Library 1) and the resistance score (log(frequency 
in Library 5/frequency in Library 2)) of SVL-CS variants. Pearson correlation is 
shown. (e-f ) In vitro cleavage validation experiment of 4 more RNA (2 sensitive 
and 2 resistant) from both (e) L3-N23 and (f ) SVL-N23 libraries. The CS region 
sequence and their IC50 is shown. (a, b) n=2 biological replicates and both 
measurements are shown as dots.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | 6-mer motif analyses and C3PO learned sequence 
features from MPIVA. Counts of 6-mers from (a) L3 and (b) SVL backbones are 
plotted alongside the nucleotide content of significantly enriched 6-mers in the 
top sensitive (left logo) and resistant (bottom logo) 10,000 CS variants. Sequence 
logos use DNA-encoding of RNA nucleotides. Top 10,000 resistant and sensitive 
sequences were converted into their 6-mer counts. 6-mers in the top 10,000 
resistant and sensitive sequences were found to be significant by a binomial test 
with a null hypothesis of probability of success = 0.256 and alternative hypothesis 
of > 0.256. p-value threshold was adjusted by the number of possible k-mers, 
46, and thus significant 6-mers must have p-values ≤ 0.05/46. The nucleotide 
content of significant resistant and sensitive 6-mers are shown next to their 
respective axes. (c) C3PO’s layer 1 filters’ max activation sequence consensus and 
correlations with 12.5 μM Compound 2 sensitivity predictions. Related to Fig. 4d. 
Convolutional layers 1 and 2 were analyzed similarly to a previously published 
analysis of a CNN that predicts alternative polyadenylation (APARENT). In brief, 

every filter in both convolutional layers were correlated with predictions of drug 
sensitivity at the 12.5 μM dose. The top 5,000 input sequences from the training 
set that achieved maximal filter activation were put into a position weight matrix 
and used to generate position-aware consensus sequence logos. Pearson’s r 
plots of each filter’s activations with predicted 12.5 μM Compound 2 sensitivity 
at each position are plotted below these filter-specific sequence logos. Layer 1 
filters are 8 positions wide, and layer 2 filters are 15 positions wide. Note that the 
convolutional layers in C3PO contain even zero-padding to maintain an input/
output size of 25. The padding should be accounted for when analyzing the 
filters’ Pearson r plots. For example in layer 1, the RNA sequences are padded 
with 4 0′s on both the left and right, and the first position in the correlation plots 
corresponds to 3 0′s and 5 nts of the randomized region. (d) C3PO’s layer 2 filters’ 
max activation sequence consensus and correlations with 12.5 μM Compound 2 
sensitivity predictions. Related to Fig. 4e.
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Extended Data Fig. 5 | ΔG of minimum free energy structures and base 
pairing probabilities of the top 10,000 resistant and sensitive sequences. 
Comparison of minimum free energy (MFE) structures’ of ΔG’s from the top 
10,000 resistant and sensitive (a) L3 and (b) SVL sequences. For all boxplots, 
hinges were drawn from the 25th to 75th percentiles, with the middle line denoting 

the median, and whiskers with maximum 1.5 interquartile range. The ΔG’s are 
significant with a p-value of < 2.2 × 10−308 for L3 and 1.58 × 10−28 for SVL (two-sided 
t-test with unequal variance). (c) Heatmap of the difference between top 10,000 
resistant and sensitive L3 sequences’ average base pairing probabilities. (d) Same 
as in panel c but for SVL.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Performance and interpretation of machine learning 
models trained exclusively on one MPIVA RNA sequence context.  
(a) Scatter plots of L3-only model performance on predicting drug sensitivity at 3 
Compound 2 doses on L3 test sequences (upper) and SVL test sequences (lower). 
Test sequences include equal number of sequences derived from both the L3 
and SVL RNA contexts. (b) Plot of average of all L3-only model’s layer 1 filters’ 
absolute value of Pearson correlation with 12.5 μM Compound 2 predictions 
across all positions. These are split into Pearson correlation values associated 
with resistant, negative, and all 12.5 μM Compound 2 predictions. Dashed gray 

lines indicate positions at the edge of sequence padding. (c) L3-only model’s 
convolutional layer 1 max filter activations with the highest Pearson correlation 
with 12.5 μM Compound 2 predictions. Sequence logos are plotted on top of 
per-position absolute value of Pearson correlations with 12.5 μM Compound 2 
sensitivity predictions. Filters’ Pearson correlations that begin at the canonical 
cut site in the SVL context are marked, and note that preceding filters may 
overlap with the designed canonical cut sites. (d) Same analyses as in panel a, 
but for the SVL-only model. (e) Same analyses as in panel b, but for the SVL-only 
model. (f ) Same analyses as in panel c, but for the SVL-only model.
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Extended Data Fig. 7 | Cleavage position in MPIVA and effects of YA identity. 
(a) Fraction of cleavage position usage across all 4 MPIVA datasets. Position 
0 demarcates expected cleavage position. (b) Same as plotted in panel a, but 
only showing positions +8 and greater. Comparison of Y identity on (c) 12.5 μM 
Compound 2 resistance in the MPIVA datasets (p-value L3, SVL = 5.74 × 10−63,  
1.42 × 10−120), (d) in vitro cleaved logodds (p-value L3, SVL = 2.38 × 10−46,  
5.32 × 10−222), and (e) APARENT2-predicted cleaved logodds in the MPIVA datasets 

(p-value L3, SVL = < 2.2 × 10−308, < 2.2 × 10−308). Two-sided t-tests with unequal 
variance were used for all statistical tests. For all boxplots, hinges were drawn 
from the 25th to 75th percentiles, with the middle line denoting the median,  
and whiskers with maximum 1.5 interquartile range. Scatter plots of (f )  
12.5 μM Compound 2 resistance, (g) in vitro cleaved logodds, and (h) APARENT2-
predicted cleaved logodds of pairs of sequences that share the same sequences 
upstream of the YA dinucleotide in the MPIVA datasets.
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Extended Data Fig. 8 | Comparison of top 1000 sensitive and resistant PASs. 1,000 genes with the most (sensitive) and least significant (resistant) readthrough 
after JTE-607 treatment were identified based on our 4sU-seq data and the resistance scores of their PAS were predicted by C3PO and compared. Two-sided t-test:  
p = 0.0063.

http://www.nature.com/nsmb


Nature Structural & Molecular Biology

Article https://doi.org/10.1038/s41594-023-01161-x

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
PDUIs of genes in control

PD
U

Is
 o

f g
en

es
 in

 U
be

3d
 K

D

ba

1075 752120

UBE3D JTE−607

Extended Data Fig. 9 | Comparison of JTE-607 treatment with Ube3d knockdown. (a) Poly(A) site usage index (PDUI) in control and Ube3d knockdown cells. Blue 
dot: genes with significant 3′ UTR lengthening; Red dots: genes with significant 3′ UTR shortening. (b) A Venn diagram comparing the genes with significant APA 
changes in Ube3d knockdown and JTE-607-treated cells.
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Extended Data Fig. 10 | Conservation and gene ontology analyses for  
JTE-607-sensitive and –resistant PASs. (a) The phyloP sequence conservation 
score for both resistant and sensitive PASs across different species was calculated 
and plotted against nucleotide position of the CS. Position 0 is the YA (Y is U or C) 

cleavage position. (b) Gene ontology analyses of genes that contain the top  
1000 sensitive or resistant PAS in HepG2 cells. This analysis was done with 
gProfiler and the top 6 categories that contain between 5 and 500 genes are 
listed.
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