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Abstract. We study a simple game theoretic model of information transfer which we
consider to be a baseline model for capturing strategic aspects of epistemological questions.

In particular, we focus on the question whether simple learning rules lead to an efficient

transfer of information. We find that reinforcement learning, which is based exclusively
on payoff experiences, is inadequate to generate efficient networks of information transfer.

Fictitious play, the game theoretic counterpart to Carnapian inductive logic and a more

sophisticated kind of learning, suffices to produce efficiency in information transfer.
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1. Introduction and background

The traditional epistemic agent is gathering knowledge in isolation. This
model of knowledge acquisition is characteristic of a multitude of schools of
thought, ranging from Cartesian epistemology to Bayesian epistemology. For
the latter, a number of basic results have been established which show that a
Bayesian agent can extract probabilistic information from her environment
by learning from experience. The works of Carnap on inductive logic [6, 7, 8],
as well as the works of de Finetti on subjective probability [10] may be taken
as representative work on this branch of inductive logic in the past century;
see also Zabell [34]. These results typically assume that the sequence of
events that the agent experiences corresponds to multinomial trials.

Our state of knowledge is less advanced for more general models of epis-
temic agents. Such generalizations would also take into account information
transfer between agents, as well as non-stationary environments. The signif-
icance of information sharing between agents has been recognized for some
time by philosophers working on social epistemology [14] and on the divi-
sion of cognitive labor [18]. Moreover, game theoretic models of epistemic
communities have recently gained some attention [35].

Game theory is of epistemological interest for another reason as well.
Repeated games are typically non-stationary. Agents influence each other
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nonlinearly. Thus, learning from experience in a game theoretic environment
raises problems which do not arise in classical inductive logic (on learning
in games see, e.g., [9, 13, 33]). Theories of learning in games are of obvi-
ous importance to epistemology. In general, we should expect that learning
in social interactions requires higher cognitive abilities than learning in a
stationary environment. Moreover, social interactions with a quite simple
structure might require less cognitive abilities than very complex social in-
teractions (another interesting study in this context is [27]). To get beyond
such mere conjectures, we have to study the performance of different kinds
of learning in a variety of environments.

In this paper we try to merge these two aspects. We will study a simple
game theoretic model of information transfer. This model is taken from Bala
and Goyal [2]. It will be introduced in Section 3, where we shall also review
some possible applications of the Bala-Goyal game.

To capture the second aspect, we will be analyzing the performance of
learning agents in the Bala-Goyal game. There are two kinds of learning we
shall consider: reinforcement learning and fictitious play (Section 2). Rein-
forcement learning algorithms are self-centered learning rules. This means
that an agent bases her decisions on nothing but the history of her own pay-
offs. Fictitious play is more akin to cognitive learning. Players are assumed
to have beliefs about what the other players are going to do. In its simplest
form, fictitious play is Carnapian inductive logic plus maximization of ex-
pected utility (see Skyrms [30]). Both learning rules are well studied, and
both have been proposed as models of human learning in games. From a the-
oretical standpoint, an interesting question to ask is whether a very simple
learning rule leads to satisfactory behavior in a given situation. For its sim-
plicity, reinforcement learning thus appears to be a natural first candidate.
Our main results suggest that the Bala-Goyal game presents problems to re-
inforcement learners which they can, in general, not overcome satisfactorily
(Section 4). We will also discuss some results on fictitious play in the Bala-
Goyal game (Section 5). These results indicate that learning rules which
are not purely self-centered perform better in the Bala-Goyal game. A short
discussion tries to place our results in philosophical perspective (Section 6).

2. Two models of learning from experience

Preliminaries

Aj = {1, 2, . . . ,mj} denotes the set of player j’s pure strategies. The Carte-
sian product of the other players’ strategy choices is denoted by A−j = A1×
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· · ·×Aj−1×Aj+1× · · ·×Ak. The set of strategy profiles is A = A1× · · ·×Ak

and is identified with A = Aj × A−j. The set of player j’s mixed strategies
is denoted by Sm(j). Sm(j) is the set of all probability distributions over Aj.
Thus Sm(j) can be identified with the (m(j)−1)-dimensional probability sim-
plex. The joint space of mixed strategies is given by S = Sm(1)× · · ·×Sm(k).
The joint mixed strategy space of the other players is denoted by S−j . The
payoff to player j is given by her utility function uj : A → R, where R

denotes the set of real numbers. uj can be uniquely extended to a multi-
linear function from Sm(j) to R. This extension will also be denoted by uj.
The set of players, their strategies and utility functions defines a game Γ in
strategic form.

Reinforcement learning

Reinforcement learning basically means that actions which led to higher pay-
offs in the past are more likely to be chosen again. A quite straightforward
formulation of this principle is associated with Herrnstein in the psycholog-
ical literature, and with Roth and Erev [12, 28] in the economics literature.
Suppose Γ is a k-person game in strategic form which is repeatedly played
at times n = 1, 2, 3, . . .. Each player j has m(j) pure strategies. At time n,

the vector of propensities q
j
n = (qj

1n, . . . , qj
m(j)n), where q

j
n ∈ R

m(j)
+ , repre-

sents player j’s attraction toward each of her actions. That is, qj
in is player

j’s tendency to choose strategy i at time n, q
j
0 being the player’s initial

propensities. Setting

pj
in =

qj
in

Qj
n

,

where Qj
n =

∑

m qj
mn, induces a probability distribution over j’s strategies

given by the vector p
j
n = (pj

1n, . . . , pj
m(j)n) ∈ Sm(j). The probability of

choosing a strategy is thus the relative frequency of the associated propensity.
After having chosen a strategy, player j updates her vector of propensities

according to the following rule:

qj
i(n+1) = qj

in + σj
in (1)

where σj
in is a random variable defined by

σj
in =

{

uj(i, a
−j
n ), if i was played at time n

0 otherwise.
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Here, a−j
n denotes the strategy profile of the other players at time n. Thus, a

reinforcement learner updates her propensity for the strategy she has played
by the strategy’s payoff while keeping the propensities for all the other strate-
gies fixed.

In the basic model, experiences from the remote past have the same
effect on present decisions as experiences which were made just recently.
This is unrealistic from a psychological and a methodological standpoint (see
Skyrms and Pemantle [31]). It is psychologically implausible since memories
fade. It is methodologically implausible since the players are assuming an
essentially stationary environment. Discounted reinforcement learning is a
straightforward way to meet these problems. The discounted version of the
basic model introduces a discount parameter φ ∈ (0, 1). The rule by which
a player updates her propensities is modified to

qj
i(n+1) = φqj

n + σj
in.

At each step in time past weights are discounted by φ. As φ → 0, past
experiences are forgotten faster. As φ → 1, the discounted model approaches
the basic model.

Fictitious Play

While reinforcement learning falls under the category of behavioral learning
rules, fictitious play is a simple formalization of cognitive learning [5]. One
way to introduce fictitious play is by modeling players as having beliefs about
the choices of the other players. Let ei

n be the random unit vector in Rm(i)

whose entries are defined by

ei
kn =

{

1 if i chose k at time n
0 otherwise.

Player j’s probabilities about i’s actions are then given by

z
j
in =

1

n + Λji

n
∑

k=1

(ei
k + λj

i ),

λj
i = (λj

i1, . . . ,λ
j
im(i)) being j’s vector of prior weights; i.e. λi

ik ≥ 0 is j’s

prior weight that player i chooses her kth action. Λji =
∑

k λ
j
ik.

Moreover, at each period n player j chooses a best response given her
beliefs z

j
n ∈ S−j. If y ∈ S−j , then k ∈ Aj is a (pure) best response to

y if uj(k,y) ≥ uj(l,y) for all l ∈ Aj . There may be more than one best
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response. Then a tie-breaking rule has to be specified. We assume that,
when confronted with a tie, players choose each best response with positive
probability, where the probability distribution stays fixed over time.

Fictitious play can be modified in a number of ways. One possible variant
is obtained by restricting the memory of each player to a certain number
of rounds m. Taking m = 1 yields the naive best response, or Cournot,
dynamics. Cournot agents know the last period’s strategy profile and play
a best response to it.

Following Bala and Goyal [2], we will also consider a modified version
of the Cournot dynamics, the myopic best response dynamics with inertia.
At each period n, each agent j exhibits inertia with some fixed probability
0 < µj < 1. This means that with probability µj agent j chooses aj

n again in
period n + 1. With probability νj = 1− µj player j chooses a best response

to a−j
n just like a Cournot agent. If there are multiple best responses to a−j

n ,
we assume that the agent chooses a best response according to a probability
distribution which assigns positive weight to each best response.

3. A simple model of information transfer

The model introduced by Bala and Goyal in [2] involves n agents. Each
agent has a piece of information which is valuable to the other agents. For
simplicity, it is assumed that the value of each piece of information is nor-
malized to 1. Agents may visit each other to get to the information. A visit
bears a cost of c. Throughout this paper we will assume that 0 < c < 1.
(The equilibrium properties of Theorem 3.1 below change if we allow for
c > 1.) This implies that it always pays off to visit another agent. Each
round, a player has to decide what players to visit. Thus a player has

n−1
∑

k=0

(

n − 1

k

)

= 2n−1

strategies. Each visit results in an asymmetric transfer of information. This
means that if A visits B, then A gets the information of B while B does not
get the information of A. A player also gets the information from indirect
links: if Ai visits Ai+1 for i = 1, . . . , k, then A1 gets the information from
A2, . . . , Ak. These properties make the Bala-Goyal game more challenging
from a strategic point of view than the networking model of Skyrms and
Pemantle [31].

We may picture the choices of the agents as a directed graph G. The n
vertices of G are the players. A directed edge (i, j) means that agent i visits
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agent j. (Thus, information is flowing from j to i.) A path in G from i to
j is a sequence of directed edges (i, k1), (k1, k2), . . . , (km−1, km), (km, j). G
is connected if there is a path from any agent i to any other agent j. G is
minimally connected if it is connected and if the removal of any directed edge
results in a disconnected graph G′. These concepts allow for a convenient
formulation of some equlibrium properties of the Bala-Goyal game.

Proposition 3.1 (Bala and Goyal [2]). Let 0 < c < 1. A joint strategy
in the Bala-Goyal game is a Nash equilibrium in pure strategies if and only
if its corresponding graph G is minimally connected. A joint strategy is a
strict Nash equilibrium if and only if its corresponding graph G is a connected
circle.

We would like to emphasize that there are also Nash equilibria in mixed
strategies. Consider the graph G = {(1, 2), (1, 3), (2, 1), (3, 1)} for a three-
player Bala-Goyal game. G is minimally connected. Suppose that player 2
mixes between (2, 1) and (2, 3) with probabilities p and (1−p). The resulting
profile is a Nash equilibrium as long as p > c. Nash equilibria of this kind
will play an important role in the learning dynamics of the Bala-Goyal game.

The Kula Ring of the Trobriand islands provides a real-world example
of a social network were transfer happens on a circle structure. It was first
described by B. Malinowski in 1922 [22]. The Kula Ring is a ritualized
exchange of two kinds of valuables, necklaces and bracelets. Along with
this, goods and informations are exchanged between neighboring islands.
Each group of islands is connected to two other groups of islands. Necklaces
are exchanged in one direction, and bracelets in the other. They travel
along two circles and visit all islands in the Kula Ring until they get back
again. (These goods are not supposed to be owned by one and the same
person for a long time.) People from one element of the Kula Ring visit
a neighboring element to get necklaces, and the other neighboring element
to get bracelets. Thus the asymmetry of transfer in the Bala-Goyal game
seems to hold. There are a number of other examples of circle structures in
anthropology (see, e.g., [23]).

4. Information transfer by reinforcement learning

The basic model

The cognitive requirements for reinforcement learning are quite low. An
agent just has to keep track of the sums of her past reinforcements for each
choice. In particular, a reinforcement learner needs no information about
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her environment. Nonetheless, it has been shown quite recently that the
basic model converges to optimal actions in stationary environments [3, 17].
Suppose the agent chooses from a finite set of actions A = {a1, . . . , am} at
times n = 1, 2, 3, . . .. Suppose in addition that the agent updates the weights
qn = (q1n, . . . , qmn) according to the basic model (1). The sequence of the
agent’s choices up to time n generates the σ-field Fn. If X denotes a random
variable, E[X|Fn] is the conditional expectation of X given Fn.

Proposition 4.1 (Beggs [3]). Let γ > 1. If for some i and for all n

E[un+1|Fn, ai chosen at n + 1] > γE[un+1|Fn, aj chosen at n + 1], (2)

where un+1 denotes the decision maker’s payoff at time n + 1, then the
probability that the decision maker chooses aj converges to zero as n → ∞
almost surely.

Proposition 4.1 tells us that a reinforcement learner will learn to avoid
suboptimal actions. E.g. in a multi-armed bandit problem where one slot
machine pays off with higher probability than any other, a reinforcement
learner will choose to play this slot machine in the long run.

Proposition 4.1 does, of course, not settle the issue of reinforcement
learning in games. Some results in this direction are to be found in [3, 17, 19,
29]. A frequently employed technique to analyze stochastic learning models
such as the basic model is stochastic approximation theory (see Benäım
[4]). Stochastic approximation theory asserts that the basic model (1) is
associated with a system of ordinary differential equations (ODE) whose
limiting behavior is closely related to the long-run behavior of the basic
model. This result is quite intuitive. Think of the basic model as an urn
process. Each strategy of a player is represented by balls of a particular
color. When a player chooses a particular strategy, she adds balls of the
corresponding color according to the payoff she receives. Assuming that
payoffs are positive, the number of balls is growing. Hence, adding balls
makes less difference at time n than at previous times. The process becomes
increasingly “deterministic” as time proceeds.

The ODE associated with the basic model can be obtained by looking at
the expected change in pj

in:

E[pj
i(n+1) − pj

in|Fn] =
pj

in(uj(ai,p
−j
n ) − uj(p))

Qj
n

+ O

(

1

(Qj
n)2

)

The first term of the right side of this equation is reminiscent of the evolu-
tionary replicator dynamics (see Hofbauer and Sigmund [15]): the expression
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pj
i (uj(ai,p

−j
n ) − uj(p)) can be interpreted as the rate of change in pj

i which
is given by its current value and the payoff difference between the payoff
player j gets from playing strategy ai and the average payoff uj(p) (which j
gets when playing the mixed strategy pj against p−j). Indeed, a variant of
the replicator dynamics turns out to be the ODE associated with the basic
model. To account for the different step sizes 1/Qj

n, a new variable µj
n is

introduced for each player by setting µj
n = n/Qj

n (see [17]). The expected
change in pj

in can then be rewritten as

E[pj
i(n+1) − pj

in|Fn] =
1

n
µj

n(pj
in

(

uj(ai,p
−j
n ) − uj(p))

)

+ O

(

1

n2

)

E[µj
n+1 − µj

n|Fn] =
1

n
µj

n

(

1 − µj
nu(p)

)

+ O

(

1

n2

)

The introduction of the new variables turns the basic model into a stochastic
algorithm with deterministic step size 1/n. Hopkins and Posch [17] show that
the ODE associated with the basic model is given by the following system
of differential equations:

ṗj
i = µjpj

i (uj(ai,p
−j
n ) − uj(p)), µ̇j = µj(1 − µjuj(p)). (3)

The first set of equations for the rate of change of pj
i is nothing but the

replicator dynamics rescaled by the factor µj.
The long-run behavior of solutions to the system (3) for the Bala-Goyal

game can be studied by using standard tools from dynamical systems theory.
We state a first result in this direction after the following lemma.

Lemma 4.2. If (p̄, µ̄) with µ̄j = 1/uj(p̄) is a rest point of (3), then the only
eigenvalue of the matrix dµ̇/dµ is −1. Consequently, this eigenvalue has
multiplicity n.

Proof. The entries of the matrix dµ̇/dµ are given by the partial derivatives

∂

∂µi
µj(1 − µjuj(p)).

This expression is 0 if i '= j. If i = j it is equal to 1 − 2µjuj(p). At (p̄, µ̄)
this equals −1. Thus, at the rest point dµ̇/dµ is a diagonal matrix with all
diagonal entries equal to −1.

Theorem 4.3. Let Γ be a n-person Bala-Goyal game. Then each strategy
profile that corresponds to a circle is asymptotically stable for (3).
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Proof. Notice first that all strategy profiles p̄ corresponding to a circle are
rest points for the replicator dynamics. By Lemma 2 of [17], (p̄, µ̄) with
µj = 1/uj(p̄) is a rest point for (3). To determine the stability of (p̄, µ̄), we
look at the Jacobian matrix of (3) evaluated at (p̄, µ̄). The Jacobian matrix
is of the form

J =

(

L 0
dµ̇/dp dµ̇/dµ

)

. (4)

Here, L is the Jacobian matrix of the system ṗj
i = µjpj

i (uj(ai,p
−j
n )−uj(p)).

Due to the zero-entries in the upper-right corner, the eigenvalues of J are
given by the eigenvalues of L and dµ̇/dµ. At the rest point (p̄, µ̄), L is
identical to the Jacobian of the adjusted replicator dynamics, which is given
by

ṗj
i =

pj
i (uj(ai,p

−j
n ) − uj(p))

uj(p)
.

A well-known result in evolutionary game theory states that all eigenval-
ues of the adjusted replicator dynamics at a strict Nash equilibrium are
negative. Lemma 4.2 implies that, at (p̄, µ̄), dµ̇/dµ has only negative eigen-
values. Hence, all eigenvalues of J at (p̄, µ̄) are negative. Therefore, (p̄, µ̄)
is asymptotically stable.

Theorem 4.3 has also consequences for the learning process as given by
the basic model (1). Since each strategy profile corresponding to a circle
is asymptotically stable for (3), the basic model converges to each of these
profiles with positive probability. This can be shown by applying a result of
the type of Theorem 7.3 of Benäım [4].

One might wonder if the circle is the only stable strategy configuration
of the Bala-Goyal game for the basic model. The next theorem provides a
partial answer to this question. To give a heuristic explanation, consider the
graph G from Section 3. G is a Nash equilibrium. As it turns out, G is also
stable under the dynamics (3) as will be shown in the proof of Theorem 4.4.
More precisely, this configuration is Lyapunov stable for (3), which means
that nearby solutions stay nearby for all future times. This implies that
there exists an open set O of initial states close to G such that solutions
starting in O will not converge to the circle.

Theorem 4.4. Let Γ be a n-player Bala-Goyal game. Then there exist open
sets of initial conditions which do not converge to a strategy profile which
corresponds to a circle for (3).
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Proof. Suppose that Γ is a three-player Bala-Goyal game. Denote by pj
i

the probability with which player j chooses her ith strategy, where j = 1, 2, 3
and i = 1, 2, 3, 4. Let sj

1 be the strategy of visiting noone, sj
2 the strategy

of visiting j + 1 modulo 3, sj
3 the strategy of visiting j + 2 modulo 3, and

sj
4 the strategy of visiting j + 1 and j + 2 modulo 3. Suppose that p̄1

4 = 1,
p̄2
2 = 1, p̄3

2 = λ and p̄3
3 = 1−λ where 0 ≤ λ ≤ 1 (c being the cost parameter).

Denote the corresponding joint state by p̄. Then it is easy to verify that
(p̄, µ̄) with µ̄j = 1/uj(p̄) is a rest point for (3). Indeed,

ṗ1
4 = p̄1

4(uj(s
1
4, p̄

−j) − uj(p̄)) = 0

and similarly for the other components of p̄. Thus, by Lemma 2 of [17],
(p̄, µ̄) is a rest point of (3). It remains to show the stability of this rest point.
By Lemma 4.2, the eigenvalues of dµ̇/dµ evaluated at (p̄, µ̄) are negative.
The matrix L of the Jacobian (4) has only non-positive eigenvalues. To see
this, denote by supp(p̄) the support of p̄, i.e. the strategies sj

i with p̄j
i > 0.

Consider sj
i /∈ supp(p̄). The eigenvalues with respect to these pure strategies

are called transversal eigenvalues and are given by uj(s
j
i , p̄

−j) − uj(p̄) (see
Hofbauer and Sigmund [15] for a derivation). All transversal eigenvalues are
negative as long as λ > p. Notice first that uj(s

j
1,x

−j) = 0 regardless of

x−j. Hence all transversal eigenvalues relative to sj
1 are negative. Moreover

u1(s1
2, p̄

−1) = 1− c < 2(1− c) = u1(p̄). If λ < p then u1(s1
3, p̄

−1) < 2(1− c)
and u2(s2

2, p̄
−1) < 2− c. Finally, for j = 2, 3 uj(s

j
4, p̄

−j) = 2(1− c) < 2− c =

uj(p̄). Consider the eigenvalues with respect to sj
i ∈ supp(p̄) next. Since all

points p̄ with 0 ≤ λ ≤ 1 are rest points, the part of state space spanned by
supp(p̄) is a linear manifold of rest points. Thus all eigenvalues with respect
to sj

i ∈ supp(p̄) are 0. Hence if λ < p all eigenvalues of the Jacobian for
(3) are non-positive with all transversal eigenvalues being negative. Since
the zero eigenvalues only apply to the linear manifold of rest points, the
points (p̄, µ̄) with λ < p are Liapunov stable, which means that trajectories
close to (p̄, µ̄) stay close to it. This implies that there exist open sets of
initial conditions which include each (p̄, µ̄) such that solutions starting in
one of these open sets do not converge to the circle. The above argument can
obviously be extended to a Bala-Goyal game with more than three players.
Just consider the state where player 1 visits all the other players while they
visit 1.

In the case of Theorem 4.4 conclusions about the behavior of the cor-
responding stochastic process are not as easy to draw as for Theorem 4.3.
The reason for this is that the components of Nash equilibria which are Lia-
punov stable are not attractors like the circle (if S denotes state space then
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A ⊂ S is an attractor of a dynamics φ if A is Liapunov stable and if there
exists a neighborhood U of A such that φt(x) → A as t → ∞ for all x ∈ U).
If N denotes such a component of Nash equilibria, then points in the relative
interior of N are Liapunov stable, but points on the relative boundary of
N are (second order) unstable. Thus, even if we assume that N attracts
an open set of initial conditions, there does not exist a neighborhood U of
N that would meet the requirements in the definition of an attractor. But
the existence of such a neighborhood is essential for proving a result like
Theorem 7.3 of Benäım [4].

Thus, proving whether the basic model converges to points in a compo-
nent like N is an open problem. Numerical simulations suggest that conver-
gence occurs. To be more specific, we carried out simulations with three and
four players. Even after 106 runs a considerable amount of the simulations
ended up in a state very much like a point in N (the exact amount depends
on c). Thus, given the heuristic result of Theorem 4.4, we may conjecture
that the basic model does indeed converge to components such as N . But
one has to be cautious with conclusions of this kind, since the slow speed
of the process near N casts doubt on whether convergence occurs in the
infinite limit (see [1, 25, 26] for similar points). However, our simulations,
together with Theorem 4.4, show: even if convergence occurs, the time for
convergence exceeds the lifetime of any simulation and the lifetime of any
relevant physical system. Therefore, in the time horizon we are interested
in, we may conclude that the basic model fails to robustly converge to the
circle in the Bala-Goyal game.

Discounted basic model

One might suspect that in the Bala-Goyal game players who come close to
a suboptimal state will eventually forget this state when choosing strate-
gies with higher payoffs. The next theorem shows that this does not hold.
Instead, the weights for playing their other strategies might be forgotten.

Theorem 4.5. The discounted basic model does not converge to the circle
of the Bala-Goyal game with positive probability.

Proof. Suppose there are n players. Let P be the matrix which has the
visiting probabilities of the players as entries. To be more specific, pij is the
probability that agent i visits agent j for j = 1, . . . , n, pik is the probability
that agent i visits one of the

(

n−1
2

)

pairs of agents, suitably numbered, and
so on. pi,2n−1 is the probability that agent i visits all the other players.
We regard pii as the probability that i visits nobody. Given ε > 0 we
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associate a directed graph G = G(P) with P as follows. The directed edge
(i, j) ∈ G if pik > ε for at least one k that corresponds to a subset of
{1, . . . , n} that has j as a member. We assume that ε < (2(2n−1 − 1))−1.
We will show that G will with positive probability just consist of the edges
(1, 2), (1, 3), . . . , (1, n), (2, 1), (3, 1), . . . , (n, 1) in the limit. Let us denote this
graph by G∗.

The first step consists in showing that for any P we can get from G(P)
to G∗ with probability at least δ1 > 0. There exists a number N such that if
1 chooses her (2n−1)st strategy and j chooses strategy 1, j = 2, . . . , n for N
consecutive rounds, then G(P(N)) = G∗. If we choose ε small enough, then
each round this probability is at least εn. Taking 0 < δ1 < εnN completes
the first step.

The second step consists in showing that with probability at least δ2,
G(P(t)) = G∗ for all t ≥ N . By the definition of G∗

∑

j $=2n−1

p1j ≤ (2n−1 − 1)ε and
∑

j $=1

pij ≤ (2n−1 − 1)ε, i = 2, . . . , n.

Since ε < 2(2n−1−1)−1 all these sums are at most 1/2. By letting the players
choose according to G∗ for k rounds each sum is bounded by 1/2φk, where φ
is the discount parameter. Therefore, the probability that all players choose
according to G∗ for N consecutive rounds is at least

N−1
∏

k=0

(

1 −
1

2
φk

)n

.

Since 0 < φ < 1,
∑

k φ
k < ∞. Hence letting N → ∞ yields an infinite

product greater than 0. Taking δ2 less than this value, the probability that
the players’ choices converge to G∗ is at least δ1δ2.

5. Information transfer by fictitious play

Unlike reinforcement learning, fictitious play assumes that players have a
quite accurate model of the other agents. While reinforcement learners
gather information indirectly by their payoff history, fictitious play learn-
ers gather information about the world directly by observation. The last
property also holds for naive best response learning.

Bala and Goyal [2] study the myopic best response dynamics with inertia
in the Bala-Goyal game. Unlike reinforcement learners, agents choosing
according to this version of the Cournot dynamics converge to the circle
almost surely.
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Theorem 5.1 (Bala and Goyal [2]). If all players of the n-player Bala-Goyal
game choose according to the myopic best response dynamics with inertia,
then the strategy profile converges to a circle of the Bala-Goyal game with
probability 1.

Fictitious play learners are somewhat more sophisticated since they take
account of the whole history of the repeated game. A simple, but useful re-
sult follows from the fact that the circle is a strict Nash equilibrium (see, e.g.,
Fudenberg and Levine [13, Proposition 2.1]). For this and all the statements
up to, and including Theorem 5.7 we assume that players learn according
to fictitious play. (Other simplifying assumptions for the statements of the
rest of this section will be introduced after the next theorem.)

Theorem 5.2. If the joint strategies of the players correspond to a circle of
the n-player Bala-Goyal game at time t, then this joint strategy is played at
all subsequent times.

To make the model more tractable, we will look at the case of three play-
ers whose initial beliefs are uniform over the other agents’ actions. Moreover,
the statements of our results will be simplified by assuming that 1/2 < c < 1
(see Remark 5.4 below). The strictly dominated strategy of visiting nobody
can, and will, be ignored.

Let vn
ij be the number of times i has visited j by time n. Then vi =

n − vn
ij − vn

ik (k '= j) is the number of times i has visited both of the other
agents by time n. λij and λi are the respective prior weights. We assume
that λij = λi = 1 for all i, j. pn+1

ij denotes i’s probability that j visits her at
time n + 1, and it is given by

pn+1
ij =

vn
ji + 1

n + 3
.

We denote the probability that i visits both of the other players by qi. Then
qi = 1 − pij − pik. V n

ij denotes the event that i has chosen to visit j at time
n, and V n

i denotes the event that i has chosen to visit j and k at time n.
We shall suppress the time-index whenever it is convenient to do so. The
expected values for i’s actions are given by

En[V n+1
ij ] = 2−c−pn

ij , En[V n+1
ik ] = 2−c−pn

ik and En[V n+1
i ] = 2(1−c),

where En is the conditional expectation relative to the σ-algebra Fn gener-
ated by the variables V m

ij , V m
i , m = 1, . . . , n.

To formulate the next series of results we introduce the directed graphs
G = {(i, j), (i, k), (j, i), (k, i)} and G′ = {(i, j), (i, k), (j, k), (k, i)}. Moreover,
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let H be a directed graph that corresponds to a profile where at least two
players visit both other players, and let K = {(i, k), (j, i), (k, i)} and L =
{(i, j), (i, k), (j, k), (k, j)}. We note that for 1/2 < c < 1 and initial weights
of 1, the players start by choosing a profile K or a circle profile.

Lemma 5.3. If 1/2 < c < 1, then the joint strategies of three players do not
switch to G without passing through a profile different from K. For G′ either
the same conclusion as for G holds, or G′ leads to a circle profile.

Proof. Suppose that before period n + 1 the players have always chosen
K. In period n + 1 they choose according to G only if

pji, pki ≤ c ≤ pij , pik and pji ≤ pjk, pki ≤ pkj.

This follows by a simple inspection of the expected values. We assume
in addition, and without loss of generality, that pij ≤ pik. This set of
inequalities implies

(i) vji, vki ≥ vij , vik

(ii) vki ≤ vik, vji ≤ vij and vji ≤ vki

since vik = n− vij, vjk = n− vji and vkj = n− vki. These inequalities imply
that vij = n/2 for all i, j. Hence, for all i, j,

pij =
n + 2

2(n + 3)
.

Since pij = c we must have
n + 2

n + 3
= 2c

which is impossible for c > 1/2. To prove the part of the lemma for G′,
observe that the same inequalities as for G hold except that pik ≤ c and
pik ≤ pji. If pik = pji, then the same arguments as for G apply. If pik < pji,
then calculating the vij for the next round shows that the players will choose
according to the circle after a finite number of rounds.

Remark 5.4. If 0 < c < 1/2, profiles corresponding to G are possible but
unlikely. If pij = c for all i, j, then

n =
6c − 2

1 − 2c
= ϕ(c).

ϕ is a strictly decreasing negative function of c for 1/2 < c < 1, but it is a
strictly increasing positive function for 0 < c < 1/2. As c ↑ 1/2, ϕ(c) ↑ ∞.
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By the intermediate value theorem, ϕ(c) takes on any positive integer n as
value. But notice that the set {c : ϕ(c) = n for some integer n} has measure
zero since ϕ is strictly increasing. For instance, ϕ(c) < 2 if, and only if,
c < 2/5. So for all c < 2/5 the conclusion of Lemma 5.3 also holds. The
event that the inequalities of the proof of Lemma 5.3 are satisfied may thus
be considered as exceptional and not robust to small perturbations of c.

Lemma 5.5. If 1/2 < c < 1, then three players will never choose profile H.

Proof. Suppose i and j visit both other players in period n. This is the
case only if pik, pjk ≥ c. Hence pik + pjk ≥ 2c > 1 which is impossible since
pik + pjk ≤ 1.

Lemma 5.6. If 1/2 < c < 1, then the joint strategies of three players do not
switch to L without passing through a profile different from K.

Proof. Suppose the players choose with positive probability according to
(i, j), (i, k), (j, k), (k, j) for the first time in period n + 1. Then at time n
profile (i, k), (j, i), (k, i) (j and k may be interchanged) must have occurred
with positive probability. Thus, vn−1

jk ≥ (n − 1)/2 and vn−1
kj ≥ (n − 1)/2.

Hence, vn
ji = n − vn

jk ≤ (n + 1)/2 and vn
ki ≤ (n + 1)/2. Therefore, at time

n + 1,

pn+1
ij + pn+1

ik ≤ 2
(n + 1)/2 + 1

n + 3
= 1 < 2c.

This implies that i does not choose to visit j and k at time n + 1 (just
consider the corresponding expected values).

By the foregoing lemmata, the players will always choose a profile equiv-
alent to K or the circle since they start with one of these profiles. This
does not imply convergence to the circle: the players may switch strategies
forever. Our next result shows that this will not happen.

Theorem 5.7. If 1/2 < c < 1, then the joint strategies of three players
converge to a profile corresponding to a circle with probability 1.

Proof. K implies that vji ≥ vki, vij ≤ vkj and vik ≤ vjk. If vkj > vij,
then after a finite number of periods vji = vki or vik = vjk. If the latter,
then there is a probability of at least ε > 0 that the players get to the
circle. If not, they get to a profile equivalent to K. If vji = vki first, then
i chooses randomly until j or k also choose randomly. The result of these
choices is again a circle or a profile equivalent to K. If vkj = vij , then j will
choose randomly until i or k also choose randomly. The result is, again, that
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the players get to the circle or to a profile equivalent to K. Hence, starting
from a profile equivalent to K leads, within a finite number of periods, to a
period n where the players get to the circle with probability at least ε > 0, or
they get back to a profile equivalent to K. To finish the argument, consider a
sequence of choices where each time (i) at least one player chooses randomly,
(ii) these random choices are independent of choices at all other times, and
(iii) the random choices lead to the circle with probability at least ε > 0.
If En denotes the event that the players get to the circle at time n, then
clearly ∞

∑

n=1

P(En) = ∞.

Since the events En are independent, the second Borel-Cantelli Lemma im-
plies that En will happen infinitely often with probability 1 (see, e.g., Durrett
[11, Section 1.6]). Therefore, the players will, with probability 1, randomly
choose according to the circle at some finite period n if they have always
returned to K before n.

Numerical simulations show that convergence to the circle takes place
quite rapidly and for all c ∈ (0, 1). Numerical simulations for four players
led to the same result. Since nothing in the basic structure of the pure Nash
equilibria changes when we consider more than three players, we conjecture
that n players will also converge to the circle if each player starts with weights
initialized to 1.

When players start with random initial weights, numerical simulations
with three and four players indicate that they do not always converge to the
circle. The reason for this is quite simple. If initially λij, λik, λjk and λkj

are very high, the players will choose G. By playing G, the number of visits
vji, vki increases, while vij, vik, vkj and vjk remain constant. As a result,
the players will continue to choose according to G.

Notice that if j or k were to choose the payoff-equivalent strategies (j, k)
and (k, j) sufficiently often, the players might be able to get away from G.
To make this idea precise, let us consider a modification of fictitious play
(a similar version of fictitious play was studied in [21, 32]). For this modifica-
tion of fictitious play, the belief formation process is the same as for standard
fictitious play. The choice rule is changed into a rule that tells the players
to choose an ε-best response with positive probability; i.e., if xj

n denotes the
maximum conditional expected value of player j at time n, then, for some
ε > 0, i chooses any strategy with expected value En−1[V n

ij ] ≥ xn − ε with
some fixed positive probability δ. As our next result shows, a state such as
G will not persist under this modified version of fictitious play.
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Theorem 5.8. If players use an ε-best response rule, then they will almost
surely not converge to a profile such as G.

Proof. Suppose the players converge to a profile G. Then there exists some
period N such that we have (i, j), (i, k) and (k, i) for all periods n ≥ N .
Let us denote the initial weights of j that i or k will visit her by λij and λkj,
respectively. Let Λ denote the sum of j’s initial weights. Then

pn+1
ji =

vn
ij + λij

n + Λ
and pn+1

jk =
vn
kj + λkj

n + Λ
.

For n ≥ N , vn
ij and vn

kj remain constant. Hence for any ε > 0 there exists
a m ≥ N such that pm

jk − pm
ji < ε. Thus, if i and k continue in choosing

according to G, the event that j will always play (j, i) from some time onward
has probability zero. This follows because |pk

jk − pk
ji| < ε for all k > m and

from the second Borel-Cantelli Lemma.

Theorem 5.8 is consistent with numerical simulations. In fact, simula-
tions with three and four players always converge to the circle when players
use the modified best response rule which treats approximate ties as ties.

It should be emphasized that tie-breaking according to a probability
distribution which assigns positive weight to all (approximate) best responses
is essential for our proofs. The Bala-Goyal game is degenerate, since it allows
for continua of Nash equilibria. It has been shown by Monderer and Sela [24]
that there exist tie-breaking rules such that fictitious play does not converge
in degenerate 2 × 2 games. However, many tie-breaking rules should work,
as we either get back to a tie, or get away from the suboptimal equilibrium.

6. Discussion

As Theorem 4.1 shows, reinforcement learning is remarkably effective in
achieving efficient solutions in some problems. This does not only apply to
bandit problems, or more general sequences of events which are exemplified
by condition (2). Reinforcement learning is also performing well in some
classes of games, such as, e.g., non-degenerate partnership games, i.e. games
where the interests of the players largely coincide (see [17]). However, as
our results suggest, reinforcement learning seems to be unable to reliably
generate efficient communication networks in the Bala-Goyal game.

In contrast, very simple forms of cognitive learning with best, or approx-
imate best responses suffice to achieve efficiency. With respect to the Kula
Ring, this leaves us with a puzzle: according to the account of Malinowski,
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the participants of the Kula Ring do clearly not have the kind of global
information fictitious play learners use. But the Kula Ring itself is quite
efficient nonetheless.

This puzzle poses one set of problems for future research. One possible
line of research is to find algorithms “in between” reinforcement learning
and fictitious play. Camerer and Ho [5] show that there exists a continuum
of learning algorithms between reinforcement learning and fictitious play.
Fictitious play as presented in Section 2 is equivalent to hypothetical rein-
forcement learning where players reinforce the weights for all actions by the
payoff they would have gotten had they played the corresponding strategy.
Reinforcement learning assigns zero weight to these hypothetical reinforce-
ments, while fictitious play assigns a weight of one to hypothetical and actual
reinforcements. Using these weights as parameter sets yields a parametrized
family of algorithms. Notice, however, that Camerer-Ho learning also uses
some kind of global information, in that hypothetical reinforcement for ac-
tions not taken must be calculated. One could get around this by letting the
players learn these hypothetical payoffs; i.e. the player keeps track of the
payoff she got from playing each action and uses this as an estimate for the
hypothetical payoff. This form of learning is studied in Leslie and Collin’s
model-free version of fictitious play (see [20]).

Another way to overcome the problem of global information is to take into
account growth of networks. Circles may start small. Global information
may still be feasible in these small networks. Circles then grow by expansion
or coalescing when two rings come into contact. But this sort of model
remains to be explored.

Hopkins [16] also compares reinforcement learning and fictitious play
and finds striking similarities between perturbed reinforcement learning and
stochastic fictitious play in two-person games. The crucial difference seems
to be that stochastic fictitious play gives rise to faster learning. What this
means for our findings is no straightforward matter since Hopkins uses mod-
ified algorithms. Convergence might not work for Camerer-Ho learning or
for stochastic fictitious play. Another road for future research consists in
extending the analysis to other signaling interactions and more complicated
signaling networks.
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[4] Benäım, M., ‘Dynamics of Stochastic Approximation Algorithms’, in Le Seminaire

de Probabilites, Lecture Notes in Mathemtics, vol. 1709, Springer-Verlag, New York,

1999, pp. 1–68.
[5] Camerer, C., and T. Ho, ‘Experience-weighted attraction learning in normal form

games’, Econometrica 67 (1999), 827–874.
[6] Carnap, R., Logical Foundations of Probability, Chicago University Press, Chicago,

1950.

[7] Carnap, R., The Continuum of Inductive Methods, Chicago University Press,
Chicago, 1952.

[8] Carnap, R., ‘A Basic System of Inductive Logic’, in Rudolf Carnap, and Richard C.

Jeffrey (eds.), Studies in Inductive Logic and Probability I, University of California
Press, Los Angeles, 1971, pp. 33–31.

[9] Cesa-Bianchi, N., and G. Lugosi, Prediction, Learning, and Games, Cambridge
University Press, Cambridge, 2006.

[10] De Finetti, B., ‘Foresight: Its Logical Laws, its Subjective Sources’, in Henry E.

Kyburg, and Howard E. Smokler (eds.), Studies in Subjective Probability, John Wiley
and Sons, New York, 1964, pp. 93–158.

[11] Durrett, R., Probability: Theory and Examples, Duxbury Press, Belmont,

CA, 1996.
[12] Erev, I., and A. E. Roth, ‘Predicting How People Play Games: Reinforcement

Learning in Experimental Games with Unique, Mixed Strategy Equilibria’, American

Economic Review 88 (1998), 848–880.

[13] Fudenberg, D., and D. K. Levine, The Theory of Learning in Games, MIT Press,

Cambridge, Mass., 1998.
[14] Goldman, A., Knowledge in a Social World, Oxford University Press, Oxford, 1999.

[15] Hofbauer, J., and K. Sigmund, Evolutionary Games and Population Dynamics,

Cambridge University Press, Cambridge, 1998.
[16] Hopkins, E., ‘Two Competing Models of How People Learn in Games’, Econometrica

70 (2002), 2141–2166.
[17] Hopkins, E., and M. Posch, ‘Attainability of Boundary Points under Reinforcement

Learning’, Games and Economic Behavior 53 (2005), 110–125.

[18] Kitcher, P., ‘The Division of Cognitive Labor’, Journal of Philosophy, June
(1990), 5–22.



256 S. M. Huttegger and B. Skyrms

[19] Laslier, J.-F., R. Topol, and B. Walliser, ‘A Behavioral Learning Process in
Games’, Games and Economic Behavior 37 (2001), 340–366.

[20] Leslie, D. S., and E. J. Collins, ‘Convergent Multiple-Times-Scales Reinforcement

Learning Algorithms in Normal Form Games’, The Annals of Applied Probability 13
(2003), 1231–1251.

[21] Leslie, D. S., and E. J. Collins, ‘Generalized Weakened Fictitious Play’, Games

and Economic Behavior 56 (2006), 285–298.
[22] Malinowski, B., Argonauts of the Western Pacific: An Account of Native Enter-

prise and Adventures in the Archipelagoes of Melanesian New Guinea, Routledge and
Kegan Paul, London, 1922.

[23] McKinnon, S., From a Shattered Sun. Hierarchy, Gender, and Alliance in the Tan-

imbar Islands, The University of Wisconsin Press, Madison, 1991.
[24] Monderer, D., and A. Sela, ‘A 2 × 2 game without the fictitious play property’,

Games and Economic Behavior 14 (1994), 144–148.

[25] Pemantle, R., and B. Skyrms, ‘Reinforcment Schemes may take a long Time to
Exhibit Limiting Behavior’, Preprint (2001).

[26] Pemantle, R., and S. Volkov, ‘Vertex Reinforced Random Walk on Z has Finite
Range’, Annals of Probability 48 (2004), 1368–1388.

[27] Posch, M., A. Pichler, and K. Sigmund, ‘The Efficiency of Adapting Aspiration

Levels’, Proceedings of the Royal Society London B 266 (1999), 1427–1436.
[28] Roth, A., and I. Erev, ‘Learning in Extensive Form Games: Experimental Data and

Simple Dynamic Models in the Intermediate Term’, Games and Economic Behavior

8 (1995), 164–212.
[29] Rustichini, A., ‘Optimal Properties of Stimulus Response Learning Models’, Games

and Economic Behavior 29 (1999), 244–273.

[30] Skyrms, B., ‘Carnapian Inductive Logic for Markov Chains’, Erkenntnis 35 (1991),
439–460.

[31] Skyrms, B., and R. Pemantle, ‘A dynamic model of social network formation’,
Proceedings of the National Academy of Sciences 97 (2000), 16, 9340–9346.

[32] Van der Genugten, B., ‘A Weakened Form of Fictitious Play in Two-Person Zero-

Sum Games’, International Game Theory Review 2 (2000), 307–328.
[33] Young, H. P., Strategic Learning and its Limits, Oxford University Press, Oxford,

2004.

[34] Zabell, S., Symmetry and Its Discontents, Cambridge University Press, Cambridge,
2006.

[35] Zollman, K. J. S., ‘The Epistemic Benefit of Transient Diversity’, Philosophy of

Science (forthcoming).

Simon M. Huttegger

Konrad Lorenz Institute for
Evolution and Cognition Research
Adolf Lorenz Gasse 2
A-3422 Altenberg, Austria
simon.huttegger@kli.ac.at

Brian Skyrms

Department of Logic and Philosophy of Science
University of California at Irvine
3151 Social Science Plaza A
Irvine, CA 92697-5100, USA
bskyrms@uci.edu


