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Dynamic stability and basins of attraction
in the Sir Philip Sidney game
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We study the handicap principle in terms of the Sir Philip Sidney game. The handicap principle asserts

that cost is required to allow for honest signalling in the face of conflicts of interest. We show that the

significance of the handicap principle can be challenged from two new directions. Firstly, both the

costly signalling equilibrium and certain states of no communication are stable under the replicator

dynamics (i.e. standard evolutionary dynamics); however, the latter states are more likely in cases

where honest signalling should apply. Secondly, we prove the existence and stability of polymorphisms

where players mix between being honest and being deceptive and where signalling costs can be very

low. Neither the polymorphisms nor the states of no communication are evolutionarily stable, but they

turn out to be more important for standard evolutionary dynamics than the costly signalling equilibrium.

Keywords: costly signalling; evolutionary dynamics; handicap principle; polymorphic equilibrium;

Sir Philip Sidney game
1. INTRODUCTION
The Sir Philip Sidney game (Maynard Smith 1991) has

been a locus of attention for the analysis of costly signal-

ling between relatives. It represents perhaps the simplest

game that captures the central notion of handicaps

owing to Zahavi (1975); i.e. that cost is required to main-

tain honest signalling in the presence of partial conflict of

interest. The canonical example for the Sir Philip Sidney

game is the interaction between feeding chicks and their

parents. Maynard Smith introduced the discrete Sir

Philip Sidney game as a simplified version of

Grafen’s (1990) notable costly signalling model (see also

Johnstone & Grafen 1992, 1993; Bergstrom & Lachmann

1997, 1998; Lachmann & Bergstrom 1998; Godfray &

Johnstone 2000; Brilot & Johnstone 2003; Hamblin &

Hurd 2009). Many variations of the initial game have

been considered, and there is an ongoing debate about

how widespread this phenomenon is (Maynard Smith &

Harper 2003; Searcy & Nowicki 2005). However, much

of this debate retains the central methodology of calculat-

ing evolutionarily stable states (ESS) (Maynard Smith &

Price 1973; Maynard Smith 1982).

In this paper, we conduct a dynamic analysis of the

original Sir Philip Sidney game, which identifies gaps in

our understanding of honest signalling caused by the

strong focus on ESS. We concentrate on two issues.

Firstly, we contrast the evolutionary significance of

states of perfect communication (the signalling ESS)

and states of no communication (pooling equilibria). In

most of the cases relevant for costly signalling, the pooling

equilibrium appears to be the most probable evolutionary

outcome in terms of having the larger basin of attraction

under standard evolutionary dynamics (§4). Secondly,

while the existence of the signalling ESS and of pooling

equilibria is a well-established result in the literature, we
r for correspondence (shuttegg@uci.edu).
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prove that, in addition, a family of polymorphic equilibria

exists which allow for partial communication (§2). These

polymorphisms can establish partly honest signalling even

in the face of low signalling costs. We prove dynamic stab-

ility of the polymorphic equilibrium (§3), and show that

this outcome is in many cases more likely than the signal-

ling ESS (§4). These results have some important

biological implications. We suggest in particular that

one should not place too much weight on perfect com-

munication in situations involving conflicting interests;

instead, one may look for alternative equilibria such as

the polymorphisms described below. We shall discuss

this issue more thoroughly in the concluding section of

this paper.
2. THE SIR PHILIP SIDNEY GAME
The Sir Philip Sidney game proceeds in two stages. A

sender can be either healthy (with probability 1 2 m) or

needy (with probability m). In both states, the sender

can send a signal bearing a cost c . 0, or decline sending

a signal at all. In the second stage, after having (or not

having) received the signal, a donor may respond by

transferring a resource d . 0 to the sender and thus redu-

cing her survival probability to 1 2 d, or may abstain from

doing so. The donor does not know the sender’s true

state. The extensive form of this game is depicted in

figure 1. Without receiving the resource, a sender’s prob-

ability of surviving is 1 2 a if she is needy and 1 2 b if she

is healthy; we assume that a . b throughout this paper

(i.e. a needy individual profits more from receiving the

resource).

The extensive form game of figure 1 does not allow for

communication as the donor’s strategy of never transfer-

ring the resource is strictly dominant. Introducing a

relatedness parameter k [ [0,1] permits a higher degree

of common interest between the sender and the donor.
This journal is q 2010 The Royal Society
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Figure 1. An extensive form representation of the Sir Philip Sidney game. The dotted lines represent the donor’s information
sets, i.e. the donor is unable to distinguish between the decision nodes connected by the dotted lines. The terminal nodes show

the sender’s and the donor’s payoffs, respectively.

Table 1. Sender and donor strategies in the Sir Philip

Sidney Game.

sender strategies donor strategies

S1: signal only if healthy R1: donate only if no signal

S2: signal only if needy R2: donate only if signal
S3: never signal R3: never donate
S4: always signal R4: always donate
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At each outcome, a player receives her own payoff plus k

times the payoff of the other player. This gives rise to a

four-by-four strategic-form game. A player’s strategies

are given by a rule of behaviour which tells her what to

do at each of her information sets. These strategies are

enumerated in table 1.

Investigators often reduce the four-by-four strategic-

form structure by ignoring the strategies ‘signal only if

healthy’ and ‘donate only if no signal’ (like Bergstrom &

Lachmann 1997; Maynard Smith & Harper 2003). In

this truncated game, two kinds of equilibria are usually

considered. The first one is the most important Nash

equilibrium in the literature on handicap signals. It is

given by the strategy pair ‘signal only if needy’ and

‘donate only if signal’, and it is a Nash equilibrium if

a � cþ kd � b ð2:1aÞ

and

a � d

k
� b ð2:1bÞ

(Bergstrom & Lachmann 1997). At this equilibrium, cost

can be said to maintain signal reliability as a needy sender

is willing to pay the cost c in order to get the resource,

while a healthy sender does not pretend to be needy by

sending the signal. If the inequalities are strict, then the

equilibrium is a strict Nash equilibrium and, therefore,

also an ESS in the symmetrized game (cf. Cressman
Proc. R. Soc. B
2003). This equilibrium is usually called a signalling

ESS or a separating equilibrium.

There always exists a pooling equilibrium where no

information is transferred. Bergstrom & Lachmann

(1997) show that the profile ‘never donate’ and ‘never

signal’ is Nash equilibrium if

d . kðmaþ ð1�mÞbÞ; ð2:2Þ

if this inequality is reversed, then the profile ‘always

donate’ and ‘never signal’ is Nash equilibrium. As the

signal is not sent at both equilibria, these profiles can be

called pooling equilibria.

In appendix B, we prove that ‘signal only if healthy’

and ‘donate only if no signal’ is Nash equilibrium if

equation (2.1b) holds together with

a � kd � c � b: ð2:3Þ

This equilibrium is often ignored by other investigators

on grounds of requiring too much common interest

between sender and donor to be relevant for costly signal-

ling theory (Maynard Smith 1991; Bergstrom &

Lachmann 1997). We think that this exclusion is a mis-

take. Firstly, the existence conditions of this equilibrium

play a role in interpreting dynamical properties of the

Sir Philip Sidney game as parameters are varied (§§3

and 4). Moreover, R1 is important for the equilibrium

structure of one of the pooling equilibria. Once we

allow all sender and donor strategies, a pooling equili-

brium will never be a strict Nash equilibrium. Given

that the sender chooses ‘never signal’, R2 and R3 as well

as R1 and R4 are behaviourally equivalent. In appendix A,

we show that pooling equilibria are elements of larger sets

of Nash equilibria. In the case of (S3, R3), the donor can

play a mixture (1 2 l)R2 þ l R3. As long as

l � 1� c

a� kd
; ð2:4Þ

the strategy profile (S3, (1 2 l)R2 þ lR3) is a Nash

equilibrium if equation (2.2) holds; otherwise, (S3, (1 2 m)

http://rspb.royalsocietypublishing.org/
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R1þ mR4) is a Nash equilibrium as long as

m � 1� c

kd � b
: ð2:5Þ

As pooling equilibria are elements of a line of equilibria,

they cannot be evolutionarily stable. One can show,

however, that they correspond to neutrally stable

strategies (Maynard Smith 1982). We will come back to

this point shortly in the broader context of dynamic

stability (§3).

To the best of our knowledge, another kind of equili-

brium has been completely overlooked in the biological

literature. In the corresponding economics literature

(starting with Spence 1973), similar equilibria—called

hybrid equilibria—are known to exist but were considered

unimportant. Recently, Wagner (2009) has shown that,

contrary to received wisdom, a hybrid equilibrium can

be very significant in Spence’s game from the point of

view of game dynamics. In the Sir Philip Sidney game,

there exists a family of polymorphisms which corresponds

to hybrid equilibria. Each polymorphism is a mixed Nash

equilibrium where the sender mixes between ‘signal only

when healthy’ and ‘always signal’, while the donor mixes

between ‘donate if signal’ and ‘never donate’. The family

of polymorphic equilibria is given by lS2 þ (1 2 l)S4 and

mR2 þ (1 2 m)R3, where

l ¼ kðmaþ ð1�mÞbÞ � d

ð1�mÞðkb� dÞ and m ¼ c

b� kd
: ð2:6Þ

As l, m must be well defined, the polymorphism (2.6)

exists if

a .
d

k
. b and b� kd . c ð2:7Þ

and if equation (2.2) is met. (The proof can be found in

appendix B.) The conditions (2.7) show that, under gen-

eric conditions, the mixed Nash equilibrium (2.6) exists if

and only if the signalling ESS (2.1) does not exist. The

smallest cost which allows for the existence of a seperating

equilibrium is given by c* ¼ b 2 kd. This is, in a sense,

the minimum cost of a believable signal (Bergstrom &

Lachmann 1997). Condition (2.7) implies that at the

polymorphism, the cost of the signal will be lower than

c*. However, the polymorphic equilibrium sustains

some level of meaningful communication. Thus, infor-

mation transfer is possible in a wider range of cases

than was previously believed. (Notice that partly honest

communication here does not arise because of the intro-

duction of different sender types as in Johnstone &

Grafen (1993).)
3. DYNAMIC STABILITY OF EQUILIBRIA
The multiplicity of equilibria in the Sir Philip Sidney

game makes a priori conclusions about its evolutionary

outcomes difficult. In order to assess the evolutionary

significance of the different equilibria, we shall investigate

their dynamic stability properties in terms of the two-

population replicator dynamics (Hofbauer & Sigmund

1998). If xi is the relative frequency of sender type i and

yj is the relative frequency of donor type j, i, j ¼ 1, . . . ,4,

then this dynamics is given by

_xi ¼ xiðpiðyÞ � pðx; yÞÞ ð3:1aÞ
Proc. R. Soc. B
and

_yj ¼ yjðpjðxÞ � pðy; xÞÞ: ð3:1bÞ

Here, x ¼ ðx1; . . . ; x4Þ; y ¼ ðy1; . . . ; y4Þ; piðyÞ is the payoff

of i against y and p(x, y) is the average payoff in the

sender population; pj(x) is the payoff of j against x and

p(y, x) is the average payoff in the donor population.

Many of our results also apply to the one-population

replicator dynamics if we consider the symmetrized Sir

Philip Sidney game (for details, see Cressman 2003).

Under the relevant conditions ((2.1a,b) and (2.3) with

strict inequalities, respectively) (S2, R2) and (S1, R1) are

strict Nash equilibria and therefore asymptotically stable

population states for equations (3.1). In appendix A, we

show that if the inequalities in equations (2.4) and (2.5)

are strict, then the equilibria in the components (2.4) or

(2.5) are quasi-strict. (An equilibrium is quasi-strict if

there is no best repsonse to any of its components outside

of its support.) In the symmetrized version of the game,

these profiles are neutrally stable. Quasi-strictness, in

turn, implies the following result (for details on why

quasi-strictness implies dynamic stability in this case cf.

Cressman 2003).

Theorem 3.1. The pooling equilibria given by equations

(2.4) and (2.5) attract an open set of nearby population

states under the appropriate conditions.

Theorem 3.1 tells us that pooling equilibria are mean-

ingful for the replicator dynamics as a non-negligible

portion of initial populations will end up in the set of

pooling equilibria.

The dynamic stability properties of the poly-

morphic equilibrium (2.6) are particularly interesting.

In appendix B, we prove two results: (i) all transversal

eigenvalues of the Jacobian matrix J of equations (3.1)

evaluated at the points given by (2.6) are negative and

(ii) the two remaining eigenvalues of J are purely imagin-

ary. Both results hold if we assume that conditions (2.2)

and (2.7) are met. (i) and (ii) imply that the polymorph-

ism (2.6) is a spiralling centre; i.e. initial population states

close to the polymorphism in the interior of the state

space converge towards K ¼ span(S2, S4) � span(R2,

R3) and, once they get close enough, spiral around the

polymorphism forever. The following theorem summar-

izes the stability properties of the polymorphic

equilibrium.

Theorem 3.2. If equations (2.2) and (2.7) hold, then the

polymorphic equilibrium (2.6) is Liapunov stable under

the replicator dynamics (3.1).

As all transversal eigenvalues are negative, the interest-

ing dynamical behaviour is confined to K. The phase

portrait of this face for one set of parameter values is

depicted in figure 2. We should note that this dynamical

behaviour is structurally unstable (Guckenheimer &

Holmes 1983); perturbations of the dynamics (3.1) will

either result in an asymptotically stable or an unstable

polymorphism. The issue of structural instability is a

subtle one and needs more space; see Hofbauer &

Huttegger (2008) for a case study. Suffice it to say here

http://rspb.royalsocietypublishing.org/
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Figure 2. A phase portrait of one boundary face of the space
of population states (face K) of the Sir Philip Sidney game
illustrating the motion around the polymorphic equilibrium.
Close to the unique rest point, interior trajectories (of the full

state space) converge to K. Notice the resemblance between
this phase portrait and the phase portrait of the well-known
game of matching pennies under the replicator dynamics.

Table 2. An initial population and its associated payoffs that
illustrate how a smaller c might retard the evolution of
signalling for extreme values of m.

strategy proportion payoff

selective

force

S1, signal if 0.05 1.626 2 0.9c 20.254c

1.0

0.9

0.8

0.6

0.7

ba
si

n 
of

 a
ttr

ac
tio

n

0.5

0.4

0.3
0.1 0.2 0.3 0.4 0.5 0.6

probability of needy
0.7 0.8 0.9

Figure 3. Simulation results showing the basin of attraction
for the boundary face containing the hybrid equilibrium for

different values of m and c. Here, k ¼ 0.54, a ¼ 31/32,
b ¼ 9/32 and d ¼ 1/2. Plus symbol, c ¼ 0; multiplication
symbol, c ¼ 0.05; asterisk, c ¼ 0.1; unfilled square, c ¼ 0.15;
filled square, c ¼ 0.2.
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that many perturbations will result in an asymptotically

stable polymorphism.
healthy
S2, signal if

needy
0.01 1.626 2 0.1c 0.546c

S3, never

signal

0.34 1.626 0.646c

S4, signal
always

0.6 1.626 2 c 20.354c

R1, donate if
no signal

0.09 2.22713 2 0.646c

R2, donate if

signal

0.09 2.21388 2 0.646c

R3, never
donate

0.75 2.3265 2 0.646c

R4, always
donate

0.07 2.115 2 0.646c
4. BASINS OF ATTRACTION
The results of the previous section suggest that one

cannot immediately use the ESS analysis of the Sir

Philip Sidney game to conclude that signalling is likely

to evolve. Although for many parameter configurations

the separating equilibrium (S2, R2) is an ESS, there are

several other outcomes which have a non-negligible

basin of attraction. Both pooling equilibria and also the

other separating equilibrium can be outcomes of evol-

ution. If we are interested in determining the likelihood

that signalling will evolve, we have to estimate the relative

sizes of the basins of attraction for the various outcomes.

In this section, we will use numerical simulations to

resolve this issue.

Investigators generally regard the region where k is

high to be uninteresting because signalling is stable

for all values of c, including c ¼ 0. We nevertheless

start with the limiting case k ¼ 1 as an important bench-

mark case. Figure 3 shows the size of the basins of

attraction for both separating equilibria. The initial popu-

lation states not converging to them are of non-negligible

size. In fact, cost appears to hinder the evolution of suc-

cessful signalling. Understanding this result is not

difficult. Suppose that we have a population of donors

who adopt either the strategy ‘donate only if signal’ or

‘never donate’. Let the proportion of the former be rep-

resented by a. The sender prefers the strategy ‘signal

only if needy’ to the strategy ‘never signal’ only when

(15/32)a . c. So, as c grows, there must be a proportion-

ally larger percentage of the donor population who will

respond to a signal in order for signalling to be beneficial

for the sender.
Proc. R. Soc. B
While costs generally hurt the evolution of signalling

for these parameter values, it does not do so in every

case. For extreme values of m, moderate cost appears to

assist the evolution of signalling. The mechanism by

which this result is produced is relatively complicated,

but looking at a slightly simplified situation is insightful.

Consider the initial population state illustrated in

table 2 for m ¼ 0.1 (i.e. the sender is rarely needy). If

c ¼ 0, there is no selection acting on the sender popu-

lation at all. However, there is selection in the donor

population in favour of the strategy ‘never donate’. So

without cost, the population converges to a pooling equi-

librium. This occurs because there is little information in

the sender’s signal. When c . 0, there is selection acting

on the sender population, primarily in favour of the

strategy ‘never signal’. Although the separating strategy

‘signal only if needy’ does worse than ‘never signal’, it

http://rspb.royalsocietypublishing.org/
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Figure 4. Simulation results showing the cumulative size of
the basins of attraction for the two signalling equilibria as k
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of signalling given the specified k. As before, the simulation
uses the discrete time replicator dynamics when a ¼ 31/32,
b ¼ 9/32 and d ¼ 1/2. Plus symbol, c ¼ 0.20; multiplication
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b ¼ 9/32 and d ¼ 1/2. Plus symbol, c ¼ 0.001; multiplication
symbol, c ¼ 0.005; asterisk, c ¼ 0.01.
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does better than average and is initially selected for. (This

is illustrated in the ‘selective force’ column, which is the

payoff of that type minus the average payoff in the popu-

lation.) As it increases in proportion, it changes the

selective force exercised on the donor population suffi-

ciently that ‘donate only if signal’ becomes superior and

grows. Once a sufficiently large percentage of the donor

population is playing ‘donate only if signal’, the selective

force exercised on the sender population shifts in favour

of ‘signal only if needy’ over ‘never signal’, and the

system evolves to a state with perfect information transfer.

A similar situation obtains for the case of m being

sufficiently high.

This considers only the case of k ¼ 1. Figure 4 illus-

trates what happens as k is reduced. One will notice

from figure 3 that the basins of attraction for separating

equilibria are maximized when m ¼ 0.3. This represents

the situation where, if the sender provides no infor-

mation (by playing either S3 or S4), the donor is

indifferent between donating or not. This indifference

point changes as k is reduced. For each value of k in

figure 4, we set m equal to this point of indifference so

as to maximize the basins of attraction for signalling.

This provides the most benign scenario for the evolution

of signalling. In figure 4, we see that so long as cost free

signalling is an ESS, it always evolves. However, similar

to what happens if k ¼ 1, the presence of cost hinders

the evolution of signalling and the higher costs result

in smaller basins of attraction. One will notice that, as

k is reduced, there are sudden drops in the basins of

attraction of costly signalling. This occurs as one

crosses the boundaries in equation (2.3), when the equi-

librium where the signal is used to indicate health no

longer exists.

If 0.51 , k , 0.56, then k is sufficiently low that

(S2, R2) is only stable with some signal cost. Here, one

will notice a few interesting features. In the first place,

although it is the only ESS, the separating equilibrium

has a relatively small basin of attraction—it is always

less than half the state space. This suggests that an
Proc. R. Soc. B
analysis, based on the ESS concept, which ignores aspects

of evolutionary processes can lead to misleading impli-

cations. Moreover, we see that the lower costs usually

produce larger basins of attraction for signalling, similar

to what happens in the common interest case. For brev-

ity’s sake, we cannot report results for other values of k

and m; but we have found that, like in the k ¼ 1 case,

the relationship between cost and the evolution of

signalling can be very complex.

Finally, we turn to the evolutionary significance of the

polymorphic equilibrium. Figure 5 illustrates the basin of

attraction of the face K (described in §3). These basins of

attraction are for parameters where signal cost is required

in order to sustain full communication. For these settings,

the minimum believable cost c* � 0.011. However, the

corresponding polymorphic equilibrium has a significant

basin of attraction for costs of an order of magnitude

smaller. When comparing the results here with figure 4,

one sees that, by considering the best cases, the poly-

morphic equilibrium has a larger basin of attraction (for

fixed k), than does the signalling ESS with higher signal

costs. Because of this result, we believe that the poly-

morphic equilibrium may be more relevant than the

signalling ESS to the study of signalling in existing

populations.
5. DISCUSSION
Our results point out certain limitations of the ESS

methodology insofar as one identifies the long-run evol-

utionary outcomes with ESS. By focusing on ESS,

traditional investigations of the Sir Philip Sidney game

suggest that the evolution of costly signalling is far more

likely than it appears to be for standard evolutionary

dynamics. While the signalling equilibrium is the only

ESS of the game for conflicting interests between the

players, our dynamic analysis indicates that there are

other states, namely pooling equilibria, which attract a

significant portion of the initial populations. From the

point of view of standard evolutionary dynamics, pooling

http://rspb.royalsocietypublishing.org/
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equilibria also have a larger basin of attraction for many

specifications of the parameters, indicating that they are

the most probable evolutionary outcome in these cases.

This suggests that the pooling equilibrium will be

observed more often than the signalling equilibrium as

there are more initial populations converging to the

former than to the latter. We would like to emphasize

that this holds for those parameters where the handicap

principle should apply because of conflicts of interest

between sender and donor.

The existence and stability of the polymorphic equili-

bria (2.6) illustrates another problem of the ESS

methodology. By exclusively investigating the conditions

under which a signalling ESS exists, one loses sight of

other evolutionarily significant outcomes. This also

poses problems for empirical studies of signalling, as

some theoretically well-founded evolutionary outcomes

may not be known; consequently, the corresponding

predictions of the existence of, e.g. polymorphisms such

as given in equation (2.6) are not tested in the field.

We believe that the existence of partial information

transfer even in situations where communication was

believed to be impossible, as exemplified by the poly-

morphic equilibrium, has broad biological implications.

For the relevant parameters, the polymorphic equili-

brium appears to be a more likely evolutionary

outcome than the traditional costly signalling ESS. As

an example, one may consider the paradigmatic signal-

ling interaction between relatives, the begging of chicks

for food from their parents. Parents would like to know

the state of the chick while the chick would prefer food

regardless of its state. If signalling need is associated

with a sufficiently high cost c, then the Sir Philip

Sidney game (and many other signalling models) predicts

that the state where only needy chicks send the signal

and where parents react to the signal is a possible evol-

utionary outcome. Our new results predict that even if

c is very low, an alternative equilibrium is possible

which is weakly stable and allows some information

transfer between chicks and their parents. More specifi-

cally, the population dynamics may lead to a state

where some, but not all chicks will signal need honestly;

and some parents will respond to the signal by transfer-

ring food. The other chicks will always use the signal

regardless of their state, and the other parents will

never transfer food.

Our results also suggest that, for the relevant par-

ameters, the polymorphic equilibrium is more likely to

be observed than the signalling ESS. This resonates one

of the issues found in many experiments which seek to

determine the cost in signalling interactions such as soli-

citation (Searcy & Nowicki 2005). Metabolic costs often

do not seem to be high enough to accord with the exist-

ence of a signalling ESS (Bachmann & Chapell 1998).

Cost by risk of predation has also not been shown to be

consistently high (Haskell 1994). Even if costs are not suf-

ficiently high to sustain full communication, one may find

communication in a polymorphic state. This opens a new

avenue for empirical research which might prove

insightful.
We would like to thank Elliott Wagner for teaching us the
importance of hybrid equilibria in Spence’s signalling
game. We also thank Carl Bergstrom, Josef Hofbauer and
an anonymous referee for helpful comments.
Proc. R. Soc. B
APPENDIX A. GEOMETRY AND DYNAMIC STABILITY
OF POOLING EQUILIBRIA
Suppose that the donor mixes between R2 and R3.

Then, S2 and S3 earn the same payoff against (1 2 l)R2 þ
lR3 if

ð1�mÞð1� bÞ þmð1� aÞ þ k ¼ l½ð1�mÞð1� bÞ
þmð1� a� cÞ þ k� þ ð1� lÞ½ð1�mÞð1� bþ kÞ
þmð1� cþ kð1� dÞ�;

or if

l ¼ l* ¼ 1� c

a� kd
:

If l . l*, then S3 gets a higher payoff than S2; the reverse

relation obtains if the inequality is reversed. Concerning

S4, we have to know when pðS4; ð1� lÞR2 þ lR3Þ �
pðS3; ð1� lÞR2 þ lR3Þ. This equation is equivalent to

ð1� lÞð1þ k� c� kdÞ þ lð1�ma� bþmb� cþ kÞ
� ð1�mÞð1� bÞ þmð1� aÞ þ k

or

l � 1� c

maþ ð1�mÞb� kd
:

As a � b, it is clear that the right-hand side of this inequality

is less than or equal to l*. Hence, if l . l*, then S4 will also

earn less payoff than S3. As to S1,

pðS1; ð1� lÞR2 þ lR3Þ � pðS3; ð1� lÞR2 þ lR3Þ if

l ð1�mÞ½ ð1� b� cÞ þmð1� aÞ� þ ð1� lÞ
� ð1�mÞð1� b� kdÞ þmð1� aÞ þ kÞ½ �
� ð1�mÞð1� bÞ þmð1� aÞ þ k;

which is clearly always the case as c, kd � 0. We already

know that equation (2.2) implies that there is no donor

strategy which does better against S3 than either R2 or

R3. The relation (2.5) can be proved similarly. These

arguments also show that both kinds of lines of Nash equi-

libria are quasi-strict (and neutrally stable in the

symmetrized game) under the appropriate existence con-

ditions, as donor strategies not in the support of those

equilibria earn less payoff than the strategies in their

support.

Let us consider the line of strategy profiles given by

(S3, (1 2 l)R2 þ l R3). Rest points in the relative interior

of this line attract an open set of nearby initial population

states. This follows from the centre-manifold theorem

(Carr 1981), together with the fact that all transversal

eigenvalues of the Jacobian matrix of equations (3.1) eval-

uated at those rest points are negative. The latter fact

is shown by the calculations above.
APPENDIX B. ALTERNATIVE EQUILIBRIA
Under certain conditions, (S1, R1) is a strict Nash

equilibrium. Note that the condition for donors to

transfer the resource must be the same as for the equili-

brium (2.1), i.e. a � d/k � b. The reason for this is

that the decision problem of the donor is the same

in both cases. As to the sender strategies, we have to

find the conditions under which Si, i ¼ 2,3,4, earn

less payoff against R1 than S1 does. Concerning S3,

http://rspb.royalsocietypublishing.org/
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p(S1, R1) � p(S3, R1), if

ð1�mÞð1� b� cþ kÞ þmð1þ kð1� dÞÞ � 1þ kð1� dÞ:

This is the case if and only if kd 2 c � b. Similarly,

p(S1, R1) � p(S4, R1), if

ð1�mÞð1� b� cþ kÞ þmð1þ kð1� dÞÞ
� ð1�mÞð1� b� cþ kÞ þmð1� a� cþ kÞ;

which is equivalent to a � kd 2 c. The relation b � kd 2

c implies d � (b þ c)/k, and thus

1þ kð1� dÞ � 1� b� cþ k:

Furthermore, a � kd 2 c implies

1� a� cþ k � 1þ kð1� dÞ:

From these two inequalities, it follows that

ð1�mÞð1� b� cþ kÞ þmð1þ kð1� dÞÞ
� ð1�mÞð1þ kð1� dÞÞ
þmð1�mÞð1� a� cþ kÞ;

which is the same as p(S1, R1) � p(S2, R1).

We next prove the location of (p, q) ¼ ((lS2 þ (1 2

l)S4), (mR2 þ (1 2 m)R3)), 0 , l,m , 1. In order to do

this, we follow Hofbauer & Sigmund (1998, §10.4).

The relevant payoff information for the game restricted

to K ¼ span(S2, S4)� span(R2, R3) is contained in the

two payoff matrices

A ¼ 0 a12

a21 0

� �
and B ¼ 0 b12

b21 0

� �
;

where

a12 ¼ pðS2;R3Þ � pðS4;R3Þ ¼ ð1�mÞc;
a21 ¼ pðS4;R2Þ � pðS2;R2Þ ¼ ð1�mÞðb� kd � cÞ;
b12 ¼ pðR2;S4Þ � pðR3;S4Þ ¼ kðð1�mÞbþmaÞ � d

and b21 ¼ pðR3;S2Þ � pðR2;S2Þ ¼ mðd � kaÞ:

As shown in Hofbauer & Sigmund (1998, §10.4), a

unique interior equilibrium exists if a12a21 . 0 and

b12b21 . 0. As c . 0, we must have b 2 kd . c. If b12 .

0, then (p, q) is a saddle (provided that b12b21 . 0). We

will instead focus on the more interesting case where

b12b21 , 0. This means that condition 2.2 is met and

that ka . d. The rest point (p, q) is given by

l ¼ b12

b12 þ b21

¼ kðð1�mÞbþmaÞÞ � d

ð1�mÞðkb� dÞ
and m ¼ a12

a12 þ a21

¼ c

b� kd
:

Now a12b12 , 0, and hence the Jacobian matrix of

equations (3.1) evaluated at (p, q) has purely imaginary

eigenvalues (Hofbauer & Sigmund 1998, §10.4).

We next show that all transversal eigenvalues of the

Jacobian matrix of equations (3.1) at (p, q) are negative.

For the sender, the transversal eigenvalues are given by

pi(q) 2 p(p, q) for i ¼ 1,3. It is easy to show that

p1(q) , p(p, q) and p3(q) , p(p, q) if m . c/(a 2 kd).

The transversal eigenvalue p1(p) 2 p(q, p) is negative

if and only if d . bk. Both conditions follow

straightforwardly from our assumptions. Similarly,
Proc. R. Soc. B
p4(p) , p(q, p) if equation (2.2) holds. That the poly-

morphism (2.6) is a spiralling centre follows from the

centre-manifold theorem (Carr 1981). In our case, this

manifold coincides with an open neighbourhood in K

around the polymorphism (2.6). Nearby solution trajec-

tories approach the centre manifold exponentially. But

on K, solution trajectories spiral around equation (2.6)

forever. We also note that the polymorphic equilibrium

is a Nash–Pareto pair (Hofbauer & Sigmund 1998,

§11.4). This means that the polymorphic equilibrium is

almost as stable as a strict Nash equilibrium.
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