INDUCTIVE LEARNING IN SMALL AND LARGE WORLDS

SIMON M. HUTTEGGER

1. INTRODUCTION

Bayesian treatments of inductive inference and decision making presuppose that
the structure of the situation under consideration is fully known. We are, however,
often faced with having only very fragmentary information about an epistemic
situation. This tension was discussed in decision theory by [Savage| (1954) in terms
of ‘small worlds’ and ‘large worlds’ (‘grand worlds’ in Savage’s terminology). Large
worlds allow a more fine grained description of a situation than small worlds. The
additional distinctions may not be readily accessible, though. Savage realized that
planning ahead is difficult, if not impossible, whenever we don’t have sufficient
knowledge of the the basic structure of an epistemic situation. Since planning is
at the heart of Bayesian inductive inference and decision making, it is not easy
to see how a Bayesian—or any learner, for that matter—can deal with incomplete
information.

The aim of this paper is to outline how the mathematical and philosophical foun-
dations of inductive learning in large worlds may be developed. First I wish to show
that there is an important sense in which Bayesian solutions for inductive learning
in large worlds exist. The basic idea is the following: Even if one’s knowledge of
a situation is incomplete and restricted, Bayesian methods can be applied based
on the information that is available. This idea is more fully developed in §§4] [5
and [6] for two concrete inductive learning rules that I introduce in Importantly,
however, this does not always lead to fully rational inductive learning: the analysis
of a learning rule within the confines of the available information is by itself not
sufficient to establish its rationality in larger contexts. In §3]I couch this problem
in terms of Savage’s discussion of small worlds and large worlds. I take this thread
up again in §7, where inductive learning in small and large worlds is examined
in the light of bounded rationality and Richard Jeffrey’s epistemology of ‘radical
probabilism’.

2. TwoO LEARNING RULES

In order to fix ideas we introduce two abstract models of learning. Both models
provide rules for learning in a decision context. The decision context is convenient
for developing a theory of learning in large and small worlds, but it is by no means
necessary, as I hope to make clear at the end of this section.

Suppose that nature has K states {1,..., K} which are chosen repeatedly, result-
ing in a sequence of states. We don’t make any assumptions about the process that
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generates this sequence. For example, in a stationary environment nature might
choose each state ¢ with a fixed probability p;, the choices being independent. Al-
ternatively, the sequence of states of nature could be a stationary Markov chain.
But mother nature need not be stationary: the states might also be the strategic
choices of players in a game theoretic environment.

We assume also that there is an agent who can choose among M acts {1,..., M}.
The outcome of a choice by nature and a choice by the agent is a state-act pair.
For each such pair there is assumed to be a von Neumann-Morgenstern utility
which represents the agent’s preferences over outcomesﬂ Suppose that the agent
can observe states of nature. She may then have predictive probabilities about the
state that will be observed on the next trial. Let X,, denote the state of nature at
the nth trial. In the language of probability theory, X,, is a random variable that
takes on values in {1,..., K}. For a sequence of states X1,...,X,, let n; be the
number of times state ¢ has been observed. Then the following is a natural way to
calculate the predictive probability of observing state i on trial n + 1:

. n; + oy
1 PX,11 =4X1,...,Xp]| = ————
( ) [ n+1 | 1 ’ﬂ] n—+ Zj a;
fori =1,..., K and some non-negative constants c;. This rule is a generalization of

Laplace’s rule of succession. If all ; are equal to zero, is Reichenbach’s straight
rule (Reichenbachl (1949). Provided that some «; are positive, then prior to making
observations (n = 0) the predictive probability for state i is equal to a;/ Zj a;. By
calculating the expected utility of each act relative to the predictive probabilities
, the agent can choose an act that maximizes this expected utility. Such an
act is called a (myopic) best response. The resulting rule is called fictitious play.
Fictitious play was originally conceived as a device for calculating Nash equilibria
in games. Since then it has become one of the most important rules studied in the
theory of learning in games, and many of its properties are well understoodﬂ

Fictitious play is a simple form of the dominant Bayesian paradigm; it combines
Bayesian conditioning with maximizing expected payoffs. As such, it assumes that
the agent has the conceptual resources for capturing what states of nature there
are. Note, however, that fictitious play is a fairly simple type of Bayesian learning—
Bayesian learners can be vastly more sophisticated. A Bayesian might not just
choose a myopic best response, but might also contemplate the effects of her choice
on future payoffs. Moreover, a Bayesian agent is not required to have predictive
probabilities that are given by a rule of succession; in general, posterior probabilities
might have a much more complex structure.

Some modes of learning need less fine-grained information. The rule we con-
sider here does not need information about states but only about acts and payoffs.
Suppose that there are L possible payoffs m < w9 < -+ < 7, (which can again
be thought of as von Neumann-Morgenstern utilities of consequences, ordered from
the least to the most preferred). Now suppose that the agent has chosen her ith
action n; times, n;; of which resulted in payoff m;. Then our second learning rule

Won Neumann-Morgenstern utilities are given by a cardinal utility function. The utility scale
determined by such a function is unique up to a choice of a zero point and the choice of a unit.
See [von Neumann and Morgenstern| (1944).

2Fictitious play was introduced by |Brown|(1951). For more information see Fudenberg and Levine
(1998) and [Young| (2004)). Strictly speaking, one also needs to specify a rule for breaking payoff
ties. In the present context it doesn’t matter which one is adopted.
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recommends to choose an act ¢ that maximizes

@ 225 i + 20, T

ni + 30 Qi '

Up to the parameters «j, this is the average payoff that was obtained by act i.
If the «;; are positive, then Zj T/ Zj oy; can be viewed as the agent’s initial
estimate of act ¢’s future payoff.

The rule is a type of reinforcement learning scheme, where Zj ;05 is the
agent’s initial propensity for choosing act i and »_ ;TG 18 the cumulative payoff
associated with act i. After having chosen an act i, the payoff is added to the
cumulative payoff for 7. The total reinforcement for an act is the sum of the initial
propensity and the cumulative payoff for that act. The act with maximum average
payoff is then chosen in the next trial. For this reason we call this rule average
reinforcement learningﬂ Averaging mitigates the effect of choosing an act very
often. Such an act may accrue a large cumulative reinforcement even if the payoffs
at each trial are very small, and so may look attractive despite not promising a
significant payoff on the next trial.

Fictitious play can also be regarded as a reinforcement learning scheme; but it
is of a quite different kind, known as ‘hypothetical reinforcement learning’. In hy-
pothetical reinforcement learning cumulative payoffs are not just gotten by adding
actually obtained payoffs; the agent also adds the ‘counterfactual’ payoffs she would
have gotten if she had chosen other acts (Camerer and Ho,|1999)). Fictitious play can
use counterfactual payoff information because knowing the state of nature allows
her to infer what the alternative payoffs would have been. Average reinforcement
learning does not have the conceptual resources to make these inferences.

The difference between average reinforcement learning and fictitious play can also
be expressed in another way by looking again at their inputs. One fundamental
classification of learning rules for decision situations is whether or not they are
payoff basedﬁ Fictitious play is not payoff based because it does not just keep track
of the agent’s own payoffs. Average reinforcement learning, on the other hand, is
payoff based since its only input is information about payoffs.

Both fictitious play and average reinforcement learning choose an act that seems
best from their point of view. And both rules are inductive in the sense that they
take into account information about the history before choosing an act. There
are other inductive rules, to be sure. In repeated decision problems of the kind
described above, any inductive learning rule has

(i) a ‘conceptual system’ capturing the information that must be available in
order to use that rule and

(ii) a specification of how the rule maps information about the past to future
choices.

The conceptual system of fictitious play consists of a set of states, a set of acts and a
set of outcomes. The conceptual system of average reinforcement learning consists
of a set of acts and a set of outcomes. Fictitious play maps finite sequences of states
to acts (up to a rule that applies when two acts have the same expected utility).
Average reinforcement learning maps sequences of pairs of acts and outcomes to

3Rules such as (2) are well known in the literature on bandit problems as ‘greedy’ learning rules,
because they always choose what currently seems best (Berry and Fristedt| |1985)).
4Gee Fudenberg and Levine| (1998) and [Young (2004]).
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acts (again up to a rule that breaks ties). Alternatively, both rules may be thought
of as mapping histories to vectors whose components represent the values of acts
(expected values and average reinforcements, respectively), or as ordering acts.
Other learning rules use different kinds of inputs and map them to choices, either
deterministically or probabilistically.

Inductive learning is of course not restricted to repeated decision problems. In
general, we may take an inductive learning rule as a map from finite sequences of
inputs to some types of outputs so that the rule is always defined for increasing
sequences of inputs. More formally, let us say that the conceptual system of a
learning rule is an ordered set C of sets Si,..., Sk, where the elements of each S;
are objects that are in some way epistemically accessible to an agent using that rule.
The inputs are given by S1,..., S, and the outputs are given by Sy41,...,5. A
finite history of inputs is a sequence of elements in S; X .-+ x S,,. An inductive
learning rule maps each finite history to an output (an element in, or a subset of
Sm41 X -+ x Sg). Roughly speaking, sequences of inputs describe what the agent
has learned, while outputs specify what is adjusted in response to learningﬂ

In the following section we refer to fictitious play, average reinforcement learning,
and a decision context. But keep in mind that the approach developed here applies
to inductive learning more generally.

3. SMALL AND LARGE WORLDS

Our two learning rules are interesting not just because of their relevance to
learning in repeated decision situations, but also because the conceptual system of
average reinforcement learning is a ‘coarsening’ of the conceptual system of fictitious
play. This can be seen as follows. We may think of states, acts, and outcomes as
propositions, as Richard Jeffrey does in his logic of decision (Jeffreyl, |1965). Then
the sets of states, acts, and outcomes together define a partition. This partition
captures the knowledge structure underlying fictitious play. The conceptual system
of average reinforcement learning, on the other hand, only has the set of acts
and the set of outcomes as elements. The partition determined by these two sets
is a coarsening of the partition underlying fictitious play. Thus the knowledge
structure of fictitious play is more refined than the knowledge structure of average
reinforcement learning.

As an example, consider the decision problem given in the following table:

S1 Sy S
A |31 |$2 |82
B [$2 [$2 | $1

There are three states of the world (51, S2 and S3) and two acts (A and B). If A is
chosen and the state of the world is S1, then the agent gets $1; likewise for the other
entries. The conceptual resources of a fictitious player allow her to capture events
such as ‘I choose B, the state of the world is S, and I get $2’, which is one element

5A conceptual system might also contain other objects, such as relations between sets, which are
not going to be relevant for us. Furthermore, this is not the most general characterization of an
inductive learning rule. For instance, inductive learning does not require that the agent maps
any finite sequence of inputs to outputs. An agent’s memory could be limited. In this case only
sequences of some fixed length are relevant. Learning might also not go on forever, so that there
is some upper bound for sequences of inputs. Incorporating these changes would not make any
difference for the arguments in this paper.
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in the partition given by states, acts and outcomes. If she is told that the true state
is neither S7 nor Sz, she knows that she cannot win $1. If she is told that she wins
$1, then she knows that she cannot be in state S;. The information available to
average reinforcement learning is less fine grained. Here we can only express events
such as ‘I choose B and I get $2’. Each such event is a proper superset of a fictitious
play event. If in the new partition you are told that you don’t get $1, you only
know that you get $2 without knowing which state of the world is the true one.
Thus, in a very precise sense, average reinforcement learning does in general not
require as much information about a decision situation as fictitious play. This is
true for all payoff based learning rules in any decision problem where states are not
uniquely identifiable in terms of acts and payoffs, which will be the case whenever
the payoff of an act is the same in more than one state.

Using a term introduced by [Savage (1954)), the conceptual system of a payoff
based learning rule may be thought of as a small world. Savage distinguishes small
worlds from large worlds. The large world that pertains to a decision situation
is a fully considered description of the decision problem at hand. This means
that every potentially relevant act, state of the world or outcome has entered the
description of the decision problemﬁ If we again view a decision problem in terms
of its associated partition, the large world is the finest partition that is relevant
for a given decision situation. Any small world, on the other hand, is a coarsening
of that finest partition that ignores some large world distinctions. In between the
large world and a particular small world we may have worlds that are smaller or
larger relative to one another. In particular, the world underlying a payoff based
learning rule such as average reinforcement learning is a smaller world than the
world of fictitious play or other non-payoff based learning methods.

The distinction between small and large worlds is related to another impor-
tant topic in decision theory: bounded rationalitym Bounded rationality goes back
mainly to the work of Herbert Simon, who maintained that real world reasoning
and decision making is not captured adequately by the standards of high rationality
models (e.g. [Simon, 1955, 1957). To illustrate this point, consider the extreme case
of a large world, namely, a person’s whole life (Savage) 1954, p. 83). In this large
world one is choosing how to live, once and for all. This choice is made after having
considered the decision situation in full detail. This is evidently unrealistic even
for agents with fairly sophisticated reasoning powers. For most kinds of agents it
is possible to find less extreme large worlds that are beyond the bounds given by
plausible epistemic constraints for that type of agent.

What we should take from this discussion is that decision making and inductive
learning nearly always takes place in a small world, that is, a coarsening of an
underlying large world. This allows us to discuss the rationality of learning rules
such as fictitious play or average reinforcement learning at the small world level or
the large world level. At the small work level we may ask whether a learning rule
is rational within its conceptual system. The kind of rationality I am referring to
here aims at identifying the principles underlying a learning rule. Consider fictitious

6In other words, for a large world decision problem we require that there is no proposition that,
when added to the description of the decision situation, would disrupt the agent’s preferences.
See |Joyce| (1999, p. 73) for a more precise definition.

"This relationship was recently discussed by, e.g., |Binmore| (2009), |Gigerenzer and Gaissmaier
(2011) or |Brighton and Gigerenzer| (2012).
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play, and take its take its conceptual systems as given. We may wonder whether
the way it calculates predictive probability is just arbitrary or can be based on
reasonable principles. The same can be asked with regard to average reinforcement
learning.

This part of the project is to some extent a purely mathematical venture. Its
methodology is the axiomatic method, which was used very successfully in many
fields of modern mathematics, starting with Hilbert’s foundations of geometry and
used by Kolmogorov in his theory of probability. The probabilistic theories of
inductive inference due to Bruno de Finetti and Rudolf Carnap are especially salient
for our project. Both de Finetti and Carnap derive inductive learning rules from a
set of basic postulates. In the next section ( I explain how these postulates can be
used to apply the axiomatic method to fictitious play. At this level, the resulting
theory of inductive learning could be treated as a mathematical theory without
interpretation. This would not be satisfying from a philosophical perspective, and
both Carnap and de Finetti thought of their projects as normative epistemological
theories. I'll explain their positions briefly in arguing for a position very close
to de Finetti’s view. On this view, the postulates from which a learning rule can
be derived are inductive assumptions about the basic structure of the learning
situation. If an agent’s beliefs conform to those inductive assumptions, then—since
fictitious play follows deductively from the postulates—it is the only admissible
learning rule. The agent should adopt fictitious play on pain of inconsistency.

What is new about my approach is that the same methodology can be applied
to average reinforcement learning. Given the differences between average reinforce-
ment learning and fictitious play, it might not be immediately obvious that this is
possible. In I show two things: (i) Based on the conceptual system of average
reinforcement learning there is a set of plausible postulates from which that learn-
ing rule can be derived, and (ii) these postulates can be thought of as inductive
assumptions. Given that an agent believes a particular set of inductive assump-
tions, she has to be an average reinforcement learner on pain of inconsistency. This
yields the same kind of theory of rational learning as for fictitious play, but for a
learning rule with bounded resources.

The normative status of different modes of inductive learning (fictitious play,
average reinforcement learning) is based on the consistency between inductive as-
sumptions and the learning procedure. Rationality here is correct reasoning within
an abstract small world model of a learning situation. But, as in the case of decision
theory, the question of whether learning procedures are rational goes beyond the
small world context. Are the inferences that are judged to be rational in the small
world also rational in larger worlds? And how is this related to the conceptual
abilities of agents? These questions are especially relevant for payoff based learning
rules because of their coarse conceptual basis.

The relationship between small and large worlds is an important but also very
complex questiorﬁ and I don’t claim to have a fully satisfying answer to all these
issues. For now let me set aside this discussion. I'll pick it up again after having
laid out the small world foundations of learning rules which was outlined in this
section. This will put us in a better position to gain some qualitative insights into
the more complex issues.

8Cf. the discussion in Savage| (1954, p. 82-91) and |Joyce| (1999, p. 70-77).
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4. DE FINETTI’S THEOREM AND INDUCTIVE LOGIC

The well-known key for providing a foundation for fictitious play is the notion
of exchangeability. Exchangeability originated with W. E. Johnson’s permutation
postulate (Johnson,[1924). But not before Bruno de Finetti’s work on exchangeable
sequences of random events was it used with full force.

Suppose that X;, Xs,... is an infinite sequence of random variables (which
may as in be thought of as recording the occurrences of the states of nature
{1,...,K}). The sequence X1, X, ... is said to be exchangeable if the probability
P of any finite initial sequence of states only depends on the number of times each
state occurs and not on their order. More precisely, let (j1, ..., jn) be a vector whose
components j; are elements of {1,..., K}. Then the sequence is exchangeable if

P[Xl :jlaXQ :j27~ . ~;Xn :]n] = ]P[Xl :ja(l)aXQ = jo(2)7' . 7Xn :ja(n)}

for any permutation o of {1,...,n} and any n = 1,2,.... If, for example, K = 3,
then

P[1,2,3] =P[3,1,2] = P[2,3,1] =P[1,3,2] =P[3,2,1] = P[2,1, 3]
because all these sequences have one state 1, one state 2, and one state 3. But it
need not be the case that, e.g., P[1,1,2] = P[1,2, 3].

If the sequence X, X, ... is exchangeable, then de Finetti’s celebrated represen-
tation theorem states that the probability measure P is a mixture of independent
multinomial probabilitiesﬂ For i = 1,..., K, let n; be the number of times i is
found among (ji,...,j,). Also, let AX be the set of all probability distributions
(p1,...,pK) on the set {1,..., K}, where p; is the probability of i. If X7, X5,...
is exchangeable, then there exists a unique prior measure dyu on A% such that for
every n and every (j1,...,7n)

(3) P[Xl :j17X2 :jQ,...,Xn :]n] = AKp?l p?(Kdu(p)

with ny +--ng = n and p = (p1,...,Px) € AX. This theorem has several
remarkable consequencesm One concerns the metaphysics of chance. A radical
subjectivist such as de Finetti thinks of objective chances as illusions. Because of
the representation theorem, a subjectivist is nonetheless licensed to use chances if
her subjective probabilities are exchangeable. The elements in A¥ can be viewed
as chance parameters. Given the chance parameters, the agent believes that obser-
vations are like trials which are independently and identically distributed according
to those chance parameters. The mixing measure dy can be viewed as the agent’s
prior beliefs over chances. Yet again, a strict subjectivist would insist that the
measure dy is nothing but a useful fiction that one is allowed to entertain because
of the representation theoremﬂ An agent does not need to believe in true chances.
But if her degrees of beliefs are exchangeable, the agent behaves as if she did.
Another consequence of de Finetti’s theorem is relevant for inductive reasoning.
The formula can be used to calculate the conditional probability of observing a
certain state given past observations. The past observations determine a posterior

95ee |de Finetti (1937)). There are much more general versions of the theorem. For an excellent
survey see |Aldous| (1985)).

105¢e |Zabell| (1989).

U This is the main difference between classical Bayesians, such as Laplace and Bayes himself, and
modern subjective Bayesians.
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from the prior du. The conditional probability of a state given past observations is
then just the chance expectation relative to the posterior.

One concrete instance of this conditional probability turns out to be especially
salient for our purposes. Suppose the prior measure du has a Dirichlet distribution
on AK B A straightforward calculation shows that the conditional probability of
observing state ¢ at time n + 1 given all past observations is equal to

n; + o
n+y
Thus, the predictive probabilities in result from the representation theorem
whenever one’s degrees of belief are exchangeable and one has a Dirchlet prior over
chances.

De Finetti himself emphasizes the qualitative implications of his theorem for the
problem of induction, and the artificiality of particular choices of prior distributions
over chancesﬁ This is in line with the view that chance priors are only useful
fictions. Now, Dirichlet priors are certainly mathematically convenient—but is
there a deeper reason for using them as one’s mixing measure?

Inductive logic provides an answer to this question. The type of inductive logic
I'm referring to goes back to W. E. Johnson, and was later independently developed
by Rudolf Carnap. Inductive logic also starts with exchangeability. But instead
of using Dirichlet priors, Johnson and Carnap assume what is often referred to
as ‘Johnson’s sufficientness postulate.” The sufficientness postulate states that the
probability of observing category i on the next trial only depends on ¢, the number
n; of i’s observed to date, and the total number of trials n:

(4) P[Xn+1 =i|X1,...,Xn] :fi(ni,n)
In order for the conditional probabilities in to be well defined, we must have
(5) PX:=j1,...,Xn=Jn] >0 forall ji,....5, € {1,...,K}.

The regularity condition says that each finite initial sequence of observations
has positive prior probability.

It can be proved that if K > 3 the predictive probabilities given in follow
from exchangeability together with and E Johnson’s sufficientness postulate
can thus be viewed as a characterization of Dirichlet priors. If an agent thinks that
knowledge of i, n; and n is sufficient for determining the probability of i on the

12That is, du is

K

M T

IS T (o) "
where I' is the gamma function.
1?’E.g. de Finetti (1938)). On p. 203 of the translation (where ® denotes the prior) he writes:
“It must be pointed out that precise applications, in which ® would have a determinate analytic
expression, do not appear to be of much interest: as in the case of exchangeability, the principal
interest of the present methods resides in the fact that the conclusions depend on a gross, qual-
itative knowledge of ®, the only sort we can reasonably suppose to be given (except in artificial
examples).”
Hpor details, see |Zabell (1982)), who reconstructs the proof sketch from Johnson’s posthumously
published article (Johnson) [1932]). It has to be assumed that there are at least three states, for
otherwise the sufficientness postulate is empty. If there are only two states, one can either assume

that the predictive probabilities are linear in n;, or consider relevance quotients as in |Costantini
(1979).

dpy---dpk—1,
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next trial given the outcomes so far, then she acts as if she has a Dirchlet prior
over the unknown chances of the K types of observations.

5. RATIONAL FOUNDATIONS

We see that there are two main approaches to deriving the probabilities used
by fictitious play. One rests on subjective Bayesian probability theory. The other
one is based on inductive logiCE Both attempts succeed in providing an axiomatic
basis for fictitious play (together with von Neumann-Morgenstern utility theory).
However, going beyond the purely mathematical aspect of the theories, we may ask
in what sense we get a rational foundation from the axiomatic approach.

One view is that assumptions like exchangeability, the sufficientness postulate, or
regularity are requirements of rationality—something rational beliefs have to con-
form to. Let’s consider exchangeability as an example. At least in his early work
on inductive logic, Carnap seems to have thought of exchangeability as a logical
principle. Carnap was working within the context of probability functions on sen-
tences of a first-order language. In this context exchangeability is the invariance of
probability under permutations of the individual constants of the language. Based
on the idea of Alfred Lindenbaum and Alfred Tarski that logical properties have to
be invariant under certain transformations of the elements of the language, Carnap
viewed exchangeability as a basic a priori principle of inductive logic. Accordingly,
one is rationally required to have exchangeable probabilities (Carnap) (1950, §§90,
91).

The problem with this idea is that in applications to problems of inductive
inference exchangeability has usually a temporal component, or otherwise refers
to known and unknown observations. The information conditioned on involves
observations that have already been made, and what is predicted is unknown as of
yet. Within the context of inductive logic on a first-order language this means that
the individual constants are temporally ordered. This results in what Carnap calls
a ‘coordinate language.” But in such a language the principle of exchangeability
loses its innocence and makes a substantial claim about what the agent expects to
observem The claim is that the observations one expects to make are homogenous.
It is not easy to see how one can uphold the logicality of exchangeability or other
symmetry principles in the face of the very concrete claims they make about random
processes

De Finetti and other subjective Bayesians offer a different vision of the ratio-
nality of learning rules. On this view, exchangeability or Johnson’s sufficientness
postulate are not taken as having the status of necessary principles. Instead, they
are an agent’s personal judgements, or inductive assumptions, regarding the basic
structure of her observationsﬁ Inductive assumptions are basic facts about an
agent’s prior probability. They express the agent’s beliefs about the whole learning
situation rather than just some aspects of it. Exchangeability is a prime example of
an inductive assumption. It says that all trials are completely analogous; it doesn’t
make a difference whether you observe an outcome on the first trial or on a later

15The two are closely related; see [Skyrms| (1996)).

16Carnap was well aware of this point; see |Carnap| (1971, 118-120)
YFor a thorough discussion of these issues see [Zabell| (1989)).

18] borrow the term ‘inductive assumptions’ from [Howson (2000).
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trial. Exchangeability is thus a symmetry or invariance principle. Inductive as-
sumptions are often expressed as symmetry principles. Such principles tell us what
an agent thinks is of relevance about the whole learning situation.

What distinguishes de Finetti’s subjectivistic view from the logical view of Car-
nap is that an agent is not required to have exchangeable degrees of belief but
is allowed to use other symmetries (like the one discussed in the next section).
But then, what makes inductive learning rational on the subjectivistic view if in-
ductive assumptions (exchangeability, sufficientness postulate) are not themselves
requirements of rationality? The rationality of an inductive learning rule is due
to its being consistent with the agent’s inductive assumptions. For instance, the
Carnapian predictive probabilities follow from exchangeability, Johnson’s suffi-
cientness postulate, and regularity. If the agent accepts these assumptions, she is
bound to learn from experience according to a generalized rule of succession. In
fact, it is easy to see that all three conditions are necessary for Carnapian predictive
probabilities. It would be inconsistent to claim that one’s conditional probabilities
are Carnpian predictive probabilities while to deny at the same time that, say, one’s
unconditional probabilities are exchangeable.

The modest subjectivist understanding of rational learning is thus not as sweep-
ing as some might wish. This is not the place to explain why it is the correct
position; de Finetti and others have forcefully argued for it in many places@ I'm
only going to make a few remarks concerning the epistemic status of inductive as-
sumptions. If they are not rationality postulates, how are they justified? Let’s
again consider exchangeability. It is a property of an agent’s degrees of belief. How
does an agent come to hold exchangeable degrees of belief? In some cases, she might
have good reasons for it. For example, our agent ’s judgment that a sequence of coin
flips is exchangeable might be based on past experiences with similar coins. But
de Finetti and other subjective Bayesians do not insist upon inductive assumptions
having this kind of epistemic warrant. The reason is that subjective Baysianism
is not a foundationalist epistemology (like Carnap’s early inductive logic) where
beliefs must be grounded on some bedrock of fundamental beliefs and principlesm
Bayesians take a much more permissive attitude towards inductive assumptions.
They may be just what you currently happen to believe. On this picture inductive
assumptions don’t need to have an ultimate foundation. They are taken as a start-
ing point for learning from experience. But of course, they are themselves revisable
as well. If you detect a pattern in a sequence of coin flips—the sequence you observe
is, say, 10101010 ...—you may give up the assumption of exchangeability at some
point. Bayesian epistemology thus shares features with what Harman| (2002)) calls a
‘general foundations theory’@ In a general foundations epistemology at least some
of an agent’s beliefs at a time are taken to be justified by default or until proven
incorrect. Belief revision changes initial beliefs only in the face of sufficiently strong
evidence. The rational justification a subjective Bayesian gets for a learning rule
(such as Carnapian predictive probabilities) is therefore a relative one: it is relative
to her inductive assumptions, which are beliefs that she currently holds.

1gE.g. de Finetti| (1930, 1937} |1959), |Savage, (1967)), |Jeffrey| (1992), or [Howson| (2000).

20For a location of Carnap’s program as a foundational theory see the opening essay in |Jeffrey|
(1992).

ZTHarman traces it back to|Goodman (1955) and |[Rawls| (1971). See also [Harman| (2007).
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Even if you think that the subjectivistic position is too weak, and that there is
more to rational learning, we can take that position as a minimally plausible one
for our next goal—developing the foundations for average reinforcement learning.
My claim is that average reinforcement learning can be approached with the same
axiomatic methodology as fictitious play. Now, if there is a defensible stronger sense
of rational induction than the one underlying the subjectivistic point of view—
something along the logical position of Carnap—that sense could then also be
used for average reinforcement learning or other learning rules. Thus, while the
following axiomatic theory is based on the subjective Bayesian understanding of
rational learning, it could be made to fit a stricter approach.

6. FOUNDATIONS OF AVERAGE REINFORCEMENT LEARNING

We now show that average reinforcement learning involves predictive probabili-
ties for payoff events that are based on a generalization of exchangeability and some
additional inductive assumptions.

Suppose that the agent has chosen her ith action n; times, n;; of which resulted
in payoff 7;. Given that she chooses 4 on trial n + 1, the conditional probability of
obtaining payoff 7; on this trial may be equal to
(6) M
ni+ > ; Qi
The a;; are non-negative parameters. With respect to the predictive probabilities,
the agent’s expected payoff when choosing act i is

fori=1,...,Mand j=1,...,L.

ni oy Dy TG+ 2 T
(7) DT —= , —
— nit > i ni+ 37, g

The expression on the right side is the central quantity of average reinforcement
learning . Hence, an agent using chooses acts that maximize expected payoffs
relative to the predictive probabilities (6]).

In order to examine the predictive probabilities in (@ more thoroughly we con-
sider a generalization of exchangeability called ‘partial exchangeability’. This no-
tion goes back to de Finetti, too (de Finetti, [1938,/1959). Partial exchangeability is
important in various developments of Bayesian inductive logicﬂ The basic idea of
partial exchangeability is that exchangeability obtains only within particular types
of outcomes and not across types. De Finetti gives the example of tossing two
coins which might not look altogether the same. The tosses of each coin are ex-
changeable, while the tosses of both coins together need not be. Persi Diaconis and
David Freedman discuss an example of observations of patients that fall into four
categories (given by two pairs of distinctions, male-female and treated-untreated).
Again, observations within each category may be judged exchangeable without as-
suming exchangeability across categories. Exchangeability is a limiting case where
categories are judged to be completely analogous, whereas partial exchangeability
allows us to express weaker kinds of analogies.

To be more precise, suppose that there are M types {1,...,M}. For average
reinfrocement learning a type is an act i. For each type ¢ there is an infinite sequence
of random variables X;1, X;o, ... taking values in a set of outcomes {1,...,L}. The
intended interpretation of outcome j is that a payoff m; is obtained. Types and

223¢e for instance [Freedman (1962) or [Diaconis and Freedman| (1980).
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outcomes might in general capture other aspects of a random process. Notice that
we assume that each type is observed infinitely often. The observations can be
thought of as an infinite array:

X11, X2, ...
(8) X21,X22, .

X1, Xar2, - -

Let n; be the number of times type 7 was observed in the first 7 trials, and let n;;
be the number of times outcome j was observed together with type i. Naturally,
>;ni =n and Zj n;; = n;. Then the array is partially exchangeable if, for
any n, all finite arrays Xi1,..., X103 X015 3 Xongi -3 XM1,- -+, Xmny, that
have the same counts n;; (¢ = 1,...M,j = 1,...L) have the same probability.
The numbers n;; are a sufficient statistic for a partially exchangeable probability
distribution. Thus the array is partially exchangeable if the probability P of any
finite initial sequence only depends on the number of times each outcome occurs
within each type and not on their order.

de Finetti showed that his representation theorem for exchangeable random
variables extends to partial exchangeability (de Finetti, [1938, [1959). Let (AZ)M
be the M-fold product of the set of probability distributions AY on {1,...,L}.
Let XllaXIZa N ;)(21,)(227 ey ey )(]\/[17)(]\427 ... bea partially exchangeable ar-
ray where each type ¢ occurs infinitely often. Let the components of

(]11;---a]l,nl;]217-~'7]2,n2;~~~;]M17~-'>]M,nM)

be elements of {1, ..., L}, and denote by n;; the number of events j of type . Then
there exists a unique probability measure p on (A¥)M such that

(9) ]P[Xll :j117~-~7X1,n1 :jl,nl;-”;XM,l :jM,la-”aXM,nM :jM,nm]

M
— [ Tw e piirduter.... o),
(ALYM 7T
where p; = (pi1,...,pir) € AF for i = 1,..., M. This means that partially ex-
changeable sequences of random variables also are mixtures of independent trials.
But, unlike the exchangeable case, the probabilities of the independent trials can
be unequal. Equiprobability only obtains within each type . Different types may
have different probabilities.

We want to predict the probability of getting the payoff m; for the next time
act 7 is chosen. Under the assumption of partial exchangeability, the conditional
probability of obtaining 7; is

k1

M
Jearyw Pig Iy PRt -+ ot du(pa, - - pm)

(10) M M1 Nk L
f(AL)M [Temipit® - pri du(pa, - - -, PM)

We now show how the probabilities @ can be derived from this expression. If the
mixing measure dy is a product measure duy X - -+ X dups, then

M M
/(AL)M [Iwi - -pit e, oom) = I] /AL Pett - Pt du(pi),
k=1 k=1
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and the conditional probability reduces to
(11) IAL pijpylil p?iLdlLLi(pl)
Jar D30y dp(ps)

Let’s also assume that each measure dy; has a Dirichlet distribution on A, That
is, the measure dp is given by the product

Z ; _
H 7] 21L1 szL ldpzl ~dpi 1.

Then, just as in §4l the predlctlve probabilities @ of average reinforcement learning
follow from . Notice the key assumption that dp is a product measure. This
means that choosing act ¢ does not influence opinions about payoffs resulting from
choosing some other act k. This assumption essentially brings us back to the case
of exchangeability (as noted in|de Finetti, [1938]).

One might wonder if inductive logic could again be used to provide a deeper
foundation for a product of Dirichlet priors. To see that this is possible, we again
assume that the infinite array is partially exchangeable. Then a version of
Johnson’s sufficientness postulate expresses the idea that only payoffs obtained
whenever act i is chosen are relevant for predicting payoffs when 4 is chosen the
next time:

(12) P[X
In words, the probability of observing j the next time n;y; that type i obtains only

depends on %, j, n;;, and n;. For these conditional probabilities to be well defined
we assume that

i1 :j|X11, . ,lel; . ;XMla . 7XM,TLM] = fij(nij,ni)

(13) P[X11=j11,- s X1y = Jimgs -5 X1 = s XMonay = JMina] >0

for all possible combinations of elements ji1,...,J1,ny}---;JM1s-- -5 Mn, Of Out-
comes in {1,...,L}.

In the appendix I show that the predictive probabilities in @ can be derived
from these assumptions. The leading idea is this: Observe that the subsequences
of payoffs for each type are infinitely exchangeable sequences. Applying the suffi-
cientness postulate to these subsequences then reduces the setup to the case
described in §4l The sufficientness postulate can therefore be viewed as a
subjective characterization of a prior product measure of Dirichlet distributions.

The arguments presented here make a number of significant assumptions. First,
we assume a finite number of possible payoffs. To deal with other types of situations
we would need to use a more general kind of inductive logic, such as the one
suggested by [Skyrms| (1993). A second requirement is that the mixing measure du
be a product measure. It would be interesting to investigate more general cases that
allow analogical influences between different types of outcomes. Both assumptions
could be relaxed by using a more general approach to predictive probabilities@

With an axiomatic foundation of the predictive probabilities in place, the av-
erage reinforcement learner can, just like the fictitious player, be viewed as choosing
acts that maximize expected payoffs with respect to these predictive probabilities.
This choice rule can be built on the von Neumann-Morgenstern theory of expected
utility where the agent considers her acts as lotteries. If the agent’s preferences

230n analogical predictive rules, see Romeijn| (2006|) and references therein.
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meet the von Neumann-Morgenstern axioms, then there is a cardinal utility func-
tion for each outcome and she will choose an act that maximizes expected utility
relative to this function and her predictive probabilities. This can be modified in
various ways; we need not suppose that our agents are expected utility maximizers.
Predictive probabilities can be used in other ways for making choicesﬁ

The assumptions underlying average reinforcement learning—partial exchange-
ability, the modified sufficientness postulate and regularity—can also be thought of
as inductive assumptions as explained in On that view, any agent whose be-
liefs conform to these inductive assumptions is bound to learn according to average
reinforcement learning.

7. RADICAL PROBABILISM AND BOUNDED RATIONALITY

What we have seen is that our inductive learning rules can be given the same
kind of foundation in terms of inductive assumptions, even though one of them is
more bounded than the other. One might object that we have only shown this
for two special learning rules. Let me indicate how the methodology outlined for
fictitious play and average reinforcement learning can also be applied to tother
learning rules. In particular, I have in mind payoff based learning rules such as
other types of reinforcement learning or trial and error learning ruleﬂ

A learning rule maps inputs to outputs (see . Thus, prior to developing an
axiomatic foundation we need to specify the conceptual resources it needs for inputs
and outputs. The resulting conceptual system captures the basic structure of the
learning process. Once the conceptual system is in place, the next and crucial step
is to derive the learning rule from a set of postulates. The postulates should be
assumptions that (partially) describe an agent’s degrees of belief about the learning
process. Like exchangeability or partial exchangeability, they can be thought of as
inductive assumptions. As such, they can be interpreted as those conditions on an
agent’s beliefs that mandate a belief dynamics which follows the learning rule.

This is a very general outline, and I do not claim that its strategy will always be
successful. There may be learning rules that are too complex to find an underlying
set of plausible and simple inductive assumptions. Even if it is possible in principle
to do this, it could be very hard to actually prove the desired result. Nonetheless,
it seems clear that our methodology can be implemented for many learning rules.
Substantiating this claim is a task for future research, but there are some related
issues that I’d like to say a bit more about. One set of issues was discussed above
and is about the relationship between small and large worlds and rationality. The
other one (not unrelated) aims at identifying a general epistemological framework
that can be used as an umbrella for our learning rules. Let’s start with the second
issue and work our way to the first.

Many payoff based learning rules are quite non-Bayesian, much more so than
average reinforcement learning. Can they be fit within the kind of Bayesian frame-
work we have appealed to so far? An answer surely depends on what exactly we
mean by ‘Bayesian framework’. Both average reinforcmement learning and fictitious

240ne could use, for example, a randomized form of expected utility maximization where an agent
chooses suboptimally with some probability.

25The probably most important kind of reinforcement learning, Herrnstein-Erev-Roth learning,
is discussed in [Young| (2004). An example for a trial and error rule is probe and adjust, which is
introduced in [Skyrms| (2010)).
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play maximize expected payoffs relative to predictive probabilities. Many learning
rules will not have that feature, and so will not be optimal in a decision theoretic
sense. But since they are learning procedures it might be possible to relate them
to Bayesian learning and establish them as rational learning procedures.

Indeed, the variant of Bayesianism dubbed ‘radical probabilism’ by Richard Jef-
frey allows us to subsume many inductive learning rules under a coherent episte-
mological program. One central aspect of radical probabilism is its rejection of
Bayesian conditioning as the only legitimate form of learning from experiencem
Bayesian conditioning presupposes that there is an observational proposition that
is learned for certain. If this is the case, then conditioning requires one to adopt as
one’s new probability the prior probability conditional on the observational propo-
sition. As an example think of the formation of predictive probabilities in the
fictitious play process where the agent conditions posterior probabilities on obser-
vations of states of the world.

Now Jeffrey points out that learning an observational proposition is not the only
mode of learning from experience. His generalization of Bayesian conditioning,
known as ‘probability kinematics’ or ‘Jeffrey conditioning’, provides an alternative
rule for uncertain evidence (Jeffreyl [1965). Uncertain evidence does not come in
terms of factual propositions. Rather, what is learned is expressed by how proba-
bilities change. Jeffrey did not think that radical probabilism ends with probability
kinematics. He suggested that there might be many other forms of learning from
experience that are legitimate under various kinds of assumptions (Jeffrey}, [1992).

Radical probabilism allows us to give a more definite interpretation of average
reinforcement learning. Strictly speaking, payoffs or utilities are not facts that can
be observed like a state of the world. They are the result of choosing an act and an
unknown state of the world. And while they do not express the factual content of
an agent’s learning experience, payoffs register the effects of learning on the average
reinforcement learner. Hence, it can be thought of as a probabilistic learning rule
even though there is no factual proposition that expresses its dynamics. As such
average reinforcement learning is a mode of learning in the radical probabilist’s
sense, just like Jeffrey conditioning. We can say more, in fact: The axiomatic
foundation specifies those epistemic situations where it is adequate as a learning
rule.

Radical probabilism also encompasses other payoff based learning rules or other
probabilistic learning methods. Each such method gives rise to a probability space
that captures an agent’s beliefs about the dynamics of learning with increasing
information. For some of them it is possible to provide a deeper foundation in
terms of inductive assumptions.

Everything considered so far takes place within a given conceptual system. If
that conceptual system fully exhausts an agent’s conceptual abilities, then we have a
fairly convincing account of rational learning. Even if from the outside one might be
able to say that the agent’s conceptual system is not ideal for capturing a learning
situation, this seems to be irrelevant for judging the agent’s internal rationality.
Her mode of learning is rational given her non-ideal conceptual abilities. Let’s call
this ‘learning at full capacity’.

But what if our agent is not learning at full capacity? By this I mean the fol-
lowing. An agent’s conceptual abilities often allow for a wide variety of conceptual

260n this and other aspects see various essays in |Jeffrey| (1992) and also |Bradley| (2005)).
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systems, some of them being more fine grained and richer then others. Now, for a
given learning situation she might adopt a learning rule whose conceptual system
is not as fine grained as could be—her conceptual abilities would allow her to learn
based on a richer conceptual system. Both in this case and the full capacity setting
the agent may be called boundedly rational, but there is an important difference:
A full capacity agent exhausts her conceptual apparatus, and the boundedness is
due to inherent conceptual limits. In the language of small and large worlds, the
learning process is set in what is from the agent’s perspective the large world. In
the second case, however, the boundedness is something the agent could overcome,
at least in principle. The learning process takes place in what is from the agent’s
perspective a small world.

To illustrate the difference between the two cases, consider two average reinforce-
ment learners. One of them learns at full capacity. That is, the conceptual system
of average reinforcement learning is her large world. The other agent has the con-
ceptual abilities to make more distinctions. Maybe she can also observe states of
the world. But for whatever reasons she also learns according to average reinforce-
ment learning. In the tradition of Herbert Simon both agents may be viewed as
boundedly rational since they don’t process all the information that could possibly
be exploited. But in the full capacity case that is a judgement that we make from
an external perspective—the full capacity learner cannot do better—while in the
other case the judgement can be made from the agent’s perspective.

Let’s look at this a bit more closely. For the agent that learns at less than full
capacity it is not clear whether she learns rationally even if her learning rule is con-
sistent with her inductive assumptions in the small world. There are larger worlds
in which her small world assessments could change. Consider again an average
reinforcement learner who is not learning at full capacity. This learner probably
could refine the partition given by acts and consequences. A refinement may also
yield a more refined learning dynamics with more acts or more consequences. An
agent might be capable to refine more radically, for example by throwing in states
of the world. In this case we could have an average reinforcement learner who might
in principle be a fictitious player, provided that she refines her conceptual system
accordingly.

This shows that an agent who does not learn at full capacity has the option of
learning quite differently in larger worlds. It is plausible that the agent would be
better off learning in the larger world, all other things being equal, since it is a
more considered version of the learning situation. From the large world perspective
the small world estimates of probabilities and choices seem less than ideal because
these estimates don’t take into account all the information available in the larger
world.

We arguably find ourselves often in a situations that. We don’t take into account
all the information that could potentially be relevant because it does not seem worth
it or because the situation does not lend itself to obtain that information easily.
In particular, an exhaustive list of relevant states of the world might be difficult
to come by except in the most simple decision problems—hence the significance of
payoff based learning rules. On the other hand, we often feel that the small world
is largely sufficient for our purposes. This is the point where Herbert Simon’s
bounded rationality becomes crucial. It allows us to put the small world rationality
of learning methods (consistency with inductive assumptions) in perspective. The
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inductive inferences drawn might be correct within the small world of the learning
rule without claiming that they would continue to be correct in a larger world. If an
agent learns at less than full capacity, then her inductive inferences are boundedly
rational since they need not hold up to the standards of larger worlds. This kind
of “non-optimality” is a hallmark of bounded rationality (Selten, 2001)). What we
get in our new approach is a minimal condition on boundedly rational learning
procedures: that they be rational in their small worlds.

Sometimes it might be possible to claim more. This point is stressed by [Joyce
(1999, p. 74-77) in the closely related context of decision theory. Joyce argues that
for a small world decision to be rational it should meet two requirements. First,
it should be rational in the small world; and second, the decision maker must be
committed to the view that she would make the same decision in the large world.
We can think about inductive learning in much the same way. An agent could be
committed to the view that her small world inductive inferences, or some of their
relevant qualitative features, would be the same if she was learning at full capacity
(i.e. in the large world). For an agent who is so committed, small world inductive
inferences are a kind of best estimate of their large world counterparts. If the agent
thought that in the large world her inferences would be different, she couldn’t be
committed to her small world inferences in that way.

I’d like to emphasize that the full commitment is not necessary for a boundedly
rational agent. We can be rational in a small world without thinking that our
views are best estimates in the large world. This might be the most plausible view
if we don’t have a sense of about what the largest world that would potentially be
accessible to us might be. In a situation like that we could still be able to think some
refinements ahead to larger worlds which are not the large world. Concerning these
larger worlds our small world opinions may be our best estimates for larger worlds.
Taking this into consideration, there is not a simple dichotomy between bounded
rationality learning (no commitment to the large world) and full rationality learning
(full commitment to the large world). We instead can be committed to some more
refined scenarios than the one we actually adopt without having that commitment
for all larger ones.

This gives us a more nuanced understanding of rationality and bounded rational-
ity. Bounded rationality is a graded concept ranging from small world rationality
to large world rationality. That we have gradations does not mean that we can
always compare different kinds of learners concerning the extent of their bounded
rationality. The reason is that even if we have two learners with the same small
world, their more fine grained partitions need not be comparable—neither partition
is a refinement or a coarsening of the otherm Even so, what we have is an expli-
cation of bounded rationality in terms of small world rationality and commitments
to larger worlds.

8. CONCLUSION

Bounded rationality has two sources: access to information and computational
capacities (Simon, [1955). By considering learning rules where one has strictly
less information than the other, we have focused on access to information. We
have shown that there is an important sense in which both learning rules can
be thought of as rational. Each learning rule can be consistent with an agent’s

27A set of refinements of a given small world partitions is in general only partially ordered.
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inductive assumptions. We have also explained how our learning procedures can be
understood as learning from experience in the radical probabilist’s sense. Finally,
we have analyzed the concepts of bounded rationality and rationality with respect
to our treatment of the two learning rules in terms of small and large worlds.

There are a number of open questions. Although we have indicated how our
methodology carries over to other learning rules, much work remains to be done
to fill out the details. On the formal side many learning rules await an axiomatic
treatment. On the conceptual side it is open whether they can be fit within radical
probabilism and what bounded rationality means in these cases.

APPENDIX: INDUCTIVE LOGIC

We assume that the following statements are true:

(1) The infinite array is partially exchangeable.

(2) The sufficientness postulate holds for all ny,...,nar.

(3) The regularity axiom holds for all ny,...,ny and for all possible
combinations of elements ji1,...,J1,ns5---3JM1,- -+ JMny Of outcomes in
{1,...,L}.

In addition, we suppose that there are at least three outcomes (L > 3). Oth-
erwise, like in the original Johnson-Carnap continuum of inductive methods, the
sufficientness postulate is empty.

With these assumptions in place, we wish to prove that for all for all ny,...,ny:

Nij + 0

ni 4+, Qi
The proof is a slight variant of an argument by Sandy Zabell for Markov exchange-
able Sequencesﬁ By there is an infinite number of occurrences of type i. Let
Y, = Xi . Then the resulting embedded sequence is exchangeable.

(14) P[Xi7ni+1 = j|X11, e 7X1777«1; .. .;XMl, . aXM,nM] =

Lemma. The sequence Y1,Ys,... is exchangeable.

Proof. Suppose that the array is independently distributed with parameters
pij, where p;; is the probability that j occurs when the trial belongs to group ¢ (so
outcomes are identically distributed within a group). Then the probability of the
cylinder set {Y; = j1,..., Y, = jn} is
P[Yl =J1,--y Yn = .jn] = Dij1 " DPijp

since at each time type ¢ occurs the probability of outcome j,, is psj;,, for m =
1,...,n. In this case the embedded sequence is i.i.d. Now suppose that the array
is partially exchangeable. By de Finetti’s theorem for partial exchangeability the
array is a mixture of independently distributed sequences. Hence the distribution

of the embedded sequence is a mixture of i.i.d. trials by the above argument and
thus exchangeable. O

The goal now is to show that (i) the embedded sequence Yi,Y5s,... satisfies
Johnson’s sufficientness postulate, and (ii) to apply the Johnson-Zabell theorem to
it (Johnsonl 1932; [Zabell, [1982).

Let (j1,...,4n) be a sequence of outcomes in {1,...,L}. Consider the cylinder
set {Y1 = j1,...,Yn = jn}. This event corresponds to observing the outcomes
J1,---,Jn in the first n trials of a fixed type i. Now consider all finite arrays that

283ee |Zabell (1995).
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have exactly n outcomes of type ¢ which result in the sequence ji,...,j,. To each
such finite array there corresponds a cylinder set, and the resulting countable family
of cylinder sets {F,,} is a countable partition of the event {Y; = j1,...,Y, = jn}.
We now need the following lemma (a proof can be found in [Zabell (1995)).

Lemma. If {FE,,} is a countable partition of B such that P[BN E,,] > 0 for all m
and P[A|B N E,,) has the same value for all m, then P[A|B] = P[A|BN E,,].

The sufficientness postulate implies that
P[Yn—f—l = .]|{1/1 =J1,--- Y, = jn} N Em]

is independent of m. By the regularity axiom, P[{Y; = j1,..., Y, =jn} N EpR] >0
for all m. It follows from the lemma that

PYot1 =4Yi =71, ., Yo =Jn] =P Xing1 = 51 X110, Xy 3 Xt oo s Xvtnag )

The expression on the left side depends only on n; = n and on n;;. In addition, by
the first lemma, the sequence Y7, Y, ... is an infinite exchangeable sequence. Thus
the predictive probabilities follow from the Johnson-Zabell theorem applied to
the infinite sequence Y7, Y5, .... The parameters o;; must be nonnegative.
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