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Abstract Recent work on costly signaling games has identified new Nash
equilibria in addition to the standard costly signaling equilibrium as a pos-
sible explanation for signaling behavior. These so-called hybrid equilibria are
Liapunov stable, but not asymptotically stable for the replicator dynamics.
Since some eigenvalues of the hybrid equilibria have zero real part, this re-
sult is not structurally stable. The purpose of this paper is to show that
under one reasonable perturbation of the replicator dynamics—the selection-
mutation dynamics—rest points close to the hybrid equilibrium exist and are
asymptotically stable. Moreover, for another plausible version of the replicator
dynamics—Maynard Smith’s adjusted replicator dynamics—the same is true.
This reinforces the significance of hybrid equilibria for signaling.
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1 Introduction

The question of how honest signaling is possible in the face of conflicts of
interest has been investigated by many biologists and economists. In biology,
Zahavi (1975) proposed the so-called handicap principle to account for reli-
able signaling when interests diverge. At about the same time, Spence (1973)
studied the same phenomenon for markets. The basic idea is simple: honest
signaling can be maintained if the cost of signaling is high enough that using
signals unreliably becomes too costly.

Zahavi’s idea gained traction within biology after Grafen introduced a the-
oretical model underpinning the handicap principle Grafen (1990). Grafen’s
model focuses on sexual selection, but there are several other biological phe-
nomena where the idea of a handicap can be applied, such as predator-prey
signaling or child-parent communication. The Sir Philip Sidney game (May-
nard Smith, 1991) represents the most well known example of the later. For
this game theoretic model, and many others, costly signals enable honest com-
munication in equilibrium.

Although the idea of costly signals is supported by both theoretical and
empirical considerations, the costly signaling explanation also faces a number
of problems. On the theoretical side, the costly signaling equilibrium may be
very unattractive when compared to a pooling equilibrium where no informa-
tion is transmitted (Bergstrom and Lachmann, 1997). Furthermore, dynamical
models suggest that the signaling equilibrium is not easy to reach under sev-
eral evolutionary dynamics (Huttegger and Zollman, 2010; Wagner, 2013). On
the empirical side it has been difficult to measure signal costs that would be
sufficiently high in order to support the costly signaling hypothesis (Searcy
and Nowicky, 2005).

The empirical results suggest that communication might be adequately
reliable even if the costs of signaling are small. Huttegger and Zollman (2010),
Wagner (2013) and Zollman et al. (2013) have shown that in several costly
signaling games there exists a so-called hybrid equilibrium in which signaling
is not completely reliable but which has low signal costs.! In these papers,
it has been demonstrated that the hybrid equilibrium is a Liapunov stable
rest point of the replicator dynamics (Taylor and Jonker, 1978; Hofbauer and
Sigmund, 1998). However, it is not asymptotically stable since there are two
purely imaginary eigenvalues. This renders the replicator dynamics close to the
hybrid equilibrium structurally unstable (Guckenheimer and Holmes, 1983):
small perturbations of the replicator equations will result in a topologically
different dynamic behavior. As a result, the stability of the equilibrium in
these models might not translate into real cases where the actual dynamics
diverges somewhat from the replicator dynamics.

The purpose of this paper is to study the robustness of the hybrid equi-
librium. First, we consider a plausible perturbation of the replicator dynam-

1 The order of the publications is somewhat misleading since Wagner was actually the
first to recognize the significance of hybrid equilibria for evolutionary games.
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ics that introduces mutation terms called the selection-mutation dynamics
(Biirger, 1955; Hofbauer, 1985; Hofbauer and Sigmund, 1998).2 It will be
shown that under the selection-mutation dynamics rest points close to the
hybrid equilibrium exist. We will characterize these perturbed rest points in
terms of the mutation parameters. Furthermore, we will show that perturbed
rest points are linearly stable, provided that mutation is sufficiently small.
Second, we consider another version of the replicator dynamics known as the
adjusted replicator dynamics (Maynard Smith, 1982). For this dynamics the
hybrid equilibrium is not just Liapunov stable, but also asymptotically stable.

Our analysis is based on a simple costly signaling game that will be in-
troduced in the next section. The results we obtain lend some support to the
theoretical robustness of hybrid equilibria, reinforcing their importance as a
potential explanatory factor in signaling interactions.

2 The model
2.1 Costly signaling games

The biological situation of central interest in costly signaling theory is one of
partial conflict of interest. There is a “sender” that can condition its behavior
on some private information. The “receiver” would benefit from conditioning
its behavior on that information, but cannot do so directly. When the infor-
mation takes on some values, the sender’s and receiver’s interests are aligned.
But, when it takes on other values they are not.

In the context of sexual selection, this is modeled by presuming the sender
is a male that is either of high or low quality. When the male is of high quality,
both the male and the female benefit from mating. When the male is of low
quality, the male benefits from mating but the female does better by declining.
It is supposed that the male has at its disposal two phenotypes — signals — that
can be displayed conditional on his quality and that can be observed by the
female. The model allows the possibility that the phenotypes come at different
costs to the male.

This situation is modeled by the game presented in figure 1 (from Zollman
et al., 2013). If the cost of sending the signal is sufficiently high for the low
quality male (cz > 1) and sufficiently low for the high quality male (¢; < 1),
then there is a Nash equilibrium where the male sends the signal only when
the male is of high quality, and where the female only mates with males who
send the signal (Zollman et al., 2013). This is an example of a classic costly
signaling model.

However, when the cost for the low type is too low to sustain an honest
signaling equilibrium, there nonetheless exists another equilibrium (the hybrid
equilibrium) that features partial communication — the hybrid equilibrium. In
this equilibrium the high quality sender always sends the signal, while the low

2 In the context of signaling games, see Nowak (2000) and Nowak et al. (2002) for a
general selection-mutation dynamics.
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1—c,1 0—c1,0 1—c2,0 0—co,1

A1 A2
Receiver
Sig Sig
T1 T2
Sender Sender
Not Not
Receiver
A1 A2
1,1 0,0 1,0 0,1

Fig. 1 Extensive form representation of a situation of communication between potential
mates from Zollman et al. (2013). The first move is made by nature who chooses whether
the male is of high quality (7% ) or low quality (72). The male can now condition its behavior
on its quality, and can either send the signal or not. The cost to the signal varies with the
quality of the male, c¢; if the male is of high quality and ca if of low quality. The female
observes the males decision, but not the decision by nature, and chooses either to mate (A1)
or decline (A2).

quality sender does so only occasionally. The receiver occasionally mates with
a male who sends the signal, but always declines to mate with one who does
not. In this equilibrium partial information is transfered.

Zollman et al. (2013) showed that in this equilibrium the low quality sender
mixes with probability m/(1 — m) where m is the probability of being of the
high type. The female chooses to mate with a male who sends the signal with
probability given by co. This equilibria exists when 1 > ¢ > ¢1 > 0, precisely
when the cost is too low to sustain the signaling equilibrium. Similar results
have been shown for the Sir Philip Sidney game Huttegger and Zollman (2010)
and for the Spence job market signaling game Wagner (2013).

2.2 Dynamics

That an equilibrium exists is insufficient to show that it will be the result of
evolution by natural selection. In order to determine the evolutionary signifi-
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cance of this equilibrium Zollman et al. (2013) considered the two-population
replicator dynamics, which is given by:

& = xi(mi(y) — m(x,y)) (1a)
v = y;(mj(x) — 7(y,x)) (1b)

Here, x = (x1, ...,z ) is the state of the first population andy = (y1,...,yan)
is the state of the second population. 7 (-) is the payoff to strategy k against
the current population state of the other population, and 7 (-, -) is the current
average payoff in the population. In the costly signaling game described above
N = M = 4. Thus the state space of the selection-mutation dynamics is a
sixteen-dimensional polytope.

The replicator dynamics of this game was studied in Zollman et al. (2013).
There, it is shown that the hybrid equilibrium is Liapunov stable (provided
that it exists). More specifically, it is a spiraling center. It has four negative
transversal eigenvalues, and two purely imaginary eigenvalues. This implies
that, from the interior, trajectories close to the hybrid equilibrium converge
to the plane that supports the hybrid equilibrium. On the plane, solution
trajectories cycle around the hybrid equilibrium.

This has two important consequences. First, the hybrid equilibrium is Li-
apunov stable but not asymptotically stable. Second, the dynamics close to
the hybrid equilibrium is not structurally stable (Guckenheimer and Holmes,
1983). This means that small perturbations of the replicator equations (1)
will result in qualitatively different dynamical behavior close to the hybrid
equilibrium.

This raises the question whether the hybrid equilibrium continues to be
dynamically stable under biologically plausible perturbations. One such per-
turbation is given by supplementing the replicator dynamics with mutation
terms. This is achieved by the selection-mutation dynamics which uses de-
terministic mutation terms (Hofbauer, 1985). The selection-mutation dynam-
ics for signaling games without costs was studied in Hofbauer and Huttegger
(2008).

In the simplest case of uniform mutation rates, the selection-mutation dy-
namics is given by:

&y = xi(mi(y)

(x,y)) +e(1 - Nux;) (2a)
95 = y;(mj(x) :

-7
—m(y,x)) +6(1 — My;) (2b)
¢ and ¢ are the mutation rates in the first and the second population, respec-
tively. We allow the mutation rates to be different, but require that they are
of the same order; i.e., £ = pd for some constant p as € — 0. This implies, in
particular, that O(e¥) = O(6%) for all k& > 1. In what follows O(2) denotes
terms of the form €2, 62,6 or similar terms of higher order.

The terms €(1 — Nz;) and 6(1 — Mz;) represent the effects of mutation.
Notice that, if £,6 = 0, (2) reduces to the standard replicator dynamics. If
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€,0 > 0, then there are no rest points at the boundary of the state space.
Hence, the effect of the mutation terms is to introduce strategies that are not
present in the population.

Suppose that the signaling equilibrium exists. Then it is a hyperbolic rest
point of the replicator dynamics (1). Hence, the Jacobian of the replicator
dynamics (1) evaluated at the signaling equilibrium is invertible. Thus, by
the implicit function theorem, there exists a unique rest point of the selection-
mutation dynamics close to the signaling equilibrium for sufficiently small ¢, 6.
Since the eigenvalues of the selection-mutation dynamics are continuous in €, 9,
this implies the following proposition:

Proposition 1 If (c1,co,m) are such that the signaling equilibrium exists,
then there is a unique linearly stable rest point of the selection-mutation dy-
namics (2) close to the signaling equilibrium for sufficiently small €, 4.

As a consequence, the stability of the signaling equilibrium is robust under
the selection-mutation dynamics. In the next section we study the question of
whether something similar holds for the hybrid equilibrium.

3 Results
3.1 Existence and uniqueness of perturbed rest points

We note first that the hybrid equilibrium is regular; that is, the Jacobian
matrix of the replicator dynamics evaluated at the point (x*,y*) = [(1 —
a,a,0,0), (c2,1 —cg,0,0)] is a regular matrix (and thus invertible). (Here a =
m/(1 —m).) The Jacobian is regular at the hybrid equilibrium since it has
no zero eigenvalue. As noted above, it has four negative eigenvalues and two
non-zero, purely imaginary eigenvalues.

Since the hybrid equilibrium is regular, it follows from the implicit function
theorem that there exists a unique rest point (X,y) of (2) close to the hybrid
equilibrium (x*,y*), provided that e,§ are sufficiently small. The location of
(x*,y*) depends on ¢, § and the other parameters of the game. The following
result makes this more precise.

Proposition 2 If (¢1,ca, m) are such that the hybrid equilibrium exists, then
there is a unique rest point (x,y) close to the hybrid equilibrium for sufficiently
small £,6. The perturbed rest point (X,y) is given by

o € 2 90 2
I3—$4—(02_01)m+0(5> and yg_y4—1_2m+0(5)
and
__1-2m e(3m—1) B 0(1 — 2¢2)
S m(l—m)(ca—c1) (1 —m)ea(l — c2) +00)
o e(3—"Tm) )
=2 oA oy 1o 0@
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Proof Since the hybrid equilibrium (x*,y*) is regular, we know that the per-
turbed rest point (X,y) exists close to the it for sufficiently small ¢, . We can
thus study Taylor expansions of the equations (2) around the hybrid equilib-
rium (x*,y*) in order to determine its location.

Let

filx,y) = zi(mi(y) — n(x,y)) +e(1 — 4x;)
and

95 (x,y) = y;(m;(x) — w(y,x)) + 6(1 — dy;).
for 1 <4,j < 4. We start by considering x3. Here we have

ofs
afk

for all k # 3 and
o,
yr
for 1 < k < 4. Since f3(x*,y*) = ¢ and Jf3(x*,y*)/0x3 = —4e + (c2 — c1)m,
the Taylor expansion of f3 around the hybrid equilibrium (x*,y*) is given by
f3(x,y) = &+ (—de + (c1 — ca)m) x3 + O(x3).

Setting f3(x,y) = 0 yields the solution
€
I3 = ————— + O(e?).
3 (ca —c1)m (%)

The argument can be repeated for Z4. Similarly, dgs/dys is the only non-zero
partial derivative of g3. Thus the Taylor expansion of g3 around the hybrid
equilibrium is given by

g1(x,y) =0+ (=1 =46 + 2m) ys + O(y3)

for (x,y) close to (x*,y*). The same holds for y4. This yields the solutions

gl ) 232 .
We consider the Taylor expansion for f; next. Note first that
. x e3—Tm
fixy") = —%-

Calculating the partial derivates of f; relative to all variables, we have

eB3—Tm) " (961 1= 2m) N (co —c1)m(1 — 2m):103 (2= c)m(1 —2m)

fl(xuy) =

m(2m — 1)

1—-m 1—-m 1—m 1—-m i

1
(y1 —c2)+ |1 — —— +2m ) ys + higher order terms
1—m 1—m

close to (x*,y*). Furthermore,

g1 (X", y%) =8 — 4ead
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and

1-2m
1-m
—46(y1 — ¢2) + (c2 — 2cam)(y3 + y4) + higher order terms

g1(x,y) =0 —4cod + (1 — ¢ca)e2(1 —m) (wl - ) + (1 —e2)ea(l —2m)ag — (1 — ca)camay

close to (x*,y*). If we use the solutions obtained for Zs3,Z4,¥s3, §sa, then the
expansions for fi; and g; yield a system of two equations in x1 and y1:

0= ﬁ ((e(T =m — 41 + 4mz1) — m(—=6 — c2(1 — 2m) + y1 — 2my1)))
0= % +o— 208+ & _(Z)f?igﬂjm) (1= ca)ea(l —m(2 — x1) — a1) + 4(ca — 1)

Z1 and g2 are the solutions of this system.

Proposition 2 should be contrasted with the results obtained in Hofbauer
and Huttegger (2008), where the selection-mutation dynamics is applied to
signaling games without conflicts of interests and costs. In these games, per-
turbed rest points that are not close to a signaling equilibrium can vary in
terms of their number depending on the ratio £/4. This is not the case here
because the hybrid equilibrium is regular.

3.2 Dynamic stability of perturbed rest points

Next, we study the stability properties of the rest point (X,y). Let us first fix
the parameters c;, co and m. Since c¢; is the low-cost signal, we let ¢; = 0.
Moreover, we set ¢; = 2 and m = % In this case, the location of the hybrid

2
equilibrium (x*,y*) is
11 11
-, =,0,0;=,=,0,0 .
(2 ) 2 ) ) b 2 ) 2 ) ) )
The eigenvalues of the replicator dynamics evaluated at the hybrid equilibrium
are
1 1 1 1 44

B S
Proposition 2 determines the location of the rest point (X,y) close to the
hybrid equilibrium. In particular,

T3 =74 =6+ 0(?), 73 =1ys=30+0(5?) (3)
and
1 1

With these values, we can now demonstrate that the perturbed rest point
is hyperbolic and asymptotically stable.
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Lemma 1 The perturbed rest point of Proposition 2 with the parameter values

1 1

c1 = 0,ca = 5,m = 3 is linearly stable under the selection-mutation dynamics

(2) for sufficiently small €,0.

Proof At the hybrid equilibrium (X,y) with values given in (3) and (4) the
Jacobian matrix is given by (up to higher order terms in €, §):

-2 L -3 L -e-20 —t+4c —2¢ 1—6¢c
0 —5t3e € —4e 0 4e
J 0 e —g—e+46 0 4e 4e
= ) )
v L+2 5% 20 t-2e465%t-2:496
-5 =3 s 0 -2-96 )
30 30 1
-3 - % 0 § —1-9

Let x(J) be the characteristic polynomial of J. We may only consider the
linear approximation for x(J) and ignore higher-order terms in € and §. The
zero-order term of x(J) developed in z is equal to

1 z 1722 23 724

- el c Rl 5 6
11664 7648 TT206 T2 T s TP TE

The terms linear in € are given by

1+2z+5z2+z3
“\486 "81 " 52 "9 )

The terms linear in § are given by

5 1 z+z2+4z3+2z4
486 81 18 9 3 /)
The sum of these three expressions is the product of four factors (multiplied
by the factor —1/11664). The first three factors are

(1+32)* and 1+ 6z.

Setting these two factors to zero yields the eigenvalues

—% +0(2), —% +0(2)

If €, 0 are small, these eigenvalues are negative.
The third factor is a polynomial of degree three. It is given by

—1+ 24e + 246 — 62 — 1446z — 362% — 2162°. (5)

The corresponding cubic equation can be solved. The three solutions can be
developed into Taylor expansions around (e,d) = (0,0). This yields one real
eigenvalue

1
—6 4+ 2e + 46 + 0(2)
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For small ¢, §, this eigenvalue is negative.
The polynomial (5) has two more solutions, which are complex conjugate.
By again using Taylor expansions around (e,d) = (0,0) they can be given as

—(1—i)a—25—%+0(2)

and .
(A +i)e—28+ % +0(2).

The real parts of the two eigenvalues are negative for €, > 0. Together with
the foregoing results, this shows that (X,y) is linearly stable for sufficiently
small ¢, 4.

Lemma 1 shows that the hybrid equilibrium is evolutionarily significant
from the point of view of the selection-mutation dynamics for the specific
parameter values chosen. The same calculations can be performed for other
values of the parameters. For instance, choosing ¢; =0, co = 1/4and m = 1/3
also leads to the conclusions of Lemma 1. Similar calculations can be used
in the case of other costly signaling games. For instance, an analogue of the
foregoing lemma is true for the Sir Philip Sidney game.

Lemma 1 leads straightforwardly to our main result.

Theorem 1 There is an open set of parameter values (c1,ce, m) such that the
perturbed rest points as in Proposition 2 exist and are linearly stable under the
selection-mutation dynamics (2) for sufficiently small €, 9.

Proof The system (2) is continuous in the parameters (c1, c2, m). It follows that
also the Jacobian and the characteristic polynomial are continuous in ¢y, co, m,
and thus the same is true for the eigenvalues. Since, by Lemma 1, the perturbed
rest point of Proposition 2 is linearly stable for (c1,co,m) = (0,1/2,1/3),
the eigenvalues will be close to the eigenvalues of this rest point as long as
(c1,c2,m) is close to (0,1/2,1/3). Because the hybrid equilibrium exists for
these values, the assertion of the theorem follows.

Theorem 1 shows that the result obtained in Lemma 1 can be robustly
extended to other values of the model parameters.

3.3 Simulations

The analytic results of the previous section have established the existence of
open sets of games where the hybrid equilibrium is asymptotically stable for
sufficiently small mutations. We cannot, however, analytically determine in
what proportion of signaling games with a hybrid equilibrium the equilibrium
is asymptotically stable. For this reason we turn to numerical techniques.

To do so, we randomly generated parameterizations of the game from fig-
ure 1 which featured the hybrid equilibrium. Utilizing Mathematica, we calcu-
lated the eigenvalues of the Jacobian at the point given in 2 for two different
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¢ €6

(a) (b)

Fig. 2 Numerical results for the stability of the hybrid equilibrium. The x-axis represents
the difference in cost between the high and low cost signals. The y-axis represents the
probability that the sender is of type 7T7. Black indicates that all generated games at that
point featured at least one positive eigenvalue. White indicates that no generated games at
that point featured at least one positive eigenvalue.

mutation parameters €, = 0.01 and 0.001. For the larger mutation parameter
we generated 499,351 sample points, and for the smaller we generated 499,222
points. We determined whether any of the eigenvalues of the Jacobian at the
hybrid equilibrium were positive. The results of this numerical analysis are
illustrated in figure 2.

We can conclude several things. First, the hybrid equilibrium is not stable
in the replicator-mutator dynamics in all games that have a hybrid equilib-
rium. Second, while there were many games where the rest point was unstable,
almost all of them lay at the edges of the parameter space — that is near the
boundary where the hybrid equilibrium no longer exists. For a large number
of points in the interior of the parameter space (which includes our example
from the last section), the hybrid equilibrium is stable.

Finally, as the mutation parameter becomes smaller, it appears that the
region where the hybrid equilibrium is stable grows. This suggests a conjecture:
that as d,e¢ — 0, the proportion of the parameter space where the hybrid
equilibrium is stable (among those areas where it exists) goes to 1.

4 The adjusted replicator dynamics

Another robustness result can be straightforwardly obtained by considering the
adjusted replicator dynamics that was introduced by Maynard Smith (1982).
In the two-population context, this dynamics is given by:

zi(mi(y) — m(x,y))

b= m(x,y) o
o yilmi(x) = 7(y,x))
Yi m(y,x) (o)

Thus, per capita growth rates are normalized by the population’s average
fitness.
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It is not difficult to see that the hybrid equilibrium of the game in figure 1
is asymptotically stable for the dynamics (6). First, note that the transversal
eigenvalues of the Jacobian of (6) evaluated at the hybrid equilibrium must
have the same sign as the transversal eigenvalues of the standard replicator
dynamics (1) since the adjusted replicator dynamics is a normalization of the
standard replicator dynamics. Hence, all transversal eigenvalues are real and
negative.

Second, consider the plane on which the hybrid equilibrium lies (i.e., the
boundary spanned by its support). The signaling game restricted to the sup-
port of the hybrid equilibrium is a version of Matching Pennies. It is well
known that the adjusted replicator dynamics (6) converges to the unique Nash
equilibrium of games like Matching Pennies, for the eigenvalues of the Nash
equilibrium have negative real part (Weibull, 1995, 176-179). Overall it follows
that all eigenvalues of the hybrid equilibrium have negative real part.

5 Conclusion

After the publication of Huttegger and Zollman (2010) and Zollman et al.
(2013) it remained a possibility that the hybrid equilibrium was non-generic.
That is, the reported results did not exclude the possibility that the hybrid
equilibrium would be rendered unstable if small perturbations to the replicator
dynamics, like those from mutation, were introduced.

In this paper we establish a number of results that suggest that the sta-
bility of hybrid equilibrium is generic, and that as mutation is introduced the
equilibrium actually becomes more significant. We illustrated that the hybrid
equilibrium remains a rest point and there is an open set of parameter values
where it is asymptotically stable. Furthermore, we established (through numer-
ical methods) that this constitutes a relatively large portion of the parameter
space, and that it grows as the mutation parameter shrinks.
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