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It is well known that Rudolf Carnap’s original system of inductive logic failed to
provide an adequate account of analogical reasoning. Since this problem was iden-
tified, there has been no shortage of proposals for how to incorporate analogy into
inductive inference. Most alternatives to Carnap’s system, unlike his original one,
have not been derived from first principles; this makes it to some extent unclear
what the epistemic situations are to which they apply. This paper derives a new
analogical inductive logic from a set of axioms which extend Carnap’s postulates in
a natural way. The key insights come from Bruno de Finetti’s ideas about analogy.
The axioms of the new system capture epistemic conditions that call for a strong
kind of analogical reasoning. The new system has a number of merits, but is also
subject to limitations. I shall discuss both, together with some possible ways to
generalize the approach taken in this paper.

The Bayesian version of the simplest form of inductive inference—

induction by enumeration—equates the predictive probability of an
outcome with its observed relative frequency (up to initial beliefs).

One approach for uncovering the principles that underlie this method
was pioneered by the Cambridge logician and philosopher

W. E. Johnson (1924, 1932). It was later developed independently by
Rudolf Carnap (1950, 1952, 1971, 1980) in his epic project of recon-

structing the inductive logic of science. At the heart of the Johnson-
Carnap approach is an application of the axiomatic method: their

inductive systems are derived from a set of rather plausible axioms,
which require in effect that the order in which outcomes are observed
is probabilistically irrelevant. The Johnson-Carnap approach thus

shows that induction by enumeration is adequate whenever the
order of events is judged to be of no significance.1

A limitation of the Johnson-Carnap approach is its inability to deal
with various forms of analogical reasoning. This was pointed out by

Peter Achinstein (1963) in an influential critique of Carnap’s inductive
system. Achinstein showed that Carnapian inductive logic cannot

1 See Zabell (2011) for an overview. For more information about the role of order invari-

ance see Zabell (1989).
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account for the following plausible inference pattern: if all types of

metal you have observed so far conduct electricity, a hitherto unob-

served type of metal will very likely exhibit the same behaviour.

Carnap (1963) clearly recognized the problem. But while his original

system of inductive logic includes some limited forms of analogical

inference (Carnap and Stegmüller 1959; Carnap 1980; Niiniluoto 1981;

Romeijn 2006), Carnap’s own contributions did not lead to any

definitive solution. The reason is that the most interesting kinds of

analogy are excluded by one of the central principles of Johnson’s and

Carnap’s inductive logic, the so-called sufficientness postulate

(Good 1965). The sufficientness postulate implies that the predictive

probability of an outcome is independent of how often similar but

distinct outcomes have been observed. Carnapian inductive logic is

hostile ground for analogy at its most fundamental level.
There have been a number of attempts to solve this problem.2 In

this paper I develop a novel inductive system that departs from pre-

vious accounts in a number of significant ways. The new inductive

logic extends Carnap’s system so as to enable distinct but similar types

of observations to influence each other’s predictive probabilities. It is

based on two generalizations of Johnson’s and Carnap’s axioms. One

lifts the restrictions imposed by the sufficientness postulate. The other

one is a weakening of order invariance along the lines suggested by

Bruno de Finetti. De Finetti’s early work on inductive inference also

used order invariance, which in modern terminology is known as

exchangeability. Exchangeability, according to de Finetti, is a judge-

ment to the effect that the trials of an experiment are fully analogous.

In order to allow for analogies that are less than complete, de Finetti

(1938, 1959) introduced the concept of partial exchangeability, which

requires invariance only under restricted classes of reorderings.

Besides a generalized sufficientness postulate, a new variant of partial

exchangeability will be the most important element of the new induct-

ive system.
After a brief review of exchangeability, partial exchangeability is

introduced in §1. In §2 I state the main result and discuss some of

its consequences. Finally, in §3 I analyse the asymptotic behaviour of

the new inductive system and examine it in the context of a famous

principle, known as ‘Reichenbach’s axiom’, which requires predictive

2 See Hesse (1964), Niiniluoto (1981), Spohn (1981), Costantini (1983), Kuipers (1984),

Skyrms (1993a), di Maio (1995), Festa (1997), Maher (2000, 2001), Romeijn (2006), and Hill

and Paris (2013).
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probabilities to converge to limiting relative frequencies. A discussion

of the issues revolving around Reichenbach’s axiom leads to an

increased understanding of the conditions under which the inductive

logic of this paper is an adequate model.

1. Exchangeability and partial exchangeability

1.1 Exchangeability
The concept of exchangeability is at the heart of the Bayesian

approach to inductive inference; it provides us with a Bayesian ver-

sion of the most common type of statistical model. A sequence of

outcomes is exchangeable if its probability does not depend on the

order in which outcomes are observed; reordering the sequence has

no effect on its probability. Mathematically, a finite sequence of out-

comes is represented by a finite sequence of random variables,

X1, …, Xn; for simplicity we assume that each Xi takes values in a

finite set of outcomes, f1, …, sg. The sequence X1, …, Xn is exchange-

able if

P½X1 ¼ x1, …, Xn ¼ xn� ¼ P½X1 ¼ x�ð1Þ, …, Xn ¼ x�ðnÞ�

for every permutation s of f1, …, ng.3 Exchangeability can be extended

to infinitely many observations: an infinite sequence X1, X2, … of out-

comes is exchangeable whenever each of its finite initial segments is

exchangeable.
That infinite exchangeable sequences fully capture the most import-

ant case of statistical inference is a consequence of de Finetti’s famous

representation theorem.4 De Finetti showed that infinite exchangeable

sequences are equivalent to independent and identically distributed

(i.i.d.) trials of a chance experiment with unknown chances. Thus,

whenever X1, X2, … is an infinite exchangeable sequence, its associated

probability measure P can be represented by a unique mixture of i.i.d.

multinomial trials; conversely, every such mixture determines an ex-

changeable probability over sequences of observations.5 As a result,

3 Such a permutation is a reordering of the numbers 1, …, n.

4 See de Finetti (1937). There are many extensions of de Finetti’s result to more general

probability spaces; see Aldous (1985) for an overview.

5 Suppose, for example, that Xn records whether the nth toss of a coin flip comes up heads

or tails, and that the infinite sequence X1, X2, … is exchangeable. According to de Finetti’s

representation theorem this is equivalent to the probability of finite sequences of heads and
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observations may be thought of as generated by a process according to

which each outcome has a fixed probability, or chance, of occurring.

Each vector ðp1, …, psÞ, where pi is the chance of outcome i andPs
i¼1

pi ¼ 1, is a chance configuration. If chances are unknown, un-

certainty can be expressed as a probability distribution over the set of

all possible chance configurations, (p1, …, ps), which is the mixing

measure in the de Finetti representation. De Finett’s theorem thus

allows us to view unobservable chance set-ups as intrinsic features of

the probabilistic structure of the observable process. If an agent’s sub-

jective degrees of belief are exchangeable, that agent is free to adopt

any method that refers to the chance set-up without having to think of

chances as real. De Finetti’s representation theorem entitles subjective

Bayesians to help themselves to chances whenever it’s useful to do so.
One important consequence of de Finetti’s representation theorem

is a simple formula for calculating predictive probabilities. Suppose

the mixing measure in the de Finetti representation is a Dirichlet

distribution.6 Then the conditional probability of observing outcome

i given past observations is

ð2Þ P½Xnþ1 ¼ i jX1, …, Xn� ¼
ni þ ai

n þ
P

i ai

where ni is the number of times i occurs among X1, …, Xn, and the

parameters aj , 1 � j � s, determine the initial probablilities of obser-

ving outcomes. Formula (2) is a generalization of Laplace’s rule of

succession (Laplace 1774), which sets all alpha parameters equal to one.

The derivation of (2) from de Finetti’s theorem appeals to spe-

cial prior distributions over chance set-ups. There is an alternative

approach to generalized rules of succession that does not rely on

tails being a mixture of i.i.d. binomial trials with unknown bias of the coin:

ð1Þ P½X1 ¼ x1, …, Xn ¼ xn� ¼

Z
1

0

phð1� pÞn�hdmðpÞ

Here, p is the bias for heads, m is a uniquely determined prior over biases, and h is the number
of heads in the first n trials.

6 This means that the mixing measure is given by

G
PK

j¼1
aj

� �
QK

j¼1
G aj

� � pa1�1

1
…paK�1

K dp1 …dpK�1

where G is the gamma function. By varying the alpha parameters, Dirichlet distributions are
capable of expressing many different states of uncertainty.
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such assumptions. This approach was developed independently by
W. E. Johnson (1924, 1932) and Rudolf Carnap (1950, 1952, 1971,

1980). Rather than using chance set-ups, they introduced what has
become known as Johnson’s sufficientness postulate, which requires

the predictive probability of i to depend only on i, ni, and the total
sample size n:

ð3Þ P½Xnþ1 ¼ i jX1, …, Xn� ¼ fiðni, nÞ

The predictive probabilities (2) can be derived from Johnson’s suffi-
cientness postulate if we assume, in addition, that the sequence of
observations is exchangeable.7

What this tells us is that, in the presence of exchangeability,
Johnson’s sufficientness postulate characterizes Dirichlet priors. This

is very much in line with a subjective Bayesian point of view such as
that of de Finetti, who maintains that the chance set-up of the de Finetti

representation is just an artefact of exchangeable probabilities; because
the chance setup is unobservable, any appeal to it, such as requiring the

mixing measure to be Dirichlet, is philosophically problematic.8

Johnsons’s sufficientness postulate gets around this difficulty in a way

that only refers to the observable process. Instead of figuring out what
you think about chances, all you need to do is judge whether predictive

probabilities really depend on nothing but relative frequencies.

1.2 Analogy
Both exchangeability and Johnson’s sufficientness postulate have to do
with analogy. Let’s consider Johnson’s sufficientness postulate first. It

implies that the number of trials nk of outcomes k not identical but
similar to i is judged to be irrelevant for the conditional probability of

i. As observed by Achinstein (1963), this creates a problem for
Carnapian inductive logic. Achinstein puts forward an example in

which an investigator explores whether different kinds of metal con-
duct heat. Suppose that so far we have only observed the number of

times platinum or osmium conduct heat. On the next trial we are
going to observe a piece of rhodium. Should our observations of

platinum and osmium be relevant for our predictive probabilities?
Analogical reasoning of this type seems to be eminently plausible,

because platinum, osmium and rhodium are in the same chemical

7 See Zabell (1982) and Kuipers (1978) for detailed accounts of the mathematical aspects of,

respectively, Johnson’s and Carnap’s arguments.

8 See de Finetti (1938).
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family. But evidence from observations of platinum and rhodium is
exactly what Johnson’s sufficientness postulate deems irrelevant. As a

result, Carnap’s inductive logic cannot deal with these very simple
types of analogical inference.

As first observed by de Finetti, exchangeability involves another
kind of analogy judgement. De Finetti was fond of noting that each

observation or each trial of an experiment is, strictly speaking, unique;
the circumstances of distinct observations may vary in any number of

ways, and the same kind of observation can be, and usually is, made
under completely different background conditions (de Finetti

1938, 1974). As an illustration, consider flipping a coin: the ambient
temperature, the time of day, the person who flips the coin, the stock

market indices at the time of the coin flip—all these factors vary,
perhaps ever so slightly, with each flip of the coin. Judging a sequence

of outcomes to be exchangeable is therefore tantamount to asserting
that all these background factors are irrelevant; trials are thought to be
completely analogous in all relevant respects.

Of course, trials often fail to be completely analogous. For example,
the coin may be flipped by two people. If one of them is a professional

coin-flipper and the other an amateur like me, thinking of trials as
exchangeable would not be adequate. De Finetti’s standard example is

flipping two coins which don’t look exactly the same. In order to allow
varying circumstances to have an effect on inductive inference, de

Finetti (1938, 1959) introduced the concept of partial exchangeability.
Partial exchangeability captures a middle ground between complete

analogy (exchangeability) and no analogy among trials.

1.3 Partial exchangeability
The basic scheme of partial exchangeability involves outcomes and
types of outcome. Suppose there are t <1 types of outcomes. Let

Xnj be the nth outcome of type j, Nj the total number of type j out-
comes observed thus far, and N ¼

P
j Nj the total number of obser-

vations. Observations are given by an array that has X1j , …, XNj , j as its
jth column, where j ¼ 1, …, t . De Finetti’s example of flipping two

coins has two types—the coins—and two outcomes—heads and tails.
This gives rise to an array of two sequences of heads and tails, one for

the first coin and the other for the second coin. Achinstein’s example
also fits this scheme; different kinds of metal correspond to types, and

whether or not an observed metal conducts heat are the outcomes.
A sequence of observations of different types is partially exchange-

able if it is exchangeable within each type. More precisely, let
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X1j , …, XNj , j , 1 � j � t , be an array of observations, and let nij be the

number of times an outcome i of type j has been observed in the first

N trials. Then the array X1j , …, XNj , j , 1 � j � t , is partially exchange-

able if every array with the same counts nij has the same probability.

An infinite array X1j , X2j …, 1 � j � t , is partially exchangeable if

every finite initial array is partially exchangeable. This means that

reordering finitely many outcomes within a type has no effect on

the probability assignment. The numbers nij are a sufficient statistic

for the prior probability.
Exchangeability is a special case of partial exchangeability. If prob-

ability assignments are not just invariant under reordering outcomes

within types (as required by partial exchangeability) but also across

types, the probability assignment is exchangeable. This is a precise

statement of the idea that exchangeability represents full analogy,

whereas partial exchangeability allows weaker analogies between types.

Partially exchangeable probabilities can also be represented in terms

of chance set-ups. The appropriate chance set-up is slightly different

from the one corresponding to exchangeable probabilities (i.i.d. trials).

Trials are independent, but they are identically distributed only within

each type; across types, the chances of outcomes can vary. De Finetti’s

representation theorem for partially exchangeable probabilities says that

this chance set-up, together with a prior over chances, is equivalent to

partially exchangeable probability measures.9 In de Finetti’s coin ex-

ample, the representation theorem allows us to think of the partially

exchangeable process as generated by first choosing biases p and q of the

coins according to a joint distribution over biases and then flipping the

two coins independently with probabilities p and q for heads.
Notice that the chance set-up allows p and q to be unequal but

correlated. This allows a continuum of analogy effects between types.

If biases are perfectly correlated, they are equal and we have exchange-

ability or full analogy. If biases are chosen independently, there is no

analogy between types. In general, though, types may be arbitrarily

9 See de Finetti (1938, 1959), Link (1980), and Diaconis and Freedman (1980). More for-

mally, if each type occurs infinitely often, then there exists a unique measure m such that

for all 0 � nij � Nj , i ¼ 1, …, s, j ¼ 1, …, t ,

ð4Þ

P½X11 ¼ x11, …, XN1 , 1 ¼ xN1 , 1; …; X1t ¼ x1t , …, XNt , t ¼ xNt , t �

¼

Z
Dt

Yt

j¼1

p
n1j

1j …p
nsj

sj dmðp
1
, …, pt Þ

The integral ranges over the t-fold product of the s – 1-dimensional unit simplex D, and m is
the mixing measure on the probability vectors pj ¼ ðp1j , …, psjÞ 2 D, 1 � j � t .
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correlated. This correlation creates analogy influences between types

in de Finetti’s framework.10

In order to understand better the type of analogy which is at play

here, it is instructive to consider the limiting behaviour of partially

exchangeable processes. Regardless of the degree of correlation be-

tween types, the posterior distribution becomes peaked around the

observed relative frequencies with increasing information. This

implies that the predictive probabilities, which coincide with the

Bayes estimates (the posterior expectation of chances), converge to

the limiting relative frequencies with probability one. For example,

the predictive probabilities of outcomes when flipping two coins

almost certainly converge to the biases p and q. From this we can

infer that de Finetti’s analogies are transient; similarities between

types have an effect only on how types are initially correlated.

I emphasize this point because the inductive system I will introduce

in the next section models a type of analogy that is permanent and not

transient. Let me give two examples of when we should expect such

persistent correlations. The first is a set of clinical trials with male and

female patients (types) who can display different symptoms (out-

comes) that depend on unknown infectious agents. In this situation,

it is reasonable to form different conditional beliefs about observing

symptoms in future subjects according to whether they are females or

males. If there is an underlying chance process (how infectious agents

are expressed) according to which symptoms in female and male sub-

jects covary, observations of one type might not cease to provide in-

formation about the other type as the sample size grows without

bound. This may result in enduring analogy effects.
The second example comes from game theory. The standard solu-

tion concept of game theory, Nash equilibrium, assumes that players

choose their strategies independently. In many games this is an im-

plausible assumption (Aumann 1974). Suppose you are involved in a

repeated three-player game. Then it is often reasonable to assume that

the other two players correlate their choices. This might be the case,

for example, if they represent two companies that form an oligopoly.

In a situation like this one, you would not assume that the other

players choose their strategies independently; instead, the process gov-

erning their choice of strategies will exhibit dependencies.11

10 A similar kind of analogical prediction is developed in the context of exchangeable

sequences by Skyrms (1993a), Festa (1997) and Romeijn (2006).

11 In game theory, such considerations lead to the concept of a ‘correlated equilibrium’.

Mind, Vol. 128 . 509 . January 2019 � Huttegger 2017

8 Simon M. Huttegger

D
ow

nloaded from
 https://academ

ic.oup.com
/m

ind/article-abstract/128/509/1/3864100 by guest on 11 February 2019



The inductive logic of the next section is also set within de

Finetti’s conceptual scheme of outcomes and types. Before we

dive into the details, let me note that this scheme is a departure

from Carnap’s framework. Since Carnap allows predicates to

belong to different families, his inductive logic allows a distinction

between types and outcomes. However, it operates at the level of

so-called Q-predicates. Each Q-predicate is a maximally specific

description of observations in terms of the underlying families of

predicates (like types and outcomes). The inductive logic assigns

predictive probabilities to observing a Q-predicate given past ob-

servations of Q-predicates. This is different from predictive infer-

ence based on partial exchangeability, which requires that

predictive probabilities be assigned to outcomes given past obser-

vations and given their particular type; types, however, are not

assigned predictive probabilities.
There certainly are ways of supplementing the probability distribu-

tion to make inferences about types possible. It would be interesting to

explore how this affects analogy. This task is beyond the reach of the

present paper, though.

2. A new analogical inductive system

2.1 The postulates

Let N be the total number of observations made thus far,

X N ¼ ðX1, …, XN Þ the sequence of outcomes, and Y N ¼ ðY1, …, YN Þ

the sequence of types. Furthermore, let nim denote the number of

times outcome i of type m is recorded in the first N trials, and let

Nm ¼
P

i nim be the number of times type m has been observed. The

set of outcomes is f1, …, sg, and the set of types is f1, …, tg.
The following principle is a modification of Johnson’s sufficientness

postulate that applies to the scheme of outcomes and types:

ð5Þ P½XNþ1 ¼ i jX N , Y N , YNþ1 ¼ j� ¼ fijðnij , NjÞ

This principle says that the predictive probability of i being the next

outcome, given that it is of type j, is a function of i and j as well as nij

and Nj. Clearly, (5) makes analogical reasoning impossible. For ex-

ample, if j are male subjects in a medical experiment and i is a par-

ticular symptom, then the number of times i has been observed in

female subjects has no effect on the predictive probabilities for male
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subjects. In order to make room for analogy we must allow that pre-

dictive probabilities are functions of nij for all types j. Formally, for all

i ¼ 1, …, s and j ¼ 1, …, t ,

ð6Þ P½XNþ1 ¼ i jX N , Y N , YNþ1 ¼ j� ¼ fijðni1, …, nit , N1, …, Nt Þ

In the sequel we shall refer to this principle as the modified sufficient-

ness postulate. Clearly, the modified sufficientness postulate should

hold in all instances of analogical inference where outcomes of differ-

ent types can influence each other’s conditional probabilities (and no

other outcomes can). This covers many of our previous examples,

such as flipping two coins, observing different types of metal, obser-

ving male and female patients, or predicting the choices of two players

who might correlate their strategies. Notice that our modified suffi-

cientness postulate subsumes (5), as well as the case of exchangeability

(where predictive probabilities depend on the sums
P

j nij ,
P

j Nj).
Besides (6), it would seem reasonable to require that outcomes be

partially exchangeable with respect to types. A straightforward imple-

mentation of this idea runs into problems, though. Corollary 2 below

bears witness to the fact that in the presence of other plausible as-

sumptions—including the modified sufficientness postulate (6)—par-

tial exchangeability leaves no room for non-trivial analogical

reasoning. Without going into details, I’d like to indicate the basic

difficulty here in order to say how it can be overcome.
Recall that a partially exchangeable probability assignment is invari-

ant under arbitrary permutations within a type. Thus, in the present

context we say that the sequence X1, …, XN is partially exchangeable if

the probability of X1 ¼ x1, …, XN ¼ xN , Y1 ¼ y1, …, YN ¼ yN depends

only on the numbers nij. Once we fix a sequence of types, reordering

outcomes within types has no effect on probabilities. This implies that

P½XNþ1 ¼ i, XNþ2 ¼ l, XNþ3 ¼ k jX N , Y N , YNþ1 ¼ j, YNþ2 ¼ m, YNþ3 ¼ j�

¼ P½XNþ1 ¼ k, XNþ2 ¼ l, XNþ3 ¼ i jX N , Y N , YNþ1 ¼ j, YNþ2 ¼ m, YNþ3 ¼ j�

for all types j, m, and all outcomes i, l, k.12 The foregoing equation

significantly constrains how type m can influence predictive

12 This follows from the fact that the conditional probability P½XNþ1 ¼ i, XNþ2 ¼ l,

XNþ3 ¼ k jX N , Y N , YNþ1 ¼ j, YNþ2 ¼ m, YNþ3 ¼ j� is equal to

P½X N , Y N , XNþ1 ¼ i, XNþ2 ¼ l, XNþ3 ¼ k, YNþ1 ¼ j, YNþ2 ¼ m, YNþ3 ¼ j�

P½X N , Y N , YNþ1 ¼ j, YNþ2 ¼ m, YNþ3 ¼ j�
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probabilities of type j. If l = k, the left-hand side of the equation is a

conditional probability of an event where a k-outcome of type m hap-

pens before a k-outcome of type j. The corresponding event on the

right-hand side has the k-outcome of type j happen before the k-out-

come of type m. For this to hold, the effect m has on j needs to exactly

balance out the influence of j on m regardless of the number of out-

comes and types that are involved. The statement of Corollary 2 is a

precise way of saying what is intuitively plausible: that this is possible

only under very special circumstances.
Let me illustrate the issue with the example of observing symptoms

in female and male patients. Suppose we think that a male observation

of some symptom A has a persistent influence on whether the next

female patient also shows A. Then partial exchangeability would re-

quire that influence to be the same no matter when observations of A

occur in the male sample. In the presence of the other axioms, the

constraints this creates are too severe for the persistent analogy influ-

ence to take on a non-trivial form.

There might be more than one way to avoid this difficulty. In my

view, the other axioms are reasonable, so I opt for the following

modification of partial exchangeability.13 For all types j, m, and for

all outcomes i, l, k such that i, k 6¼ l,

ð7aÞ
P½XNþ1 ¼ i, XNþ2 ¼ l, XNþ3 ¼ k jX N , Y N , YNþ1 ¼ j, YNþ2 ¼ m, YNþ3 ¼ j�

¼ P½XNþ1 ¼ k, XNþ2 ¼ l, XNþ3 ¼ i jX N , Y N , YNþ1 ¼ j, YNþ2 ¼ m, YNþ3 ¼ j�

In addition, we also postulate that

ð7bÞ
P½XNþ1 ¼ i, XNþ2 ¼ k jX N , Y N , YNþ1 ¼ j, YNþ2 ¼ j�

¼ P½XNþ1 ¼ k, XNþ2 ¼ i jX N , Y N , YNþ1 ¼ j, YNþ2 ¼ j�

for all types j and all outcomes i, k.14 Taken together, I refer to (7a) and

(7b) as weak partial exchangeability. The first part says that the con-

ditional probabilities in (7a) may differ if k, i ¼ l, which is more

By partial exchangeability, the numerator is equal to P½X N , Y N , XNþ1 ¼ k, XNþ2 ¼ l,
XNþ3 ¼ i, YNþ1 ¼ j, YNþ2 ¼ m, YNþ3 ¼ j�, which yields the right-hand side of the equation.

13 An alternative would be to keep partial exchangeability but modify other postulates in

order to build appropriate dependencies between types into the chance prior of the de Finetti

representation, along the lines of Skyrms (1993a), Festa (1997) or Romeijn (2006).

14 Conditions (7a) and (7b) could be defined equivalently in terms of unconditional prob-

abilities which exhibit order invariance for all outcomes i, j within a given type unless there is

an intermediate outcome i or j of another type.
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liberal than partial exchangeability requires, and avoids the difficulty

explained above. At the same time, (7a) and (7b) preserve much of

partial exchangeability by insisting that reordering outcomes never

affects conditional probabilities whenever there are no, or at least

no relevant, intermediate outcomes.
We will need two axioms besides the modified sufficientness postu-

late (6) and weak partial exchangebility (7). The following regularity

condition guarantees that all conditional probabilities are well-defined:

ð8Þ P½X1 ¼ x1, …, XNþ1 ¼ xNþ1, Y1 ¼ y1, …, YNþ1 ¼ yNþ1� > 0

for all combinations of outcomes x1, …, xNþ1 and for all combinations

of types y1, …, yNþ1. Our final assumption requires that outcomes and

types are to some extent independent. For all outcomes i and all types

j, k, l,

ð9Þ

P½XNþ1 ¼ i jX N , Y N , YNþ1 ¼ j�

¼ P½XNþ1 ¼ i jX N , Y N , YNþ1 ¼ j, YNþ2 ¼ k�

¼ P½XNþ1 ¼ i jX N , Y N , YNþ1 ¼ j, YNþ2 ¼ k, YNþ3 ¼ l�

This says that XNþ1 and YNþ2 are conditionally independent given

X1, …, XN and Y1, …, YNþ1, and that XNþ1 and YNþ3 are conditionally

independent given X1, …, XN and Y1, …, YNþ2.15 If we think of types as

different kinds of experiment, then the experiments planned for trials

N + 2 and N + 3 are independent of the outcome of trial N + 1.

Condition (9) is thus a substantive assumption. To see how it might

fail, suppose we can choose between different medical treatments; if

one of them leads to a success tomorrow, we might use it with higher

probability on the next occasion. In this case, the choice of future

treatments depends on tomorrow’s outcome. On the other hand, pos-

tulate (9) is adequate whenever types of experiments are chosen at

random (independently of outcomes).

2.2 The main result
Our main theorem says that the four axioms of the previous section

give rise to a parametrized family of analogical predictive probabilities.

15 In the formal development, the postulate allows us to apply the sufficientness postulate

to predictive probabilities that condition on future types, such as those in (9). See the

appendix.
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The parameters fall into two groups: the first group expresses initial

beliefs (as the alpha parameters in the Johnson-Carnap continuum of

inductive methods); the second group consists of analogy parameters.

Theorem 1. Let X1, …, XN� (N� � 4) be a sequence of random vari-

ables that take on values in f1, …, sg, 3 � s � 1. Let Y1, …, YN� be a

sequence of types taking values in f1, …, tg, 1 � t <1. Suppose that

for every N < N�, the four postulates (6), (7), (8) and (9) hold. LetP
i nij ¼ Nj and

P
j Nj ¼ N . Suppose, moreover, that for each type j,

outcomes of that type are not independent of each other. Then there

exist non-zero constants kij (for each j, either all kij are positive or all

are negative) and constants bjm, 1 � i � s, 1 � j, m � t , m 6¼ j, such

that Nj þ
P

m 6¼j bjmNm þ Kj 6¼ 0 (where Kj ¼
P

i kij) and

ð10Þ P½XNþ1 ¼ i jX N , Y N , YNþ1 ¼ j� ¼
nij þ

P
m 6¼j bjmnim þ kij

Nj þ
P

m 6¼j bjmNm þ Kj

for all N < N� and all 0 � nij � Nj , 1 � i � s, 1 � j � t .

Remark 1. It is well known that Johnson’s sufficientness postulate is

vacuous in Carnapian inductive logic if the number of outcomes s =

2. This is also true of the modified sufficientness postulate (6). In

addition, the application of (7a) requires there to be at least three

distinct outcomes (see Lemma 2 and Lemma 3 in the appendix);

this is because (7a) also is vacuous if there are only two types. A part

of this difficulty could be overcome by assuming that predictive

probabilities are linear in the numbers nij (see Lemma 1). Overall,

an alternative approach could probably be developed with the help

of relevance quotients, as suggested by Costantini (1979), but at the

moment I don’t see how this would play out in detail.

Remark 2. Theorem 1 provides predictive probabilities only for

outcomes, and not for types. Hence, as in the case of partially

exchangeable probability distributions, those predictive probabil-

ities do not generate a probability distribution over the full process

of outcomes and types. This makes it difficult to say for which

values of the parameters in (10) the postulates (6), (7), (8) and

(9) hold. What we can say is that, in the presence of (8) and (9),

the first two postulates (6) and (7) hold for all parameters kij , bjm as

specified in the theorem. We cannot say, though, whether (7) is

necessary for the representation (10). Theorem 1 only provides suf-

ficient conditions for the inductive method (10).

Mind, Vol. 128 . 509 . January 2019 � Huttegger 2017

Analogical Predictive Probabilities 13

D
ow

nloaded from
 https://academ

ic.oup.com
/m

ind/article-abstract/128/509/1/3864100 by guest on 11 February 2019



Before saying more about Theorem 1, I would like to note two imme-

diate consequences. First, the parameters of the inductive method (10)

are more constrained if X1, X2, … is an infinite sequence.

Corollary 1. Let X1, X2, … be an infinite sequence of outcomes such

that the assumptions of Theorem (1) hold. Then kij > 0 and

bjm � 0, 1 � i � s, 1 � j, m � t , m 6¼ j.

The second corollary shows the consequences of assuming partial ex-

changeability instead of weak partial exchangeability. If (7a) holds

without restrictions, then either types must be independent or out-

comes must be exchangeable across types.

Corollary 2. Let X1, X2, …XN� (N� � 4) be a sequence of outcomes

such that the assumptions of Theorem 1 hold. Then (7a) holds for

l = k if and only if either bjm ¼ bmj ¼ 0 or bjm ¼ bmj ¼ 1.

Hence, if (7a) holds for all outcomes, there are no analogy influences

short of full analogy; the inductive system basically reduces to the

Johnson-Carnap continuum of inductive methods.
The proofs of Theorem 1 and its corollaries can be found in the

appendix. The proof of Theorem 1 proceeds in two steps. The first step

is to show that predictive probabilities of XNþ1 ¼ i given YNþ1 ¼ j are

linear functions of ni1, …, nit :

aij þ bj1ni1 þ… þ bjt nit

The parameters aij , bj1, …, bjt depend on N1, …, Nt , but not on the

specific numbers of outcomes. This step is based on the modified

sufficientness postulate and the large system of linear equations it

gives rise to.

By normalizing the parameters aij , bj1, …, bjt , predictive probabil-

ities can be brought into the form required by (10). The second step of

the proof shows that the normalized parameters, kij , bj1, …, bjt , do

not depend on N1, …, Nt . This step relies on weak partial exchange-

ability (7) and the fact that the parameters are the same for all possible

patterns of outcomes that add up to N1, …, Nt .
The predictive probabilities of an inductive system can often be

generated by an urn model. Even if it is not known whether a set of

axioms is sufficient for an inductive system, the existence of such an

urn model proves the joint consistency of the axioms. For instance,

the Johnson-Carnap continuum of inductive methods is
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mathematically equivalent to Polya urn processes. A Polya urn process

starts with an urn containing a finite number of balls of different

colours. After choosing a ball at random, it is returned to the urn

with another ball of the same colour before the process is repeated.16

Analogical predictive probabilities can also be generated by urn

processes. Let’s start with the case N� ¼ 1. First, choose an infinite

sequence of types ðy1, y2, …Þ according to some probability distribu-

tion that assigns positive probability to every finite initial sequence of

types. For each type j, there is an urn containing kij balls of colour i

(one colour for each outcome). The process starts with choosing a ball

at random from urn y
1
, observing the colour of the ball, and replacing

it with two balls of the same colour. In addition, bjm � 0 balls of that

colour are put in every urn m. This procedure is repeated for urns

y2, y3, … The same urn model can be used if N� <1, as long as all

parameters are non-negative.

Consider now the case where all kij are negative and all bjm are such

that jbjm j � 1. Suppose that N� < minf�kijg. Negative kij correspond

to choosing a ball from an urn without replacement, since there is an

upper bound to the number of observations nij we can make before

the predictive probabilities (10) become negative. We suppose that for

each type j there is an urn containing �kij > 0 balls of colour i. We

start by choosing a finite sequence of types of length N� from a dis-

tribution that assigns every such sequence a positive probability.

Tracking the sequence of types, balls are then chosen without replace-

ment from urns. If a ball of colour i is chosen from an urn of type j,

then it is not replaced and bjm balls of colour i are taken out of urn m

(or added, in case bjm is negative).

2.3 Some consequences
A closer look at the beta parameters reveals the sense in which they

represent analogy effects. Each bjk depends both on the prior kij and on

the conditional probability pij, ik ¼ P½X2 ¼ i jX1 ¼ i, Y1 ¼ k, Y2 ¼ j�.

More precisely, since

pij, ik ¼
bjk þ kij

bjk þ Kj

16 Sampling balls without replacement also corresponds to certain Carnapian systems. For

more information see Kuipers (1978).
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bjk can be written as

ð11Þ bjk ¼
pij, ikKj � kij

1� pij, ik

By assumption, pij, ik < 1; moreover, P½X1 ¼ i jY1 ¼ j� ¼ kij=Kj . This

implies that bjk is positive, negative or 0, according to whether

pij, ik > P½X1 ¼ i jY1 ¼ j�, pij, ik < P½X1 ¼ i jY1 ¼ j�, pij, ik ¼ P½X1 ¼ i jY1 ¼ j�

respectively. Thus the sign of bjk depends on whether observing an

outcome–type pair (i, k) increases the probability of observing a pair

(i, j) beyond its prior probability. The absolute value of bjk increases as

the probability pij, ik gets closer to 1; the larger the effect of an (i, k)

observation on the conditional probability, the higher the value of bjk.

So bjk is a probabilistic measure of the influence of observations of

type k on observations of type j. According to the inductive method

(10), this influence is invariant with regard to the observational con-

text: no combination of additional observations changes the way k

types affect the conditional probabilities of j types. Thus bjk can be

thought of as the fixed analogy influence type k exerts on type j.

The quantities bjk meet a natural analogy requirement: if bjk � bjl ,

then the influence of k on j is larger than the influence of l on j. This is

made precise in the following proposition.17

Proposition 1. Suppose that all assumptions of Theorem 1 hold, and

that for type j, all kij are positive. If bjk � bjl , then for all N < N�,

ð12Þ
P½XNþ1 ¼ i jX N�1, Y N�1, XN ¼ i, YN ¼ k, YNþ1 ¼ j�

� P½XNþ1 ¼ i jX N�1, Y N�1, XN ¼ i, YN ¼ l, YNþ1 ¼ j�

If bjk > bjl , then the inequality is strict.

Proof. By Theorem 1, (12) is equivalent to

nij þ bjkðnik þ 1Þ þ
P

m 6¼j, k bjmnim þ kij

Nj þ bjkðNk þ 1Þ þ
P

m 6¼j, k bjmNm þ Kj

�
nij þ bjlðnil þ 1Þ þ

P
m 6¼j, l bjmnim þ kij

Nj þ bjlðNl þ 1Þ þ
P

m 6¼j, l bjmNm þ Kj

17 The proposition does not consider the case corresponding to sampling from urns with-

out replacement, which is somewhat less intuitive, but can be treated in a similar way.
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where the nij , Nj , etc. denote counts up to period N – 1. Rearranging

and simplifying shows that this inequality is equivalent to

ð13Þ ðbjk � bjlÞ Kj � kij þ Nj þ
X

m 6¼j
bjmNm � nij þ

X
m 6¼j

bjmnim

� �� �
� 0

Since

Nj þ
X

m 6¼j
bjmNm � nij þ

X
m 6¼j

bjmnim

and because bjk � bjl , the inequality (13) holds if

Kj � kij � 0

Since the parameters kij are positive, the assertion of the propos-

ition follows. #

Proposition 1 says that the larger bjk, the more influence observa-

tions of type k have on the predictive probabilities for type j.

Theorem 1 allows bjk > 1; in this case, observations of type k have a

larger influence on the predictive probabilities for type j than obser-

vations of type j itself. This might be reasonable in situations where

observations of type k are considered to be more reliable. However,

analogy is often thought of in terms of similarity. Since each type is

most similar to itself, other types should not exhibit a larger analogy

effect on that type than it has on itself. This idea can easily be incor-

porated into the present framework by requiring that, in addition to

the axioms assumed by Theorem 1, the following assumption holds:

for all k 6¼ j,

ð14Þ P½X2 ¼ i jX1 ¼ i, Y1 ¼ j, Y2 ¼ j� � P½X2 ¼ i jX1 ¼ i, Y1 ¼ k, Y2 ¼ j�

This says that an (i, j) observation’s influence on an (i, j) prediction

cannot be less than the influence an (i, k) observation has on an (i, j)

prediction. It follows that every type has maximal predictive influence

on itself.

Proposition 2. Suppose that all assumptions of Theorem 1 hold,

and that kij > 0 for all outcomes i of type j. If (14) is true for all

k 6¼ j, then bjk � 1, k 6¼ j.
Proof. Suppose that (14) holds. It follows from Theorem 1 that

1þ kij

1þ Kj

�
bjk þ kij

bjk þ Kj
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This implies

ð1� bjkÞðKj � kijÞ � 0

Since all kij are positive, it follows that bjk � 1. #

In conjunction with Proposition 1, this implies

P½XNþ1 ¼ i jX N�1, Y N�1, XN ¼ i, YN ¼ j, YNþ1 ¼ j�

� P½XNþ1 ¼ i jX N�1, Y N�1, XN ¼ i, YN ¼ k, YNþ1 ¼ j�

for all k 6¼ j.
Considering analogy in terms of similarity leads to a number of

important special cases. If the number of types is equal to 1, the the-

orem reduces to the Johnson-Carnap continuum of inductive meth-

ods. But the same happens if all bjm ¼ 1; in this case types are

indistinguishable. If each type is maximally similar to itself, but all

other types are equally similar to it, we have bjm ¼ b 6¼ 1 for all j, m.

This leads to a simplification of the inductive rule (10):

P½XNþ1 ¼ i jX N , Y N , YNþ1 ¼ j� ¼
nij þ bðN i � nijÞ þ kij

Nj þ bðN � NjÞ þ Kj

where N i ¼
P

m nim is the number of outcomes i regardless of type.
Similarity is usually thought to be a symmetric relationship. In our

framework this can be expressed by requiring that bjm ¼ bmj . No

similarity means that bjm ¼ 0. If this holds for all types m 6¼ j, the

new inductive rule again reduces to the Johnson-Carnap continuum,

since inductive probabilities can then be analysed irrespective of other

types. By Corollary 2, this case corresponds to assuming partial ex-

changeability within our framework.

3. Reichenbach’s axiom

3.1 Asymptotic properties
Perhaps the most controversial aspect of our new inductive logic is an

apparent violation of Reichenbach’s axiom (also known as the axiom of

convergence). Reichenbach’s axiom is a well-known principle in in-

ductive logic. It requires that predictive probabilities converge to

sample frequencies in the limit, provided that they exist. The main

motivation for Reichenbach’s axiom is the very reasonable idea that
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information about the sample should outweigh our initial opinions as

we get more information.
The Johnson-Carnap continuum of inductive methods satisfies

Reichenbach’s axiom. Suppose the limiting relative frequency of out-

come i, pi, exists with probability one (as is the case for exchangeable

probability distributions). Then the predictive probabilities

ni þ ai

n þ
P

j aj

converge to pi with probability 1; in particular, the alpha parameters

are outweighed in the long run by information from the sample.
The inductive system of this paper leads to a more complex situ-

ation. Let’s consider the limit of analogical predictive probabilities (10)

for infinite sequences X1, X2, … Suppose the limit of rjk ¼ Nj=Nk

exists for all pairs of types j, k. Let Ajk be given by

Ajk ¼
bjkNk

Nj þ
P

m 6¼j bjmNm þ Kj

and let Bj be given by

Bj ¼
Kj

Nj þ
P

m 6¼j bjmNm þ Kj

With this notation, predictive probabilities can be expressed as fol-

lows:

P½XNþ1 ¼ i jX N , Y N , YNþ1 ¼ j�

¼ 1�
X

k 6¼j
Ajk � Bj

� � nij

Nj

þ
X

k 6¼j
Ajk

nik

Nk

þ Bj

kij

Kj

Suppose now that each type occurs infinitely often, and that

lim nij=Nj ¼ hij exists for all outcomes i and all types j. Then predict-

ive probabilities converge to

1�
X

k 6¼j

bjk

rjk þ
P

m 6¼j bjmrmk

 !
hij þ

X
k 6¼j

bjk

rjk þ
P

m 6¼j bjmrmk

hik

As a consequence, the predictive probability P½XNþ1 ¼ i jXN ,

Y N , Y Nþ1 ¼ j� generally does not converge to the limiting relative

frequency hij; instead, its limit is a convex combination of relative

Mind, Vol. 128 . 509 . January 2019 � Huttegger 2017

Analogical Predictive Probabilities 19

D
ow

nloaded from
 https://academ

ic.oup.com
/m

ind/article-abstract/128/509/1/3864100 by guest on 11 February 2019



frequencies hik, 1 � k � t . Let’s suppose, for example, that all types are

observed approximately equally often: rjk ¼ 1, 1 � j, k � t , k 6¼ j.

Then P½XNþ1 ¼ i jX N , Y N , YNþ1 ¼ j� is given by

ð15Þ
1

1þ
P

k 6¼j bjk

hij þ
X

k 6¼j
bjkhik

� �

Unless bjk ¼ 0 for all k 6¼ j or hik ¼ hij for all k 6¼ j, this expression is

not equal to hij. Now, one reading of Reichenbach’s axiom is that

P½XNþ1 ¼ i jX N , Y N , YNþ1 ¼ j� needs to converge to hij. Our inductive

system clearly violates this version of Reichenbach’s axiom.

In my view, this conclusion fails to appreciate an important point

about Reichenbach’s axiom. If Reichenbach’s axiom really requires that

P½XNþ1 ¼ i jX N , Y N , YNþ1 ¼ j� converges to hij, then analogy can only

be part of one’s prior opinion, which fades as one’s information of the

sample grows without bound. This certainly is an important sense in

which analogy plays a role in inductive inferences. It underlies de

Finetti’s model of partial exchangeability, and it is the type of analogy

captured, in different ways, by the inductive systems of Spohn (1981),

Kuipers (1984), Skyrms (1993a), Festa (1997), Maher (2000, 2001),

Romeijn (2006), or Hill and Paris (2013). The basic idea can be under-

stood most easily for systems that have a de Finetti representation, such

as de Finetti’s own model of partial exchangeability or models that

preserve exchangeability. In these models, analogy is expressed through

the chance prior, and not through the chance set-up. The chance prior

allows correlations between outcomes or types, but the chance set-up

consists of independent trials that obliterate all correlations in the long

run.18 The reason is that sequences of outcomes are assumed to be

conditionally independent on the chances of outcomes; once chances

are fixed, the process unfolds without any dependencies among the

outcomes. Since the process is fully captured by chances of outcomes,

predictive probabilities ought to discover chances in the long run: the

conditional probability of outcome i given past observations should get

closer to the chance of i. Chances almost surely coincide with limiting

relative frequencies. This is why Reichenbach’s axiom, in the above

version, is very plausible for processes that are conditionally independ-

ent given chances of outcomes.
But chance processes need not be conditionally independent given

chances of outcomes. They can exhibit a more complex structure of

18 I am indebted to Jan-Willem Romeijn for suggesting to think about these issues in

terms of chance priors and chance set-ups.
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probabilistic dependencies. This is arguably the case for the chance

processes associated with our inductive system. Unlike partial ex-

changeability, weak partial exchangeability (7) explicitly allows prob-

abilities to be sensitive to some ways of reordering outcomes within a

type. This suggests that the underlying chance set-up must allow for

permanent correlations between types, which can be illustrated by the

example of clinical trials with female and male patients, or with the

possibility of correlated strategy choice in games.

At the moment I do not know more about the structure of the

relevant chance set-up. A fully satisfying answer would involve prov-

ing a de Finetti representation theorem for weakly partially exchange-

able probability assignments. This would provide us with a new

perspective on understanding the inductive system (10) besides the

axiomatic approach of this paper.19 Exploring this issue is a topic

for future research. What I hope is that my qualitative remarks are

sufficient to reject the above version of Reichenbach’s axiom as the

uniquely plausible one. If outcomes of distinct types are dependent

according to the chance set-up associated with our inductive system,

then the predictive probabilities of an outcome should not converge to

the limiting relative frequency of that outcome within its type; for this

would imply that predictive probabilities ignore crucial information

about the process.
Similar remarks apply to the inductive systems of Niiniluoto (1981)

and Costantini (1983), which also appear to violate Reichenbach’s

axiom.20 Niiniluoto’s and Costantini’s systems operate at the level of

Q-predicates. Neither of the systems gives rise to exchangeable prob-

ability assignments. This indicates that their underlying chance

processes are not independent trials. But if there are persistent depen-

dencies between outcomes, they should be reflected in the limiting

behaviour of predictive probabilities, which would explain why they

violate Reichenbach’s axiom.

Summing up, violations of Reichenbach’s axiom should not auto-

matically be regarded as good arguments against inductive systems.

Reichenbach’s axiom implicitly assumes that only information about

sample frequencies should matter in the long run. This is appropriate

for settings where observations of outcomes are essentially independ-

ent. But, at least in its most basic form, it fails to be an adequate

19 See Romeijn (2006) for a discussion of chance models and their virtues in inductive

logic.

20 Spohn (1981) discusses Reichenbach’s axiom in the context of Niiniluoto’s system.
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requirement in situations where types depend on each other in more

complex ways.

3.2 Direct and indirect analogy
The preceding discussion suggests distinguishing analogical inductive

inference according to whether analogy effects are direct or indirect.

An inductive system exhibits indirect analogy effects if observations

of an outcome have an impact on the predictive probabilities of

another outcome only through prior opinions, as in the models of

Skyrms (1993a), Festa (1997), Romeijn (2006), and Hill and

Paris (2013). In our model, as in the models by Niiniluoto (1981)

and Costantini (1983), analogy judgements have a direct effect on

predictive probabilities via how conditional probabilities are

updated. Which type of analogy is appropriate depends on the details

of the epistemic situation. If covariates between types are thought to

be persistent, a model of direct analogy is called for; otherwise, a

model of indirect analogy should be chosen. Mixtures of the two

types are also conceivable.
It would be desirable to extend our inductive system so as to en-

compass both direct and indirect analogy. The most straightforward

way to do this would be to allow the beta parameters to vary, but this

approach faces severe difficulties. The modified sufficientness postu-

late (6), together with regularity (8), implies the rather strong conclu-

sion that the analogy parameters bjm in (16) only depend on N1, …, Nt

(see Lemma 1 below). This is a significant constraint on predictive

probabilities. For instance, if analogy influences ought to decrease in

N1, …, Nt , the symmetries of the inductive system are bound to get

considerably more complex than weak partial exchangeability.

Suppose, for instance, that analogy parameters are given by 1=N .

Then the conditional probability of observing outcomes i and k

(both of type j) at trials N þ 1, N þ 2 is

nij þ
1

N

P
m 6¼j nim þ kij

Nj þ
N�Nj

N
þ Kj

nkj þ
1

Nþ1

P
m 6¼j nkm þ kkj

Nj þ 1þ
N�Nj

Nþ1
þ Kj

It is not difficult to see that j and k cannot in general be switched

without affecting the conditional probability; but this violates (7b).

A more promising alternative is to embed our inductive logic in a

hierarchical model with a prior probability measure over the beta

parameters. This means that analogy effects are modelled as unknown

Mind, Vol. 128 . 509 . January 2019 � Huttegger 2017

22 Simon M. Huttegger

D
ow

nloaded from
 https://academ

ic.oup.com
/m

ind/article-abstract/128/509/1/3864100 by guest on 11 February 2019



quantities that are subject to uncertainty. In such a higher-order

model, the value of beta parameters can also change in the light of

evidence, which is attractive because it allows learning from experience

about analogies. Furthermore, certain priors might lead to beta par-

ameters that vanish in the limit. As a result, hierarchical models may

successfully unify direct and indirect analogy effects.

3.3 Finite sequences
Let me end this section by drawing attention to a domain of inductive

reasoning that falls outside the purview of Reichenbach’s axiom.

Often, a finite model might be more appropriate than an infinite

one, for example, if we don’t plan to make a large, unbounded

number of observations. For a finite horizon, the fact that predictive

probabilities don’t always converge to limiting relative frequencies

appears to be of little consequence. What matters in the finite setting

is whether predictive probabilities reflect all the relevant information,

including analogical relationships. As long as we think that analogy

effects are approximately constant during a finite experiment, even

though they may vanish in the limit, our inductive system is

applicable.
As an illustration consider again Achinstein’s example of investigat-

ing whether different types of metal conduct electricity. In this case it

is natural to think that predictive probabilities should converge to

limiting relative frequencies. But if the experiment only consists of a

finite number of trials, our inductive system might serve as a useful

model, either because constant analogy effects are compatible with our

prior knowledge over a finite period of time or because analogy effects

can be captured approximately by constant parameters.

4. Concluding remarks

As we observed in §1, Carnapian inductive logic fails to capture im-

portant types of analogical inference for two reasons. One is that ex-

changeability assumes ‘too much’ analogy, since trials are assumed to

be perfectly similar. The other reason is that Johnson’s sufficientness

postulate amounts to assuming ‘too little’ analogy by making it im-

possible that observations of an outcome exert some influence on the

predictive probabilities of similar outcomes. This provides us with two

levers for altering analogy judgements, both of which have been pulled

in the inductive logic literature. Some inductive systems abandon
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Johnson’s sufficientness postulate but preserve exchangeability

(Skyrms 1993a; Festa 1997; Romeijn 2006; Hill and Paris 2013);

others abandon exchangeability (de Finetti 1938); while systems like

ours give up on both exchangeability and Johnson’s sufficientness

postulate.

I do not wish to suggest that my model is the only one that ad-

equately captures analogical inductive reasoning. Such a claim would

be foolish in the face of the many different forms of analogical rea-

soning we use. In my view, many of the inductive systems I have

mentioned above have a domain of applicability. Instead of searching

for the uniquely rational way to reason analogically, I think it is much

more valuable to heed W. E. Johnson’s advice:

The postulate adopted in a controversial kind of theorem cannot be

generalised to cover all sorts of working problems; so that it is the

logician’s business, having once formulated a specific postulate, to indicate

very carefully the factual or epistemic conditions under which it has

practical value. (Johnson 1932, pp. 418–19)

When trying to gauge the adequacy of an inductive system, we should

determine the principles and assumptions from which it can be

derived. The axiomatic approach of Johnson and Carnap achieves

this goal by formulating axioms about the predictively relevant aspects

of the observational process. De Finetti’s approach identifies the

chance set-up associated with a prior distribution. The two

approaches are complementary ways of conveying the epistemic con-

ditions under which an inductive system should be adopted. In this

paper I have followed Johnson’s and Carnap’s methodology by iden-

tifying the local symmetries associated with an important class of

analogical inferences. De Finetti’s approach, which is left as an open

problem, would provide us with a more complete understanding of

the new inductive system.
There are other open problems. Let me mention one that is par-

ticularly important for analogical reasoning. It would be desirable to

extend analogical inductive systems to real-valued random variables.

Because the domain of these random variables has a metric, there

often is a natural sense of analogy or similarity. Zabell (2011) discusses

analogical inference in this setting based on a number of well-known

symmetry assumptions. The inductive logic introduced in

Skyrms (1993b), which is based on the Blackwell-MacQueen urn pro-

cess (Blackwell and MacQueen 1973), could be used as a starting point
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for the analysis of different types of analogical reasoning in continuum

probability spaces.21

Appendix: Proof of Theorem 1 and its corollaries

The proof of Theorem 1 is an adaptation of Johnson’s argument

(Johnson 1932; Zabell 1982) to the present setting. In fact, if the

number of types t = 1, the argument reduces to this proof. We thus

assume throughout that the number of types t is at least 2.

We start by showing that our analogue of the sufficientness postu-

late implies that predictive probabilities are linear in ni1, …, nit .

Lemma 1 . If (6) and (8) hold, then for every outcome i and every

type j there exist constants aij > 0 and bj1, …, bjt such that

ð16Þ fijðni1, …, nit , N1, …, Nt Þ ¼ aij þ bj1ni1 þ… þ bjt nit

where the constants depend only on N1, …, Nt . Furthermore, the con-

stants bj1, …, bjt do not depend on the outcome i.

Proof. Fix an outcome i and a type j. We start with considering the

influence of type 1 outcomes. Suppose that N1 � 2, and that

0 < ni1, nk1 and ni1, nl1 < N1, where i, k, l are distinct outcomes. Let

N 1 ¼ ðn11, …, ni1, …, nk1, …, nl1, …, ns1Þ

N 2 ¼ ðn11, …, ni1 þ 1, …, nk1 � 1, …, nl1, …, ns1Þ

N 3 ¼ ðn11, …, ni1, …, nk1 � 1, …, nl1 þ 1, …, ns1Þ

N 4 ¼ ðn11, …, ni1 � 1, …, nk1, …, nl1 þ 1, …, ns1Þ

Notice that these vectors have the same number N
1

of outcomes of

type 1. Using the values given in N 1, N 2, N 3, N 4, the equalitiesX
r

frjðnr1, …, nrt Þ ¼ 1

hold for any nrm, r ¼ 1, …, s, m ¼ 2, …, t such that
P

r nrm ¼ Nm.

We suppress here the counts N1, …, Nt , which are held fixed, in

21 I would like to thank Hannes Leitgeb, Jeff Paris, Jan-Willem Romeijn, Brian Skyrms,

Marta Sznaijder, Theo Kuipers, Sandy Zabell, and the referees and editors at Mind for helpful

comments, as well as the audiences at the MCMP Munich, the workshop on Topics in

Inductive Logic at UC Irvine, an the TARK 2015 conference at Carnegie Mellon University.
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order to simplify notation. This results in four equations, for example

the following two, which correspond to N 1 and N 2:

fijðni1, …, nit Þ þ fkjðnk1, …, nkt Þ þ
X

r 6¼i, k
frjðnr1, …, nrt Þ ¼ 1

fijðni1 þ 1, …, nit Þ þ fkjðnk1 � 1, …, nkt Þ þ
X

r 6¼i, k
frjðnr1, …, nrt Þ ¼ 1

As in the first part of the proof of Lemma 2.1 in Zabell (1982), the four

equations together imply

ð17Þ

fijðni1 þ 1, …, nit Þ � fijðni1, …, nit Þ

¼ fkjðnk1, …, nkt Þ � fkjðnk1 � 1, …, nkt Þ

¼ fljðnl1 þ 1, …, nlt Þ � fljðnl1, …, nlt Þ

¼ fijðni1, …, nit Þ � fijðni1 � 1, …, nit Þ

(The first equality follows from the foregoing two equations.) Hence,

fijðni1, …, nit , N1, …, Nt Þ ¼ fijð0, ni2, …, nit , N1, …, Nt Þ þ bj1ni1

where

bj1 ¼ fijðni1, …, nit , N1, …, Nt Þ � fijðni1 � 1, …, nit , N1, …, Nt Þ

The second part of Zabell’s proof of Lemma 2.1 shows that this also

holds if N1 ¼ 1. Furthermore, bj1 does not depend on the choice of

nim, m ¼ 2, …, t . To see this, note that the equalities in (17) hold for

all choices of nrm, r ¼ 1, …, s, m ¼ 2, …, t ; in particular, they hold

when nlm ¼ 0, m ¼ 2, …, t and nkm ¼ Nm � nim, m ¼ 2, …, t . It fol-

lows that

fijðni1 þ 1, ni2, …, nit Þ � fijðni1, ni2, …, nit Þ

¼ fljðnl1 þ 1, 0, …, 0Þ � fljðnl1, 0, …, 0Þ

for all nim, m ¼ 2, …, t , and so bj1 does not depend on these values.

Because of (17), bj1 also is independent of i. Therefore, bj1 only depends

on the counts N1, …, Nt .

The same arguments apply to ni2. The result is that

fijð0, ni2, …, nit , N1, …, Nt Þ ¼ fijð0, 0, ni3, …, nit , N1, …, Nt Þ þ bj2ni2
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for some constant bi2 which only depends on N1, …, Nt . Since t <1,

repeated applications of these arguments lead to

fijðni1, …, nit , N1, …, Nt Þ ¼ fijð0, …, 0, N1, …, Nt Þ þ bj1ni1 þ… þ bjt nit

By setting

aij ¼ fijð0, …, 0, N1, …, Nt Þ

(16) is established. It follows from (8) that aij > 0. #

Lemma 1 establishes the basic representation of our predictive

probabilities. In order to bring them into the form given in (10), let

Aj ¼
P

r arj . Then, by the law of total probability,

Aj þ bj1N1 þ…, þ bjt Nt ¼
P

r arj þ bj1nr1 þ…, þ bjt nrt

¼
P

r frjðnr1, …, nrt Þ ¼ 1

Suppose that bjj 6¼ 0 and let kij ¼ aij=bjj , Kj ¼
P

r krj ¼ Aj=bjj ,

bjm ¼ bjm=bjj , k 6¼ j. Then

1

bjj

¼ Nj þ
X

m 6¼j
bjmNm þ Kj

It follows from Lemma 1 that

ð18Þ fijðni1, …, nit , N1, …, Nt Þ ¼
nij þ

P
m 6¼j bjmnim þ kij

Nj þ
P

m 6¼j bjmNm þ Kj

Note that aij and bjm depend in general on N1, …, Nt . Thus it remains

to show that kij , bjm do not depend on N1, …, Nt . This is achieved in

Lemma 3 for the case where observations within a type are not inde-

pendent, which is the more typical case of inductive learning. The case

of independence is considered in the next lemma.

Lemma 2. Let X1, …, XNþ1, XNþ2, XNþ3, N � 1, be a sequence of

outcomes and Y1, …, YNþ1, YNþ2, YNþ3, N � 1, a sequence of types

such that (6), (7), (8) and (9) hold. Then for all types j and m, if

bjjðN1, …, Nm, …, Nt Þ � bjjðN1, …, Nm þ 1, …, Nt Þ ¼ 0

then

bjjðN1, …, Nm, …, Nt Þ ¼ bjjðN1, …, Nm þ 1, …, Nt Þ ¼ 0

provided that Nj > 0.
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Proof . Let i 6¼ k. Consider first the case j = m. Postulate (7b) says

that

ð19Þ
P½XNþ1 ¼ i, XNþ2 ¼ k jX N , Y N , YNþ1 ¼ j, YNþ2 ¼ j�

¼ P½XNþ1 ¼ k, XNþ2 ¼ i jX N , Y N , YNþ1 ¼ j, YNþ2 ¼ j�

Let aij ¼ aijðN1, …, Nj , …, Nt Þ, a0ij ¼ aijðN1, …, Nj þ 1, …, Nt Þ, bjj ¼

bjjðN1, …, Nj , …, Nt Þ, b0jj ¼ b0jjðN1, …, Nj þ 1, …, Nt Þ, etc. Let
P

r ¼P
m 6¼j bjmnrm and

P
0
r ¼

P
m 6¼j b0jmnrm. Then, by using (9) and (16),

(19) implies

ð20Þ
ðaij þ bjjnij þ

P
iÞ ða

0
kj þ b0jjnkj þ

P0

kÞ

¼ ðakj þ bjjnkj þ
P

kÞða
0
ij þ b0jjnij þ

P0

iÞ

Suppose that bjj = 0 and nim ¼ nkm ¼ 0, for all m 6¼ j (this is possible

without changing the counts Nm, since s � 3). Then (20) reduces to

aijða
0
kj þ b0jjnkjÞ ¼ akjða

0
ij þ b0jjnijÞ

since the first probability terms on both sides are assumed to be in-

dependent of the counts nij and nkj, respectively. By first setting

nkj ¼ Nj and then setting nij ¼ Nj we get the following two equations:

aijða
0
kj þ b0jjNjÞ ¼ akja

0
ij aija

0
kj ¼ akjða

0
ij þ b0jjNjÞ

Subtracting the second from the first equation yields aijb
0
jjNj ¼

�akjb
0
jjNj . If Nj > 0, then b0jj ¼ 0, since aij , akj > 0. An analogous ar-

gument shows that b0jj ¼ 0 implies bjj = 0.
Consider now the case j 6¼ m. Postulate (7a) states that

P½XNþ1 ¼ i, XNþ2 ¼ l, XNþ3 ¼ k jX N , Y N , YNþ1 ¼ j, YNþ2 ¼ m, YNþ3 ¼ j�

¼ P½XNþ1 ¼ k, XNþ2 ¼ l, XNþ3 ¼ i jX N , Y N , YNþ1 ¼ j, YNþ2 ¼ m, YNþ3 ¼ j�

where we assume that i, l, k are distinct. Again by using postulate (9),

it follows that

fijðni1, …, nit , N1, …, Nj , …, Nt Þ � flmðnl1, …, nlt , N1, …, Nj þ 1, …, Nt Þ

� fkjðnk1, …, nkt , N1, …, Nm þ 1, …, Nj þ 1, …, Nt Þ

¼ fkjðnk1, …, nkt , N1, …, Nj , …, Nt Þ � flmðnl1, …, nlt , N1, …, Nj þ 1, …, Nt Þ

� fijðni1, …, nit , N1, …, Nm þ 1, …, Nj þ 1, …, Nt Þ
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Since the second term is the same on each side, this implies

ð21Þ
ðaij þ bjjnij þ

P
iÞ ða

00
kj þ b00jjnkj þ

P00
kÞ

¼ ðakj þ bjjnkj þ
P

kÞða
00
ij þ b00jjnij þ

P00

i Þ

where now a00ij ¼ aijðN1, …, Nm þ 1, …, Nj þ 1, …, Nt Þ and b00jj ¼

bjjðN1, …, Nm þ 1, …, Nj þ 1, …, Nt Þ, etc. The same argument follow-

ing equation (20) shows that b00jj ¼ 0 whenever bjj = 0 and vice versa

(assuming that Nj > 0). From the first part of the proof it follows that

b00jj ¼ bjjðN1, …, Nm þ 1, …, Nj , …, Nt Þ, and the conclusion of the

lemma follows. #
If the random variables Xn of type j are independent of each other,

then bjjð0, …, Nj , …, 0Þ ¼ 0 for Nj = 1. It follows from Lemma 2 that, if

bjjð0, …, Nj , …, 0Þ ¼ 0 for Nj = 1, we have bjjðN1, …, Nm, …, Nt Þ ¼ 0

for all ðN1, …, Nt Þ with Nj > 0. Thus, in the case of independence, an

observation of an outcome of type j is probabilistically irrelevant for the

predictive probability of another outcome of type j, since in this case

fijð0, …, nij , …, 0, 0, …, Nj , …, 0Þ ¼ aijð0, …, Nj , …, 0Þ

where nij may be 0 or 1.

On the other hand, if the random variables Xn of a type are not

independent, then bjjð0, …, Nj , …, 0Þ 6¼ 0 for Nj = 1. Lemma 2 implies

bjjðN1, …, Nm, …, Nt Þ � bjjðN1, …, Nm þ 1, …, Nt Þ 6¼ 0 (Nj > 0). This

is the main hypothesis of the next lemma.

Lemma 3 . Let X1, …, XNþ1, XNþ2, XNþ3, N � 1, be a sequence of

outcomes and Y1, …, YNþ1, YNþ2, YNþ3, N � 1, a sequence of types

such that (6), (7), (8) and (9) hold. Suppose that Nj > 0, and that

for all 1 � m � t , bjjðN1, …, Nm, …, Nt Þ � bjjðN1, …, Nm þ 1, …, Nt Þ

6¼ 0. Then the following three statements are true for any type m:

(1) bjjðN1, …, Nm, …, Nt Þ � bjjðN1, …, Nm þ 1, …, Nt Þ > 0

(2) kijðN1, …, Nm, …, Nt Þ ¼ kijðN1, …, Nm þ 1, …, Nt Þ

(3) for u 6¼ j, if Nu > 0, then

bjuðN1, …, Nm, …, Nt Þ ¼ bjuðN1, …, Nm þ 1, …, Nt Þ

Proof. (1) and (2): Suppose that m = j. The relevant predictive

probabilities can be given by (18) since bjjðN1, …, Nm …, Nt Þ�
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bjjðN1 …, Nm þ 1…, Nt Þ 6¼ 0. Setting nil ¼ nkl ¼ 0 for all l 6¼ j in

equation (20) implies

ð22Þ

nijþkij

Njþ
P

j
þKj

� �
nkjþk0

kj

Njþ1þ
P

0
j
þK 0

j

� �

¼
nkjþkkj

Njþ
P

j
þKj

� �
nijþk0

ij

Njþ1þ
P

0
j
þK 0

j

� �

where kij ¼ kijðN1 …, Nj , …, Nt Þ, k0ij ¼ kijðN1, …, Nj þ 1, …, Nt Þ,

bjm ¼ bjmðN1, …, Nj , …, Nt Þ, b0jm ¼ bjmðN1, …, Nj þ 1, …, Nt Þ,P
j ¼

P
m 6¼j bjmNm,

P
0
j ¼

P
m 6¼j b0jmNm, etc. Equation (22) implies

that

ðnij þ kijÞðnkj þ k0kjÞ ¼ ðnkj þ kkjÞðnij þ k0ijÞ

which simplifies to

ð23Þ kijnkj þ k0kjnij þ kijk
0
kj ¼ kkjnij þ k0ijnkj þ kkjk

0
ij

First setting nkj ¼ Nj and then nij ¼ Nj yields the following two equa-

tions:

kijNj þ kijk
0
kj ¼ k0ijNj þ kkjk

0
ij k0kjNj þ kijk

0
kj ¼ kkjNj þ kkjk

0
ij

Subtracting the second equation from the first gives kij þ kkj ¼ k0ijþ

k0kj . Since s � 3, the same equation has to hold for at least two other

pairs of outcomes (i, l), and (k, l) besides (i, k):

kij þ kkj ¼ k0ij þ k0kj , kij þ klj ¼ k0ij þ k0lj , kkj þ klj ¼ k0kj þ k0lj

Subtracting the second equation from the first equation yields

kkj � klj ¼ k0kj � k0lj

Now adding the third equation implies that kkj ¼ k0kj . The same ar-

gument applies to all other outcomes. Hence kij ¼ k0ij for all i and

Kj ¼ K 0j . Also, since aij , a0ij > 0, we must have bjjðN1, …, Nj , …, Nt Þ�

bjjðN1, …, Nj þ 1, …, Nt Þ > 0.
Suppose now that m 6¼ j. Then as in (21),

ð24Þ

nij þ
P

ij þkij

Nj þ
P

j þKj

 !
nkj þ

P00
kj þk00kj

Nj þ 1þ
P00

j þK 00j

 !

¼
nkj þ

P
kj þkkj

Nj þ
P

j þKj

 !
nij þ

P00
ij þk00ij

Nj þ 1þ
P00

j þK 00j

 !
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where k00ij ¼ kijðN1, …, Nm þ 1, …, Nj þ 1, …, NsÞ, b00ij ¼ bijðN1, …,

Nm þ 1, …, Nj þ 1, …, NsÞ, etc., and
P

ij ¼
P

r 6¼j bjrnir and
P00

ij ¼P
r 6¼j b00jrnir ,

P
j ¼

P
r 6¼j bjrNr ,

P00
j ¼ b00jmðNm þ 1Þ þ

P
r 6¼j, m b00jr Nr ,

etc. If nil , nkl ¼ 0 for all l 6¼ j, then (24) is the same as (23) with k00ij , k00ik
instead of k0ij , k0ik . Therefore, by the same argument following (23),

kij ¼ k00ij . That argument can also be used to show that

k00ij ¼ kijðN1, …, Nm þ 1, …, Nj , …, Nt Þ (just use Nm þ 1 instead of

Nj). It follows that kijðN1, …, Nm, …, Nj , …, Nt Þ ¼ kijðN1, …, Nmþ

1, …, Nj , …, Nt Þ, which again implies bjjðN1, …, Nm, …, Nj , …, Nt Þ�

bjjðN1, …, Nm þ 1, …, Nj , …, Nt Þ > 0.

(3) Let m = j. Given the assumptions of the lemma,

fijðni1, …, nit , N1, …, Nj , …, Nt Þ � fkjðnk1, …, nkt , N1, …, Nj þ 1, …, Nt Þ

¼ fkjðnk1, …, nkt , N1, …, Nj , …, Nt Þ � fijðni1, …, nit , N1, …, Nj þ 1, …, Nt Þ

implies that

bjuniu þ kij

Nj þ
P

j þKj

 !
b0junku þ k0kj

Nj þ 1þ
P
0
j þ K 0j

 !

¼
bjunku þ kkj

Nj þ
P

j þKj

 !
b0juniu þ k0ij

Nj þ 1þ
P
0
j þ K 0j

 !

provided that nil ¼ nkl ¼ 0 for all l 6¼ u. Since, by the first part of the

proof, kij ¼ k0ij for all outcomes i and Kj ¼ K 0j , this equation reduces

to

kijnkuðb
0
ju � bjuÞ ¼ kkjniuðb

0
ju � bjuÞ

If ðb0ju � bjuÞ 6¼ 0, then kijnku ¼ kkjniu, which can only hold for all

0 � niu, nku � Nu if Nu = 0 (since kiu, kku 6¼ 0). Hence

bjuðN1, …, Nj , …, Nt Þ ¼ bjuðN1, …, Nj þ 1, …, Nt Þ whenever Nu > 0.
Consider now the case m 6¼ j and recall that kij ¼ k00ij . Equation (24)

implies that

nij þ
X

ij
þkij

� �
nkj þ

X00

kj
þkkj

� �
¼ nkj þ

X
kj
þkkj

� �
nij þ

X00

ij
þkij

� �

Hence, if nij ¼ nkj ¼ 0,

ð25Þ
X

ij

X00

kj
þkkj

X
ij
þkij

X00

kj
¼
X

kj

X00

ij
þkij

X
kj
þkkj

X00

ij
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Suppose also that nir ¼ nkr ¼ 0, r 6¼ u. Then (23) reduces to

bjuniu � b
00
junku þ kkjbjuniu þ kijb

00
junku ¼ bjunku � b

00
juniu þ kijbjunku þ kkjb

00
juniu

By the same argument as in the case m = j, it follows that bju ¼ b00ju
provided that Nu > 0. The conclusion now follows, since

b00ju ¼ bjuðN1, …, Nm þ 1, …, Nj , …, Nt Þ by the same argument as

above. #

Together, the three lemmas imply that the predictive probabil-

ities (10) hold under the assumptions of Theorem 1 whenever Nj � 1.

As explained above, with the help of Lemma 2, Lemma 3 applies if the

random variables Xn of a particular type are not independent. This is a

hypothesis of the theorem, and thus Lemma 3 together with Lemma 1

yields the representation (10) whenever Nj � 1. We now show that it

also holds if Nj = 0. Let fijð0, …, 0; N1, …, 0, …, Nt Þ denote the pre-

dictive probability for Nj = 0.

Lemma 4. Let X1, …, XNþ1, XNþ2, XNþ3, N � 1, be a sequence of

outcomes and Y1, …, YNþ1, YNþ2, YNþ3, N � 1, a sequence of types

such that (6), (7), (8) and (9) hold. Suppose that Nj = 0, and that for

all 1 � m � t , bjjðN1, …, Nm, …, Nt Þ � bjjðN1, …, Nm þ 1, …, Nt Þ 6¼ 0.

Then

fijð0, …, 0; N1, …, 0, …, Nt Þ ¼

P
m 6¼j bjmnim þ kijP
m 6¼j bjmNm þ Kj

In particular,

fijð0, …, 0; 0, …, 0Þ ¼
kij

Kj

Proof. Let fijð0, …, 0; N1, …, 1, …, Nt Þ denote the predictive prob-

ability for Nj = 1. Partial exchangeability (7) implies that

fijð0, …, 0; N1, …, 0, …, Nt Þ � fkjð0, …, 0; N1, …, 1, …, Nt Þ

¼ fkjð0, …, 0; N1, …, 0, …, Nt Þ � fijð0, …, 0; N1, …, 1, …, Nt Þ

It follows that for all i ¼ 1, …, s

fijð0, …, 0; N1, …, 1, …, Nt Þ

fijð0, …, 0; N1, …, 0, …, Nt Þ
¼ cj
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where cj only depends on j and Nm for all m 6¼ j. Hence,

ð26Þ fijð0, …, 0; N1, …, 1, …, Nt Þ ¼ cj fijð0, …, 0; N1, …, 0, …, Nt Þ

Let fijð0, …, 1, …, 0; N1, …, 1, …, Nt Þ be the predictive probability for

nij = 1 and Nj = 1. Then

fijð0, …, 1, …, 0; N1, …, 1, …, Nt Þ þ
X

k 6¼i
fkjð0, …, 0; N1, …, 1, …, Nt Þ ¼ 1

Thus, by (26),

fijð0, …, 1, …, 0; N1, …, 1, …, Nt Þ¼ 1�
P

k 6¼i fkjð0, …, 0; N1, …, 1, …, Nt Þ

¼ 1�
P

k 6¼i cj fkjð0, …, 0; N1, …, 0, …, Nt Þ

¼ 1� cjð1� fijð0, …, 0; N1, …, 0, …, Nt ÞÞ

Altogether, it follows from Lemma 1 and Lemma 3 that

fijð0, …, 0; N1, …, 1, …, Nt Þ ¼ cj fijð0, …, 0; N1, …, 0, …, Nt Þ

¼

P
m 6¼j

bjmnimþkij

1þ
P

m 6¼j
bjmNmþKj

and

fijð0, …, 1, …, 0; N1, …, 1, …, Nt Þ ¼ 1� cjð1� fijð0, …, 0; N1, …, 0, …, Nt ÞÞ

¼
1þ
P

m 6¼j
bjmnimþkij

1þ
P

m 6¼j
bjmNmþKj

Therefore

cjfijð0, …, 0; N1, …, 0, …, Nt Þ

1� cjð1� fijð0, …, 0; N1, …, 0, …, Nt ÞÞ
¼

P
m 6¼j bjmnim þ kij

1þ
P

m 6¼j bjmnim þ kij

This implies

ð27Þ fijð0, …, 0; N1, …, 0, …, Nt Þ
cj

1� cj

¼
X

m 6¼j
bjmnim þ kij

Summing over all i ¼ 1, …, s yields

cj

1� cj

¼
X

m 6¼j
bjmNm þ Kj

Inserting into (27) gives

fijð0, …, 0; N1, …, 0, …, Nt Þ ¼

P
m 6¼j bjmnim þ kijP
m 6¼j bjmNm þ Kj
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The special case follows if N1, …, Nt ¼ 0. #

This completes the proof of Theorem 1.

We now turn to the proof of Corollary 1. Suppose that

bjjð0, …, Nj , …, 0Þ < 0 for Nj = 1. It follows from Lemma 3(1) that

bjjðN1, …, Nj , …, Nt Þ < 0 for all Nj � 1. But then

Nj þ
X

m 6¼j
bjmNm þ Kj ¼

1

bjj

< 0

To see that this cannot be the case for arbitrarily large N, just set

Nm = 0 for m 6¼ j, and let Nj be sufficiently large. Hence

bjjðN1, …, Nj , …, Nt Þ > 0, and thus also kij > 0 for all i. Moreover,

Nj þ
P

m 6¼j bjmNm þ Kj > 0. Setting Nm = 0 for all m 6¼ j, l and Nj = 1,

and letting Nl be sufficiently large, shows that bjl � 0. #
Finally, in order to prove Corollary 2, suppose that (7a) holds if l =

k. It follows from Theorem 1 that

nij þ
P

r 6¼j bjr nir þ kij

Nj þ
P

r 6¼j bjr Nr þ Kj

 !
nkm þ

P
r 6¼m bmrnkr þ kkm

Nm þ bmjðNj þ 1Þ þ
P

r 6¼j, m bmr Nr þ Km

 !

nkj þ bjmðnkm þ 1Þ þ
P

r 6¼j, m bjrnkr þ kkj

Nj þ 1þ bjmðNm þ 1Þ þ
P

r 6¼j, m bjr Nr þ Kj

 !

¼
nkj þ

P
r 6¼j bjrnkr þ kkj

Nj þ
P

r 6¼j bjrNr þ Kj

 !
nkm þ bmjðnkj þ 1Þ þ

P
r 6¼j, m bmrnkr þ kkm

Nm þ bmjðNj þ 1Þ þ
P

r 6¼j, m bmr Nr þ Km

 !

nij þ
P

r 6¼j bjrnir þ kij

Nj þ 1þ bjmðNm þ 1Þ þ
P

r 6¼j, m bjr Nr þ Kj

 !

Set nkr = 0 for all r 6¼ j, m. Then the above equation reduces to

bjmðnkm þ bmjnkj þ kkmÞ ¼ bmjðnkj þ bjmnkm þ kkjÞ

Suppose that nkj = 0. Setting nkm = 0 shows that bjmkkm ¼ bmjkkj .

Thus, if nkm > 0, bjmnkm ¼ bjmbmjnkm. Hence, if bjm 6¼ 0, then

bmj ¼ 1. A similar argument shows that, if nkm is set to 0 and nkj is

allowed to vary, then bmj 6¼ 0 implies bjm ¼ 1. It follows that either

bjm ¼ bmj ¼ 0 or bjm ¼ bmj ¼ 1.
Conversely, if either bjm ¼ bmj ¼ 0 or bjm ¼ bmj ¼ 1, then it is

clear from (16) that (7a) holds for l = k. #
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Adolf Grünbaum, pp. 273–83. Pittsburgh: University of Pittsburgh

Press.

—— 1993b: ‘Carnapian Inductive Logic for a Value Continuum’.

Midwest Studies in Philosophy, 18, pp. 78–89.
Spohn, Wolfgang 1981: ‘Analogy and Inductive Logic: A Note on

Niiniluoto’. Erkenntnis, 16, pp. 35–52.

Zabell, Sandy L. 1982: ‘W. E. Johnson’s “Sufficientness” Postulate’.

Annals of Statistics, 10, pp. 1091–9.

—— 1989: ‘The Rule of Succession’. Erkenntnis, 31, pp. 283–321.
—— 2011: ‘Carnap and the Logic of Inductive Inference’. In Dov

M. Gabbay, Stephan Hartmann, and John Woods (eds.),

Handbook of the History of Logic, pp 265–309. Amsterdam:

Elsevier.

Mind, Vol. 128 . 509 . January 2019 � Huttegger 2017

Analogical Predictive Probabilities 37

D
ow

nloaded from
 https://academ

ic.oup.com
/m

ind/article-abstract/128/509/1/3864100 by guest on 11 February 2019




