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Abstract

Reflection and martingale principles are central to models of rational learning.
They can be justified in a variety of ways. In what follows we study martingale
and reflection principles in the context of measure theory. We give special attention
to two approaches for justifying these principles that have not been studied in that
context before: diachronic coherence and the value of information. Together with
an extant argument based on expected accuracy, these arguments lend support to
the thesis that reflection and martingale principles govern rational learning.

1 Introduction

Richard Jeffrey’s epistemological program known as radical probabilism (Jeffrey, 1992)
tries to reconcile two goals: it aims at being both mathematically precise and flexible
regarding representations of opinions and opinion change. Jeffrey conditioning (also known
as probability kinematics) is a prime example (Jeffrey, 1957, 1965, 1968). Being less rigid
than standard Bayesian conditioning, it nonetheless captures a common type of uncertain
observational learning within the framework of probability theory.

Learning from experience is not, however, restricted to Bayesian and Jeffrey condition-
ing. In the most extreme case the learning event is a black box: we only know an agent’s
opinions before and after the learning experience. Despite the lack of structure, there is
a family of principles—known as reflection and martingale principles—that are plausible
candidates for regulating how to respond to new information in generalized learning sit-
uations. The principles say, roughly speaking, that current opinions should cohere with
anticipated future opinions.

How can such principles be justified? There are three paradigms (Huttegger, 2017).
One is based on diachronic Dutch book arguments (Goldstein, 1983; van Fraassen, 1984;
Skyrms, 1990); the second one proceeds in terms of expected accuracy (Easwaran, 2013;
Huttegger, 2013); and the third approach appeals to ideas related to the value of knowledge
theorem in decision theory (Huttegger, 2014). The three paradigms are well understood
in finite probability spaces. The same is true for the expected accuracy approach and
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infinite probability spaces. However, a corresponding treatment is missing for the other
two approaches. The aim of our paper is to fill this gap.

We are going to follow the most common approach to infinite probability spaces, Kol-
mogorov’s measure-theoretic probability theory (Kolmogorov, 1933, 1956). The central
concept of Kolmogorov’s theory is the conditional expectation of a random variable given
a σ-algebra, which gives rise to a natural formulation of generalized learning. There is an
ongoing discussion of the limits of the concept of conditional expectation and the measure-
theoretic approach. Kolmogorov’s assumption of countable additivity has not found uni-
versal acceptance (de Finetti, 1974; Seidenfeld, 2001). Moreover, conditional expectation
has some strange consequences when it is taken with respect to certain σ-algebras (Seiden-
feld et al., 2001). For the purposes of this paper, we take it for granted that conditional
expectation is a worthwhile object of study, even if it may not be universally valid.

The paper is structured as follows. After introducing Kolmogorov conditional expec-
tation in §2, we introduce reflection and martingale principles in §3. Most of the paper
investigates the value-of-knowledge-paradigm (§4). In §5 we show that the diachronic
Dutch book argument for Kolmogorov conditional probability presented in Rescorla (2018)
gives rise reflection and martingale principles. Finally, in §6 we conclude by discussing the
impact of these arguments on the status of those principles.

2 Conditional Probability and Conditional Expecta-

tion

Let (Ω,B,P) be a probability space: Ω is a set of atomic events, B is a σ-algebra of mea-
surable subsets of Ω called “events,” and P is a countably additive probability measure.1

We can think of (Ω,B,P) as an experimental setup, where the elements of Ω represent
the most fine-grained experimental outcomes, members of B capture experimental events,
and P represents a scientist’s degrees of belief.

Let G be a sub-σ-algebra of B. Intuitively, G represents the outcomes of an experiment
that gives partial information about the space of atomic events. Furthermore, let X :
Ω→ R be a random variable on (Ω,B). Random variables represent quantities that have
a determinate value in the experimental setup (i.e., X is B-measurable).

According to Kolmogorov (1933), the conditional expectation of X given G, E[X|G],
is itself a random variable. More precisely, E[X|G] is a G-measurable real-valued function
s.t. ∫

G

XdP =

∫
G

E[X | G]dP

1Here we set aside issues that arise when P is finitely but not countably additive. See Kadane et al.
(1996) and Seidenfeld (2001).
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for all G ∈ G. The conditional expectation E[X|G] is almost surely unique and can
be thought of as the best estimate of X given the experimental outcomes in G.2 For
instance, if G is the trivial algebra {∅,Ω}, then G provides no information at all, and the
best estimate of X given G is the expectation of X, E[X|G] = E[X], a.s. (almost surely).
On the other hand, E[X|B] = X a.s., since X is B-measurable and thus coincides with
its best estimate given B.

It is well known that Kolmogorov’s concept of conditional expectation basically coin-
cides with the traditional concept of conditional expectation when Ω is finite. Moreover,
conditional probability can be defined in terms of conditional expectation. Let B be an
event in B, and let χB be the indicator of B. Then the conditional probability of B
given G, P[B|G], is equal to E[χB|G] a.s. While conditional probability, thus understood,
is a random variable, it effectively coincides with the elementary concept of conditional
probability when Ω is finite.

3 Principles for Updating Opinions

Conditioning is the best known Bayesian principle of updating. It is usually stated in terms
of partitions: the new probability of an event A is given by the conditional probability of A
given the element of the partition that was observed to be true. Conditional probabilities
given a σ-field generalize that idea to epistemic situations which cannot be captured by
partitions. Conditional expectations given a σ-field generalize Bayesian conditioning to
random variables.

In both manifestations, Bayesian conditioning assumes that one learns something with
certainty.3 Learning with certainty is a limiting case of uncertain learning, as Jeffrey has
argued in several places (Jeffrey, 1957, 1965, 1968). This led him to develop a broader
Bayesian epistemology, radical probabilism, which subsumes Jeffrey conditioning, but also
includes other forms of updating (Jeffrey, 1992).

Several authors have argued that there is a family of principles, ususally referred to
as reflection or martingale principles, that govern how an agent should change opinions
in response to new information in all forms of updating that fall under the umbrella of
radical probabilism (Goldstein, 1983; van Fraassen, 1984; Skyrms, 1990; Jeffrey, 1992).
Our first order of business is to formulate them within the conceptual framework sketched
in the preceding section.4

2See Huttegger (2013) for a brief discussion. The treatment presupposes strictly proper scoring rules.
For brevity’s sake we cannot go into details here.

3This understanding requires conditional probabilities given a σ-field to be proper. See our discussion
of properness below.

4These principles have been met with criticism (e.g. Levi, 1987; Talbott, 1991; Maher, 1992; Bovens,
1995; Briggs, 2009). We refer the reader to Huttegger (2017, Chapters 5 and 6) for an extensive discussion
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As before, (Ω,B,P) is a probability space. Let P : Ω×B→ [0, 1] be a function with
the following properties:

(i) P (ω, ·) is a probability measure on (Ω,B) for each ω ∈ Ω;

(ii) P (·, B) is B-measurable for each B ∈ B.

We will refer to P as an update policy. An update policy represents an agent’s future
probabilities after learning. Let F be the sigma-algebra generated by the family {P (·, B) :
B ∈ B}. Note that F is a sub-σ-algebra of B, since by (ii) P (·, B) is B-measurable.
Intuitively, F represents information about future probabilities after learning. It is the
“future algebra.”

The principle of reflection says that present probabilities, conditional on the future,
should be equal to future probabilities, or, for all B ∈ B:

P(B | F) = P (·, B) a.s. (1)

In other words, for all B ∈ B, P (·, B) is a version of the conditional probability P(B | F).
Notice that reflection implies that P(· | F) has a regular version. The latter is true, for
example, if Ω is a Polish space and B is its Borel σ-algebra. In general, however, Ω’s being
Polish is not necessary for the existence of a regular version of P(· | F). Conversely, if a
space has no regular conditional probability given F, then the principle of reflection does
not hold.

Suppose the reflection principle holds. By integrating both sides of (1), we get

P(B) =

∫
P (B)dP. (2)

We call (2) the weak reflection principle, since it is implied by the reflection principle.
The martingale principle generalizes the reflection principle to P-integrable random

variables. In the remainder of the paper, we denote the space of P-integrable random
variables by L1. The martingale principle says that, for all X ∈ L1 for which

∫
XdP ∈ L1:

E[X|F] =

∫
XdP a.s. (3)

If X = χB is an indicator function, then
∫
XdP = P (B) is bounded and therefore

integrable, so the martingale principle implies the reflection principle. In general, it is not
the case for an arbitrary random variable in X ∈ L1 that

∫
XdP ∈ L1 as well. We will

of these issues based on the idea that the reflection principle and the martingale principle apply to learning
events and not arbitrary kinds of opinion change.
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soon show, however, that if the weak reflection principle holds, then
∫
XdP is indeed in

L1.
We interpret the martingale principle as saying that best estimates after learning are

(almost surely) equal to conditional expectations given the future algebra. This interpre-
tation requires viewing

∫
XdP as the best estimate for X after learning. This view seems

quite intuitive to us. Since coherent best estimates for random variables are always given
by expected values, the view amounts to assuming that learning maintains coherence. To
spell this out in more detail, it seems very plausible that an agent’s best estimate for X
should be the same as her fair price for a gamble with X. It is the price she would pay
(respectively, accept) to have the opportunity to collect (respectively, pay out) whatever
value the random variable X manifests in the actual world. If the agent’s best estimates
did not match her fair prices, then she would be making a mistake by her own lights.
She would regard her own betting behavior as falling short of the standard set by her
best estimates. With best estimates and fair prices thus identified, suppose now that the
agent expects to remain coherent after learning. (It isn’t clear in what sense a change
from coherent beliefs to incoherent ones could count as learning, but we can set this issue
aside.) By the standard Dutch book argument, coherence demands that fair prices be
determined by expected values (e.g., Jeffrey, 2004, Chapter 4). So, since best estimates
match fair prices, the agent’s best estimate for X after learning is given by the expected
value of X relative to her update policy P . This argument suggests that, if an agent ex-
pects to remain coherent after learning, then her best estimate for X after learning should
be given by the P -expected value of X. If, moreover, the martingale principle holds, then
best estimates after learning are given by conditional expectations.5

The martingale principle implies∫
XdP =

∫ ∫
XdPdP (4)

for all X ∈ L1 for which
∫
XdP ∈ L1. This says that random variables and their best esti-

mates after learning have the same expected value. We refer to (4) as the weak martingale
principle.

Our first result verifies that
∫
XdP is integrable in the presence of weak reflection

and also shows that the (weak) martingale principle is actually equivalent to the (weak)
reflection principle.

5These arguments are pragmatic. One might wonder if there is also an accuracy approach to estab-
lishing that best estimates must be expectations. For squared error loss this was worked out for previsions
by de Finetti (1974). There are other loss functions one might plausibly use in certain contexts. For the
sake of brevity we won’t say more about this here.
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Proposition 1. If the weak reflection principle holds, then
∫
XdP is F-measurable and

integrable for all X ∈ L1. Moreover, the reflection principle is equivalent to the martingale
principle, and the weak reflection principle is equivalent to the weak martingale principle.

Proof. First note that by considering X = χB, it is clear that the (weak) martingale
principle implies the (weak) reflection principle, so we only need to verify the converse
implications to settle the proposition’s second claim.

Now, suppose that the weak reflection principle holds. Establishing the proposition’s
first claim and deriving the weak martingale principle is a straightforward application of
what Williams (1991) calls “the standard machine” : we first show that the desired results
holds if X is an indicator function, then if X is a simple function, then if X is non-negative,
and finally if X is any integrable random variable.

If X = χB is an indicator function, then clearly
∫
XdP = P (B) is F-measurable, and

(4) follows immediately from (2). If X =
∑n

i=1 biχBi
is a simple function, then

∫
XdP is

a linear combination of F-measurable functions, and so is itself F-measurable; moreover,∫
XdP is clearly bounded and therefore integrable, and∫

XdP =
n∑

i=1

biP(Bi) =
n∑

i=1

bi

∫
P (Bi)dP =

∫ ∫
XdPdP,

by the linearity of the integral and the weak reflection principle. If X is non-negative,
then it can be approximated from below by an increasing sequence of simple functions
Z1, Z2, .... Then, by the monotone convergence theorem,

∫
XdP is the monotone limit of

a sequence of F-measurable functions, and so itself F-measurable, and∫
XdP = lim

n→∞

∫
ZndP = lim

n→∞

∫ ∫
ZndPdP =

∫ ∫
XdPdP,

by the monotone convergence theorem and our previous step. This last equation also
reveals that

∫
XdP is integrable, because X is. Finally, for arbitrary X ∈ L1, write

X = X+ − X−.6 Since, X+ and X− are non-negative and integrable, by our last
step we have that both

∫
X+dP and

∫
X−dP are integrable. It follows that

∫
XdP =∫

X+dP −
∫
X−dP , being the difference of two F-measurable integrable functions, is itself

F-measurable and integrable. Moreover,∫
XdP =

∫
X+dP−

∫
X−dP =

∫ ∫
X+dPdP−

∫ ∫
X−dPdP

=

∫ (∫
X+dP −

∫
X−dP

)
dP =

∫ ∫
XdPdP.

6Recall that X+ = max(X, 0) and X− = max(−X, 0).
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We have established the proposition’s first claim and shown that the weak reflection prin-
ciple implies the weak martingale principle. The argument showing that the reflection
principle implies the martingale principle is analogous and we omit it.

4 Value of Information

In a seminal paper, I. J. Good (1967) showed that in certain finite decision problems a
Bayesian agent will prefer making a decision after conditioning on new information to
making a decision right away. This result, known as the value of knowledge theorem, was
anticipated by F. P. Ramsey and L. J. Savage (Ramsey, 1990; Savage, 1954). Good used
it as an argument for the principle of total evidence, which says that in forming opinions
one should use all available evidence. Skyrms (1990) generalized Good’s theorem to Polish
spaces. His argument extends to all probability spaces that admit a regular conditional
probability.

The value of knowledge theorem operates under a number of stringent assumptions.
One is that there are no costs involved in obtaining new evidence. In addition, the agent
is assumed to conform to the principles of Savage’s decision theory before and after the
learning event, and the learning event has no effect on the utilities associated with decision
problems. There are a number of additional assumptions that we won’t mention here (see
Skyrms, 1990, for details).

We are not so much interested in defending the plausibility of the assumptions under-
lying the value of knowledge theorem, but in using the value of knowledge idea to study
Bayesian learning from experience. For this we tacitly assume that the assumptions hold.
Huttegger (2014) showed that the value of information can be used to derive the principle
of reflection when Ω is finite. Huttegger’s central requirement is that a belief change leads
one to expect to make better decisions in a sufficiently large class of decision problems if
the belief change is a genuine learning event, in which the agent responds to legitimate
new information.

Let’s articulate this idea in the context of a probability space (Ω,B,P) and an update
policy P . An act is an integrable real-valued random variable A : Ω→ R. The value A(ω)
represents the utility of state ω if act A is chosen. Utilities are assumed to be cardinal
utilities. The expected utility of A is thus given by the expectation of A:∫

A(ω)P(dω).

A decision problem A is a finite set of acts.
Prior to a learning event, the expected value of choosing an act from a decision problem
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A = {Ai} is:

max
i

∫
AidP

We refer to this as the value of the prior Bayes act, since it is the utility a Bayesian agent
expects to get in case she makes a choice before new information is available.

After the learning event, the agent adopts the probabilities given by her update policy
P . Provided that

∫
AidP is integrable, the prior expected value of the posterior Bayes act

is given by the following integral:∫
max

i

∫
Ai(ω)P (ω′, dω)P(dω′).

We now suppose that the update policy P is in response to a genuine learning event.
Then the value of information postulate says that for all decision problems A = {Ai},∫
AidP is integrable and ∫

max
i

∫
AidPdP ≥ max

i

∫
AidP. (5)

This says that the agent does not expect to make worse decisions after acquiring new
information.7

The next result shows that the value of information postulate (5) is equivalent to the
weak reflection principle (2).

Proposition 2. The value of information postulate is equivalent to both the weak reflection
principle and the weak martingale principle.

Proof. By Proposition 1, it suffices to establish the equivalence with the weak reflection
principle. If the value of information postulate holds, i.e.∫

max
i

∫
AidPdP ≥ max

i

∫
AidP

for all decision problems A = {Ai}, then it holds in particular for A = {χB} with B ∈ B.
Hence, ∫

P (B)dP ≥ P(B) (6)

holds for all B ∈ B. If the inequality were strict for some B, then putting Bc in (6) would
yield a contradiction, so (6) holds with equality for all B, which is to say that the weak
reflection principle (2) holds.

7The postulate in Huttegger (2014) is actually a bit stronger since it includes a proviso to the effect
that in a certain class of cases the weak inequality in (5) is strict.
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Now suppose that the weak reflection principle holds. By Proposition 1, the weak
martingale principle holds as well, and

∫
AidP ∈ L1 for all decision problems A = {Ai}.

Let Amax denote a maximizer of
∫
AidP. Then,

max
i

∫
AidP ≥

∫
AmaxdP

Integrating both sides of this, we obtain∫
max

i

∫
AidPdP ≥

∫ ∫
AmaxdPdP =

∫
AmaxdP = max

i

∫
AidP,

by the weak martingale principle.

We will now discuss two ways of improving Proposition 2. We provide two conditions
under which the value of information postulate is equivalent to the reflection principle.

Let us say that P is proper just in case P (ω, F ) = 1F (ω) for all ω in a P-probability
1 set and all F ∈ F. Elementary conditional probabilities are trivially proper in the
sense that P(E | E) = 1 whenever P(E) > 0. In general, however, regular conditional
probabilities are not proper.8 Properness corresponds to the intuition that conditioning
on F represents observing which members of F are true and which are false. The condition
that P is proper is thus one way to generalize the “luminosity” condition that Huttegger
(2014) used for finite probability spaces, which requires that the agent perfectly recalls
how learning affected her probabilities.

We regard the next proposition as one of the two main results of this paper. We shall
return to a discussion of its significance in the final section.

Proposition 3. If P is proper, then the value of information postulate holds if and only
if both the reflection principle and the martingale principle hold.

Proof. By Proposition 1, it suffices to establish the equivalence with the reflection prin-
ciple. Suppose that P is proper and that the value of information postulate holds. By
Proposition 2, this implies that the weak reflection principle (2) holds. Moreover, almost
surely, for all F ∈ F, if ω ∈ F , P (ω, F ) = 1, which implies P (ω,B ∩ F ) = P (ω,B) for
all B ∈ B. That is, χFP (B ∩ F ) = χFP (B) a.s. Similarly, if ω /∈ F , then P (ω, F ) = 0,
which implies P (ω,B ∩ F ) = 0. So, χF cP (B ∩ F ) = 0 a.s. Then, by the weak reflection
principle, for all B ∈ B and all F ∈ F,

P(B ∩ F ) =

∫
P (B ∩ F )dP =

∫
F

P (B ∩ F )dP +

∫
F c

P (B ∩ F )dP =

∫
F

P (B)dP.

8See Blackwell and Dubins (1975) and Seidenfeld et al. (2001).
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This shows that for all B ∈ B, P (·, B) is a version of P(B | F); that is, the reflection
principle holds.

Conversely, whether or not P is proper, the reflection principle implies the weak re-
flection principle, which in turn implies the value of information postulate, by Proposition
2.

The connection between the principle of reflection and the value of information postu-
late is further elucidated by the following property. We say that P is idempotent if for P
almost every ω and all B ∈ B:

P (ω,B) =

∫
P (ω′, B)P (ω, dω′). (7)

The meaning of idempotence becomes clearer if the integral is interpreted as representing
the probability of an event. Then the right-hand side of (7) is the probability of first
updating states in Ω and then updating the probability of B. Idempotence requires that
the resulting probability is the same as updating the probability of B immediately. Thus,
iterating P does not change the result of updating beyond the initial application.9

Regular conditional probabilities are idempotent. So, if the reflection principle holds,
then so do weak reflection and idempotence. We establish the converse with the next
proposition.

Proposition 4. If P is idempotent and the weak reflection principle holds, then both the
reflection principle and the martingale principle hold.

Proof. We establish that the martingale principle holds. In the same way that one can
extend the (weak) reflection principle to the (weak) martingale principle, as in the proof
of Proposition 1, so we can extend idempotence to∫

X(ω′)P (ω, dω′) =

∫ ∫
X(ω′′)P (ω′, dω′′)P (ω, dω′) (8)

for all X ∈ L1.
Now, we will show that there exists a sub-σ-algebra G of B such that, for all X ∈ L1,∫
XdP is a version of E[X|G]. Let L1 be the quotient space of P-integrable random

variables that are equal with P-probability 1. By Corollary 1 in Douglas (1965), as pre-
sented by Gyenis and Redei (2017, Proposition 2.7), it suffices to show that the mapping
Y : L1 → L1, X 7→

∫
XdP is a linear projection, contractive in the L1 norm, and such

that Y(χΩ) = χΩ. All of these properties are basically immediate from the definitions of
the terms involved.

9Idempotence was first studied in the context of Markov chains by Blackwell (1942).
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By Proposition 1, Y(X) ∈ L1 for all X ∈ L1. The linearity of the integral implies
that Y is linear. It is clear that Y(χΩ) = χΩ. To say that Y is a projection means that
Y(Y(X)) = Y(X), and this follows from the definition of Y and (8). To say that Y is
contractive in the L1 norm means that E|Y(X)| ≤ E|X|, and this follows from the fact
that |Y(X)| ≤ Y(|X|) and (4), which holds by Proposition 1.

Thus,
E[X|G] = Y(X) (9)

for some sub-σ-algebra G and all X ∈ L1. Thus, for all X ∈ L1,

E[X|G] =

∫
XdP a.s. (10)

We conclude by showing that (10) continues to hold with G = F. Since
∫
XdP is

measurable in both G and F, it follows from (10) that
∫
XdP is a version of E[X|G ∩ F]:

E[X | G ∩ F] = E[E[X | G] | G ∩ F] = E
[ ∫

XdP | G ∩ F
]

=

∫
XdP a.s.

By the minimality of F, F ⊆ G ∩ F. Hence, F = G ∩ F, and we are done.

The next proposition is the second main result of the paper.

Proposition 5. Idempotence and the value of information postulate hold if and only if
both the reflection principle and martingale principle hold.

Proof. Proposition 4 shows that idempotence and weak reflection imply the reflection
principle. We already observed the converse above. Since, by Proposition 2, the value of
information principle is equivalent to the weak reflection principle, the result follows.

Let Cω = {ω′ : P (ω′, B) = P (ω,B) for all B ∈ B}. Cω is the event that updated prob-
abilities are given by P (ω, ·). Then, idempotence is connected to the following luminosity
condition:

P (ω,Cω) = 1 for a.e. ω. (11)

This says that the update policy does not assign positive probability to the event that
it updates in a different way than it had planned.10 The update policy, in other words,
doesn’t forget any information that was gained from learning.

In order for (11) to be meaningful, Cω must be measurable. To guarantee measurability,
we assume that B is countably generated. In that case, F is countably generated, and

10This is the analog to the luminosity condition that was used in Huttegger (2014).
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{Cω : ω ∈ Ω} is a family of F atoms in F.11 To see why, let A be a countable algebra
generating B. Then F = σ({P (·, B) : B ∈ A}) by a monotone class argument.12 Thus,
F is countably generated: for each B ∈ A, σ(P (·, B)) is countably generated (call the
generating set CB) because P (·, B) is a real-valued random variable, and F is generated
by ∪B∈ACB, which is a countable union of countable sets. Moreover, it follows that Cω =⋂

B∈A{ω′ : P (ω,B) = P (ω′, B)} because A is an algebra generating B, and, since this
intersection is countable, Cω ∈ F. The collection of all Cω may or may not be countable.
In fact, one can see that there are countably many Cω just in case the range of P—i.e.,
the collection of probability measures {P (ω, ·) : ω ∈ Ω}—is countable.

The following results relate luminosity to the conditions studied above. The first follows
from a theorem of Blackwell (1942) and was stated independently by Gaifman (1988).

Proposition 6. Suppose B is countably generated. Then the luminosity condition implies
idempotence. If the weak reflection principle holds, then the luminosity condition and
idempotence are equivalent.

Proof. Suppose the luminosity condition holds. Then, almost surely, P (ω,Cω) = 1, and
thus ∫

P (ω′, B)P (ω, dω′) =

∫
P (ω′, B)1Cω(ω′)P (ω, dω′).

Now, for all ω′ ∈ Cω, P (ω, ·) = P (ω′, ·), and so the integrand on the right side is equal to
P (ω,B). The conclusion follows.

The second statement follows from Blackwell (1942, Theorem 7), which implies that
there is a set N such that P (ω,N) = 0 for (almost) all ω and such that (11) holds for
(almost) all ω /∈ N . Weak reflection implies that P(N) = 0.

By Proposition 5 and Proposition 6 we have the following.

Corollary 1. Suppose B is countably generated. The luminosity condition and the value
of information postulate hold if and only if both the reflection principle and martingale
principle hold.

It remains to clarify the relationship between the luminosity condition and proper
update policies.

11An atom in F is a set of the form
⋂

ω∈A∈AA, ω fixed. If Cω is an atom in F, then for every F ∈ F
either Cω ∩ F = Cω or Cω ∩ F = ∅ (Blackwell, 1942, p. 563).

12Let G = σ({P (·, B) : B ∈ A}) and note that the class of all measurable sets B such that P (·, B)
is G-measurable is a monotone class since measurability is preserved under monotone limits. By the
monotone class theorem, this class is identical to σ(A) = B. Thus, P (·, B) is G-measurable for every
B ∈ B.
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Proposition 7. If B is countably generated, then properness and luminosity are equiva-
lent.

Proof. Suppose B is countably generated. Then the Cω are the atoms of F, and for every
F ∈ F either Cω ∩ F = Cω or Cω ∩ F = ∅. Suppose the luminosity condition holds, and
let F ∈ F. Then, for all ω in a set of P-probability one, if ω ∈ F , then ω ∈ Cω ⊂ F and
P (ω, F ) = 1; if ω /∈ F , then Cω ∩ F = ∅, so P (ω, F ) = 0. Therefore properness holds.
Conversely, since B is countably generated, Cω ∈ F; and since ω ∈ Cω, properness implies
that P (ω,Cω) = 1 for all ω in a set of P-probability one.

5 Diachronic Dutch Books

We now turn to reflection and martingale principles in the context of dynamic coherence.
Rescorla (2018) has shown that P is a conditional probability given a sub-σ-algebra G
if and only if P is not vulnerable to a diachronic Dutch book when events in G are
observed. The σ-algebra G captures a learning situation in which the agent updates
on the outcome of an experiment or an observational setup. This is only superficially
different from the learning situations considered in this paper. Rescorla’s argument extends
straightforwardly to our setting.

For the reflection principle, replace Rescorla’s observational σ-algebra G with our fu-
ture algebra F. His argument shows that P[·|F] is the almost surely unique updating
strategy that avoids a diachronic Dutch book. More precisely, Rescorla’s main results im-
ply that there is no diachronic Dutch book for the update policy P if and only if P (·, B)
is a version of P[B|F] for every B ∈ B; that is, if and only if the reflection principle (1)
holds and, by Proposition 1 if and only if the martingale principle holds.

The Dutch book characterization of reflection, then, simply generalizes the well-known
results of Goldstein (1983) and van Fraassen (1984) to measure-theoretic conditional prob-
abilities and expectations: in a black-box learning situation, diachronic coherence demands
conditioning on future probabilities. This point is also discussed in Skyrms (1997, p. 287).

6 Concluding Remarks

The two main results of this paper can be summarized as follows:

(i) In the presence of properness, the value of knowledge postulate is equivalent to the
principle of reflection and the martingale principle (Proposition 3).

(ii) The value of knowledge postulate and idempotence are equivalent to the principle of
reflection and the martingale principle (Proposition 5).
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One way to read these results is as justification of the reflection and martingale princi-
ple. The value of knowledge postulate is a rather compelling requirement for all genuine
learning situations: in the absence of factors that interfere adversely with the acquisition
of new information, one should not expect to make worse decisions after adjusting one’s
probabilities. Properness is a desirable property for update policies. An improper update
policy foresees that it will lose some information that is part of the learning event. While
information loss is certainly something that can happen after a learning experience, it
does not seem to be entirely appropriate for update policies. If the update policy foresees
an information loss, then this should already be factored into the learning event in such a
way that the future algebra only captures the actual information gain.

Still, luminosity conditions such as properness have sometimes been criticized as un-
reasonable assumptions about our introspective access to belief change (Weisberg, 2007;
Williamson, 2002). Idempotence establishes an alternative route to the principle of reflec-
tion. It simply requires that updating be independent of whether information is presented
in one or more steps. Unlike properness, idempotence holds for all regular conditional
probabilities; it thus constitutes a plausible constraint for all update policies.

Our results can also be read as putting in context so-called counterexamples to the
principle of reflection. Any violation of reflection entails a violation of the value of knowl-
edge postulate or a violation of properness and idempotence. This identifies the conceptual
space within which we can find counterexamples. They draw on situations in which an
agent does not expect to make better decisions based on new beliefs, in which some infor-
mation that was learned is lost, or in which belief change depends on the way in which
information is presented.

Finally, many criticisms of the principle of reflection go hand in hand with criticisms
of dynamic Dutch book arguments. Based on our results and Huttegger (2017), critics
of reflection face a more formidable task, though. Skepticism regarding the principle of
reflection does not just entail skepticism regarding diachronic coherence but also accuracy
and value of information arguments. Such skepticism might prove difficult to sustain in
the face of the general treatment of those arguments given here and, for expected accuracy,
in Huttegger (2013).

References

Blackwell, David. 1942. “Idempotent Markoff Chains.” Annals of Mathematics 43:560–567.

Blackwell, David, and Lester E. Dubins. 1975. “On Existence and Non-Existence of Proper,
Regular, Conditional Distributions.” The Annals of Probability 3:741–752.

14



Bovens, Luc. 1995. “‘P and I Will Believe That Not-P’: Diachronic Constraints on Rational
Belief.” Mind 104:737–760.

Briggs, R. A. 2009. “Distorted Reflection.” Philosophical Review 118:59–85.

de Finetti, Bruno. 1974. Theory of Probability, Volume 1. London: John Wiley & Sons.

Douglas, Ronald G. 1965. “Contractive Projections on an L1 Space.” Pacific Journal of
Mathematics 15:443–462.

Easwaran, Kenny. 2013. “Expected Accuracy Supports Conditionalization—and Conglom-
erability and Reflection.” Philosophy of Science 80:119–142.

Gaifman, Haim. 1988. A Theory of Higher Order Probabilities. In Causation, Chance and
Credence, ed. Brian Skyrms and William L. Harper, 191–219. Dordrecht: Kluwer.

Goldstein, Michael. 1983. “The Prevision of a Prevision.” Journal of the American Sta-
tistical Association 78:817–819.

Good, I. J. 1967. “On the Principle of Total Evidence.” British Journal for the Philosophy
of Science, 17:319–321.

Gyenis, Zalán and Redei, Miklos. 2017. “General Properties of Bayesian Learning as
Statistical Inference Determined by Conditional Expectations.” The Review of Symbolic
Logic 10:719–755.

Huttegger, Simon M. 2013. “In Defense of Reflection.” Philosophy of Science 80:413–433.

— 2014. “Learning Experiences and the Value of Knowledge.” Philosophical Studies
171:279–288.

— 2017. The Probabilistic Foundations of Rational Learning. Cambridge: Cambridge
University Press.

Jeffrey, Richard C. 1957. “Contributions to the Theory of Inductive Probability.” PhD
diss., Princeton University.

— 1965. The Logic of Decision. New York: McGraw-Hill, New York. 3rd revised edition
Chicago: University of Chicago Press, 1983.

— 1968. “Probable Knowledge.” In The Problem of Inductive Logic, ed. Imre Lakatos,
166–180. Amsterdam: North-Holland.

— 1992. Probability and the Art of Judgement. Cambridge: Cambridge University Press.

15



— 2004. Subjective Probability. The Real Thing. Cambridge: Cambridge University Press.

Kadane, Jay B., Mark J. Schervish, and Teddy Seidenfeld. “Reasoning to a Foregone
Conclusion.” Journal of the American Statistical Association 91:1228–1235.

Kolmogorov, A N. (1933). Grundbegriffe der Wahrscheinlichkeitsrechnung. Springer,
Berlin.

Kolmogorov, Andrey N. 1956. Foundations of the Theory of Probability, volume 25. New
York: Chelsea Publishing Company.

Kreps, David M. 1988. Notes on the Theory of Choice. Boulder: Westview Press.

Levi, Isaac. 1987. “The Demons of Decision.” The Monist 70:193–211.

Maher, Patrick. 1992. “Diachronic Rationality.” Philosophy of Science 59:120–141.

Ramsey, Frank P. 1990. “Weight or the Value of Knowledge.” British Journal for the
Philosophy of Science 41:1–4.

Rescorla, Michael 2018. “A Dutch Book Theorem and Converse Dutch Book Theorem for
Kolmogorov conditionalization. The Review of Symbolic Logic 11:705–735.

Savage, Leonard J. 1954. The Foundations of Statistics. New York: Dover Publications.

Seidenfeld, Teddy. 2001. “Remarks on the Theory of Conditional Probability: Some Issues
of Finite Versus Countable Additivity.” In Probability Theory, ed. Vincent F. Hendricks,
167–178. Dordrecht: Kluwer.

Seidenfeld, Tedyy, Mark J. Schervish, and Jay B. Kadane. 2001. “Improper Regular
Conditional Distributions.” Annals of Probability 29:1612–1624.

Skyrms, B. (1990). The Dynamics of Rational Deliberation. Cambridge, MA: Harvard
University Press.

Skyrms, Brian. 1997. “The Structure of Radical Probabilism.” Erkenntnis 45:285–297.

Talbott, William J. 1991. “Two Principles of Bayesian Epistemology.” Philosophical
Studies 62:135–150.

van Fraassen, Bas C. 1984. “Belief and the Will.” Journal of Philosophy 81:235–256.

Weisberg, Jonathan. 1991. “Conditionalization, Reflection, and Self-Knowledge.” Philo-
sophical Studies 135:179–197.

16



Williams, David. 1991. Probability With Martingales. Cambridge: Cambridge University
Press.

Williamson, Timothy. 2002. Knowledge and its Limits. Oxford: Oxford University Press.

17


