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RETHINKING CONVERGENCE TO THE TRUTH*

Convergence to the truth is viewed with ambivalence in philos-
ophy of science. On the one hand, methods of inquiry that
lead to the truth in the limit are prized as marks of scientific

rationality.1 But someone who, by using a particular method, expects
to always converge to the truth seems to fail a minimum standard of
epistemic modesty.

This last point was brought home by Gordon Belot in his critique
of Bayesian epistemology.2 Belot uses the staple example of flipping a
coin infinitely often. A famous result in standard probability theory,
the martingale convergence theorem, implies that, with probability
one, a Bayesian agent expects to know the truth for any hypothesis
about coin flips as new data accumulates.

The problem, Belot argues, is that this result is true for arbitrary hy-
potheses, including those that are compatible with any finite stream of
data, like the set of sequences of coin flips that are eventually constant
or the set of sequences that are periodic. Some of these hypotheses
might be such that their truth value could never reasonably be ap-
proximated by any finite stream of data. It seems implausible that one
should in such a case be required to assign probability one to converg-
ing to the truth. Belot backs this up by topological considerations,
demonstrating that under certain conditions failure to converge to
the truth constitutes a topologically large event; he takes this to be a
good reason for being modest as regards convergence to the truth.
But by the martingale convergence theorem that kind of modesty is

* I am grateful for helpful feedback from audiences at the University of Washing-
ton, Columbia University, the Munich Center for Mathematical Philosophy, and the
Formal Rationality Forum (Bristol-LSE-Michigan-Irvine). I am especially thankful for
comments from Nikhil Addleman, Jeff Barrett, Gordon Belot, Persi Diaconis, Haim
Gaifman, Daniel Herrmann, Frederik Herzberg, Conor Mayo-Wilson, Louis Narens,
Michael Nielsen, Jan-Willem Romeijn, Teddy Seidenfeld, Brian Skyrms, Rush Stewart,
Francesca Zaffora Blando, Kevin Zollman, and to an anonymous referee for this our
nal.

1 Such views are, for instance, expressed (in different ways) by C. S. Peirce, “The
Fixation of Belief,” Popular Science Monthly, ii (November 1877): 1–15; and L. J. Sav-
age, “Implications of Personal Probability for Induction,” this ournal, l iv, 19 (Oc-
tober 1967): 593–607. They are a mainstay of Bayesian epistemology; see, for exam-
ple, James M. Joyce, “The Development of Subjective Bayesianism,” in D. M. Gabbay,
S. Hartmann, and J. Woods, eds., Handbook of the History of Logic, Vol. 10: Inductive Logic
(Amsterdam: Elsevier, 2011), pp. 415–76.

2 Gordon Belot, “Bayesian Orgulity,” Philosophy of Science, l , 4 (October 2013):
483–503.
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impossible for the Bayesian agent. Bayesian epistemology forces an
agent into the straightjacket of having to believe in convergence to
the truth. Belot concludes that something is wrong with Bayesian epis-
temology. (I consider his argument in more detail in section i.)

Belot’s argument has engendered a variety of responses. One can
show that convergence to the truth is not guaranteed for imprecise
probabilities and finitely additive probabilities: imprecise Bayesians
and Bayesians who reject countable additivity escape the charge of
immodesty.3 Others argue that the topological considerations used by
Belot are not relevant for probability theory.4

One might, however, be worried about Bayesian convergence to the
truth even if one puts aside Belot’s topological argument. I share the
concern expressed by Belot and some of his commentators that there
is something troubling about applying the traditional convergence to
the truth result to certain infinite hypotheses. But I do not think that
this requires a radical revision of Bayesian epistemology. It rather calls
for a more careful study of infinite hypotheses.

I am going to suggest that standard probability theory is not well
equipped for a sufficiently fine-grained analysis of this kind. There
is, more specifically, only a rough sense of when an infinite hypoth-
esis can be approximated by finite evidence. I will explore an alter-
native to the standard theory that is based on nonstandard models
of probability theory. These models involve arbitrarily large and ar-
bitrarily small numbers—numbers that are, respectively, larger than
any finite number or infinitesimally close to, but distinct from, zero.
Nonstandard models have been studied in mathematical logic, espe-
cially in the seminal work of Abraham Robinson.5 I will provide some
background on nonstandard analysis in section ii before introduc-
ing nonstandard probability theory as developed by Edward Nelson
in section iii.6 The main result, stated in section iv, shows that within
the nonstandard framework, convergence to the truth fails with (non-
infinitesimal) positive probability for certain hypotheses: those that

3 On imprecise probabilities, see Brian Weatherson, “For Bayesians, Rational Mod-
esty Requires Imprecision,” Ergo, ii (2015). On finite additivity, see Adam Elga,
“Bayesian Humility,” Philosophy of Science, l iii, 3 (July 2016): 305–23.

4 See Jessi Cisewski et al., “Standards for Modest Bayesian Credences,” Philosophy of
Science, l v, 1 (January 2018): 53–78. A similar view is discussed in Simon Huttegger,
“Bayesian Convergence to the Truth and the Metaphysics of Possible Worlds,” Philosophy
of Science, l ii, 4 (October 2015): 587–601.

5 Abraham Robinson, Non-standard Analysis (Amsterdam: North-Holland, 1966).
6 Edward Nelson, Radically Elementary Probability Theory (Princeton, NJ: Princeton

University Press, 1987).
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one expects to be beyond the reach of finite streams of evidence. Fi-
nally, in section v I argue that this creates a space for modesty within
Bayesian epistemology.

i conver ence to the truth

Martingales are part and parcel of probability theory. One can think
of a martingale as the probabilistic analog of a constant sequence of
numbers: a martingale is constant on average, suggesting that it, too,
does converge. Doob’s martingale convergence theorem shows that this is
indeed the case.7 Martingales almost surely converge to a limit under
significantly broader sufficient conditions than those assumed by the
strong law of large numbers.

A special case of the martingale convergence theorem speaks to
convergence to the truth.8 It holds quite generally but can be ex-
plained in terms of repeatedly flipping a coin without much loss of
generality. By associating heads with one and tails with zero, repeated
coin flips can be associated with Cantor space: the set of all infinite
zero-one sequences with an appropriate set of propositions (sets of in-
finite binary sequences) that describe many events of interest.9 Many
of these events are finite, such as observing at least one zero in the
first ten trials, or having exactly 52 one’s between the 100th and the
200th trial. Other events are of an infinite nature, such as the event
that the limiting relative frequency of ones converges.

A probability measure assigns a numerical probability to every propo-
sition of Cantor space. In Bayesian epistemology, the probability mea-
sure represents an agent’s prior degrees of belief: the probability of a
proposition A is the degree to which the agent believes A to be true.
The conditional probability given a finite sequence of zeroes and ones of
length n represents the agent’s posterior degree of belief after having
made n observations.10 As n grows, the agent’s evidence increases and
the agent’s posteriors become better informed.

Within this experimental setup, the martingale convergence theo-
rem implies the following. Take any proposition, A, of Cantor space
and consider the conditional probability of A. With prior probability

7 See Joseph L. Doob, Stochastic Processes (New York: Wiley, 1953).
8 The special result was proved by Paul Lévy, Théorie de l’addition des variables aléatoires

(Paris: Gauthier-Villars, 1937).
9 The propositions form a σ-algebra, the Borel σ-algebra generated by the open sets

of the topology of weak convergence.
10 In the present setting, conditional probability can itself be taken as a probability

measure.
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one, as the evidence increases the conditional probability of A con-
verges to one if A is true and to zero if A is false: posterior probabilities
of propositions converge almost surely to the truth.

More generally, one often encounters not just propositions but ran-
dom variables.11 Random variables allow us to express events involving
numerical quantities. For example, consider the random variable that
gives the relative frequency of ones in the first n segments of a bi-
nary sequence. That random variable may assume any of the values
0, 1

n ,
2
n , . . . ,

n−1
n , 1. Another important random variable is the limiting

relative frequency of ones as n goes to infinity. Propositions can be
thought of as special types of random variables.12

Expectations and conditional expectations are for random variables
what probabilities and conditional probabilities are for propositions.
The expectation of a random variable, X , represents the best estimate
of X prior to making any observations. The conditional expectation of
X given the initial n digits of a binary sequence represents the agent’s
posterior best estimate given the evidence available at stage n. The
martingale convergence theorem implies that, with prior probability
one, the conditional expectations of X converge to the true value of
X as n increases.13 Since propositions can be represented as random
variables, the result about conditional probabilities stated above is a
special case. In what follows I will refer to this as the convergence to the
truth theorem.

The convergence to the truth theorem is of great significance for
Bayesian epistemology. One’s initial opinions may be based on little
or no evidence; they are thus open to the charge of arbitrariness. Con-
vergence to the truth says that for certain hypotheses one expects the
starting point to not matter very much in the long run. This illustrates
why subjective Bayesians emphasize rational opinion change and put
little weight on the choice of a “rational” prior.14

11 A random variable is a measurable function from Cantor space to the reals.
12 The proposition A can be identified with its indicator variable that takes on the

value 1 if A is true and 0 otherwise.
13 I gloss over a number of important technical details in the statement of these re-

sults, such as the existence and nature of conditional probabilities and expectations or
assumptions about random variables. For details, see, for example, David K. Williams,
Probability with Martingales (Cambridge, UK: Cambridge University Press, 1990).

14 There are other results that can be used for this line of reasoning, such as the
Blackwell-Dubins theorem on merging of opinions; see David Blackwell and Lester Du-
bins, “Merging of Opinions with Increasing Information,” The Annals of Mathematical
Statistics, iii, 3 (September 1962): 882–86. Merging of opinions says that, under
certain conditions, the conditional probabilities of two agents who update on the same
evidence get closer. An analogous result was proved independently in a different frame-
work based on rich formal languages by Haim Gaifman and Marc Snir, “Probabilities



384 the ournal of philosoph

Some commentators have put forward a less flattering take on con-
vergence to the truth. It has been pointed out—correctly—that the
theorem does not establish actual convergence to the truth, but only
an agent’s expectation to converge to the truth.15 Others have aimed
their criticism at the role that countable additivity plays in the proof
of the theorem.16 More recently, Belot has challenged the status of
convergence to the truth as one of the pillars of Bayesian epistemol-
ogy, arguing that it is instead a genuine liability for Bayesians since it
reveals them as irredeemably immodest.17

Let us take a closer look at Belot’s argument, which is set in Cantor
space. Conditional probabilities almost trivially converge to the truth
for finite events, such as observing at least one zero in the first ten
periods. But convergence to the truth also applies to events whose
truth is not determined in a finite number of steps, and it is with

over Rich Languages, Testing and Randomness,” The Journal of Symbolic Logic, lvii, 3
(September 1982): 495–548. Gaifman and Snir’s theorem combines merging of opin-
ions, which is about a community of Bayesian agents, with the convergence to the truth
result. For further discussions of the Blackwell-Dubins theorem, see Mark J. Schervish
and Teddy Seidenfeld, “An Approach to Consensus and Uncertainty with Increasing
Information,” Journal of Statistical Planning and Inference, v, 3 (July 1990): 401–14; Si-
mon Huttegger, “Merging of Opinions and Probability Kinematics,” The Review of Sym-
bolic Logic, viii, 4 (December 2015): 611–48; Simon Huttegger, The Probabilistic Foun-
dations of Rational Learning (Cambridge, UK: Cambridge University Press, 2017); and
Rush T. Stewart and Michael Nielsen, “Another Approach to Consensus and Maximally
Informed Opinions with Increasing Evidence,” Philosophy of Science, l vi, 2 (March
2019): 236–54. Belot’s argument does not refer to merging of opinions. But since merg-
ing of opinions also involves a probability one qualification, it is not difficult to see that
the issue of immodesty arises again. As an antidote, the nonstandard model of conver-
gence to the truth can also be applied to merging of opinions, with similar results.

15 See Clark Glymour, Theory and Evidence (Princeton, NJ: Princeton University
Press); and John Earman, Bayes or Bust? A Critical Examination of Bayesian Confirmation
Theory (Cambridge, MA: MIT Press, 1992). Michael Nielsen, “Deterministic Conver-
gence and Strong Regularity,” The British Journal for the Philosophy of Science, l i (De-
cember 2020): 1461–91, studies convergence to the truth without the probability one
qualification.

16 Joseph B. Kadane, Mark J. Schervish, and Teddy Seidenfeld, “Reasoning to a Fore-
gone Conclusion,” Journal of the American Statistical Association, ci, 435 (September
1996): 1228–35; and Cory Juhl and Kevin T. Kelly, “Realism, Convergence, and Ad-
ditivity,” PSA: Proceedings of the Philosophy of Science Association (1994): 181–89. There
are, however, finitely additive versions of the martingale convergence theorem; see
Roger A. Purves and William D. Sudderth, “Some Finitely Additive Probability,” The
Annals of Probability, iv, 2 (April 1976): 259–76; and Sandy L. Zabell, “It All Adds Up:
The Dynamic Coherence of Radical Probabilism,” Philosophy of Science, l i (September
2002): 98–103. More specifically, the result holds for a natural class of finitely additive
measures, called strategic measures.

17 See Belot, “Bayesian Orgulity,” op. cit.; and Gordon Belot, “Objectivity and Bias,”
Mind, c vi, 501 (July 2017): 655–95. Precursors of this argument can be found in
A. P. Dawid, “The Well-Calibrated Bayesian,” Journal of the American Statistical Association,
l vii, 379 (September 1982): 605–10; and Juhl and Kelly, “Realism, Convergence,
and Additivity,” op. cit.
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some of these that Belot takes issue. He invites us to think of countable
dense hypotheses in Cantor space. A countable dense hypothesis H is
a proposition that is compatible with any finite piece of evidence: at
any finite stage it is impossible to rule out H . But since H is count-
able and dense, its complement is uncountable and dense, and so the
complement of H is also compatible with any finite piece of evidence.
Hence, at no finite stage are we able to distinguish between H and
its complement. As examples, think of the hypothesis that the binary
sequence you are observing is eventually constant or the hypothesis
that it is periodic; both are countable and dense in Cantor space.18

The convergence to the truth theorem implies that for every prior
probability measure the conditional probabilities of any dense hy-
pothesis converges to the truth with prior probability one. Belot con-
siders probability measures with a special kind of open-mindedness
property, which says that conditional probabilities of H never fully
settle down at finite stages. Based on this assumption, he shows that
the failure set—the subset of infinite binary sequences for which con-
ditional probabilities do not converge to the truth—is comeager; this
is a topological way of saying that the failure set is large, or typical.19

Thus, the failure set is large in a topological sense, but small in a
probabilistic sense (since it has probability zero). Belot takes this to
show that Bayesian agents ignore the myriad ways in which their con-
ditional probabilities might fail to converge to the truth, revealing a
problematic kind of epistemic arrogance.

I am not going to respond to Belot’s topological argument here.
I think that worries about convergence to the truth go beyond it. Stan-
dard probability theory identifies infinite hypotheses—like countable
dense hypotheses in Cantor space—with events whose truth values are
unaffected by any finite number of observations.20 Otherwise these
events are all treated on a par. In particular, there seems to be no
straightforward way to draw a distinction between hypotheses that can
be approximated by finite streams of evidence and those about which
one can, loosely speaking, always be misled. Belot tries to capture this

18 Belot, “Bayesian Orgulity,” op. cit. A binary sequence is eventually constant if it con-
sists exclusively of ones, or exclusively of zeroes, from some point onward. Since the
sequence becoming constant can happen at any stage, no finite number of observa-
tions is enough to determine the truth of the hypothesis or its complement. Likewise,
a periodic sequence can cycle through arbitrarily long patterns, which can never be
confirmed or refuted with certainty.

19 A set is meager if it is the countable union of nowhere dense sets. A comeager set
is the complement of a meager set.

20 Formally, infinite hypotheses are in the tail-σ-algebra of a probability space, which
captures events in the remote future.
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in terms of his open-mindedness condition, with no effect on how in-
finite hypotheses are treated within standard probability theory. But
one does not need to conclude from this that Bayesian agents are
immodest. One can instead try to enrich standard probability the-
ory to account for finite approximations of infinite hypotheses without
changing its basic assumptions. Leaving the basic assumptions in place
is important in order to give a response to Belot’s argument from
the standpoint of orthodox probability theory instead of revising the
standard theory.21 This strategy, if successful, can lead to a better un-
derstanding of convergence to the truth for infinite hypotheses and
its connection to epistemic modesty.

There is more than one way of doing this. One approach involves
measure algebras.22 A measure algebra identifies infinite hypotheses
with those events that cannot be distinguished from it in a finite num-
ber of steps (with respect to a suitable background probability mea-
sure). This approach provides a couple of insights, but it deals with
the concerns about convergence to the truth by explaining away (al-
though in a principled manner) as empirically meaningless distinc-
tions between hypotheses that can only be drawn at the infinite limit.

The approach I take here goes in the opposite direction. The mea-
sure algebra approach takes structure away from probability spaces.
Nonstandard models add structure by way of introducing arbitrarily
large and small numbers. We shall see below that this leads to a new
understanding of when infinite hypotheses can, and cannot, be ap-
proximated by finite streams of evidence. Before diving into the de-
tails, I will put some context to nonstandard models.

ii nonstan ar mo els

The familiar objects of analysis—real numbers—are finite (bounded
above), and no real number is infinitely small. Yet, starting with Leib-
niz and lasting into the early nineteenth century, mathematicians and
physicists made free use of infinitely large and small numbers.23

21 Weatherson, “For Bayesians, Rational Modesty Requires Imprecision,” op. cit.; and
Elga, “Bayesian Humility,” op. cit., are revisionary responses. Weatherson gives up the
assumption of precise probability assignments, and Elga the assumption of countable
additivity.

22 Huttegger, “Convergence to the Truth and the Metaphysics of Possible Worlds,”
op. cit. For measure algebras, see Andrei N. Kolmogorov, “Algèbres de Boole métriques
complètes,” Zjazd Matematyków Polskich, (1948): 21–30, translated by R. C. Jeffrey
as “Complete Metric Boolean Algebras,” Philosophical Studies, l vii, 1 (January 1995):
57–66.

23 The existence of such numbers violates the Archimedean property, which says that
for any two real numbers there exists a multiple of the first that is greater than the
second.
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Infinitely small numbers—or infinitesimals—were employed by
Leibniz in his development of the calculus. The differential calculus is
concerned with how the values of a function change as its arguments
vary continuously. Leibniz took the relevant quantity to be a ratio of
infinitesimals—the infinitesimal change in function value over the in-
finitesimal change in its argument. Under certain assumptions, the
resulting equations can be treated algebraically, that is, like equations
between ordinary real numbers.

This is part of a larger package. Infinitesimals are smaller than any
ordinary real number: they are squeezed between zero and the recip-
rocal of any standard number (regardless how large). Each ordinary
real number can be pictured as being surrounded by a cloud of in-
finitesimals that can only be seen through an “infinitesimal” micro-
scope.24 Infinitesimals often can be treated like ordinary numbers. In
particular, they can be added and multiplied in much the same way.

The reciprocal of an infinitesimal is a hyperfinite or unlimited
number—a number that surpasses any finite bound.25 Hyperfinite
numbers can be pictured as visible through an “infinite” telescope;
they extend the real line beyond what is viewable in ordinary analy-
sis.26 With some care one can once again perform many elementary
calculations with hyperfinite numbers in the usual way.

While in practice it is usually quite clear how to do calculations
with infinitesimals and unlimited numbers, the trouble with Leibniz’s
approach is its reliance on an intuitive understanding of infinitesi-
mals. In particular, the principles governing when exactly infinitesi-
mals behave like ordinary real numbers remained unclear. The now-
orthodox approach to calculus, developed in the nineteenth century
by mathematicians like Weierstrass, did away with infinitesimals al-
together and replaced them with limits of sequences and functions.
While this gave rise to a rigorous foundation of analysis, certain devel-
opments in twentieth-century mathematical logic, especially in model
theory, led to a reappraisal of infinitesimals. Skolem demonstrated the
existence of nonstandard models of arithmetic in the 1930s. These
models obey all first-order laws of the standard theory of arithmetic—
loosely, all laws that govern the ordering of, and operations on, or-
dinary natural numbers—but can contain infinitely large elements.27

24 As described in Jerome H. Keisler, Elementary Calculus: An Infinitesimal Approach
(Boston: Weber and Schmidt, 1986).

25 Since a positive infinitesimal is smaller than the reciprocal of any ordinary positive
number, its reciprocal is larger than any ordinary positive number.

26 Keisler, Elementary Calculus, op. cit.
27 Thoralf Skolem, “Über die Nicht-charakteriesierbarkeit der unendlichen Zahlen-

reihe mittels endlich oder abzählbar unendlich vieler Assagen mit ausschliesslich
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Abraham Robinson used model theory to put nonstandard analysis on
a firm footing.28 Robinson distinguished between standard and non-
standard numbers, the latter being rigorous formal counterparts to
what I called infinitesimals and hyperfinite numbers, and he proved
the existence of nonstandard models of the first-order theory of anal-
ysis.

There are several ways to construct nonstandard numbers.29 They
all follow the trail blazed by Robinson, who introduced the basic prin-
ciples that govern standard and nonstandard numbers. These prin-
ciples guarantee that nonstandard analysis is a conservative extension
of standard analysis. The conservation has several aspects. First, the
set of standard real numbers is contained in the new structure, and
standard ordering and functions have natural nonstandard exten-
sions (that is, the nonstandard extensions coincide with their stan-
dard counterparts when applied to standard reals). Second, every
finite nonstandard number is infinitesimally close to a unique stan-
dard real number. Finally, the transfer principle says that all first-order
laws about standard real numbers also govern nonstandard numbers.
First-order laws speak about numbers only (not about sets of num-
bers, or sets of sets of numbers, and so on). The transfer principle ex-
plains what was left vague in the old infinitesimal calculus—namely,
what exactly infinitesimals and hyperfinite numbers have in common

Zahlenvariablen,” Fundamenta Mathematicae, iii, 1 (1934): 150–61. Skolem’s earlier
work on nonstandard models dealt with set theory; see Thoralf Skolem, “Einige Be-
merkungen zur axiomatischen Begründung der Mengenlehre,” Proceedings of the 5th
Scandinavian Mathematical Congress (1922): 217–32. It follows from the Löwenheim-
Skolem theorem that if there is a structure that satisfies the axioms of set theory, there
exists a countable structure that does so as well: set theory has a countable model if it
has a model at all. The contrast between this and the fact that set theory asserts the
existence of uncountable sets is known as Skolem’s paradox. See Haim Gaifman, “Non-
standard Models in a Broader Perspective,” in A. Enayat and R. Kossak, eds., Nonstan-
dard Models of Arithmetic and Set Theory (Providence, RI: American Mathematical Society,
2004), pp. 1–22, for a discussion of Skolem’s paradox, nonstandard models of arith-
metic, and the broader ramifications of nonstandard models.

28 Robinson, Non-standard Analysis, op. cit.
29 Robinson used an ultrapower construction, in which standard and nonstandard

numbers are associated with infinite sequences of real numbers; see, for example, chap-
ter 3 of Robert Goldblatt, Lectures on the Hyperreals: An Introduction to Nonstandard Anal-
ysis (Berlin: Springer, 1998). Another approach applies the compactness property of
first-order theories; see, for example, chapter 4 of Sean Walsh and Tim Button, Philoso-
phy and Model Theory (Oxford: Oxford University Press, 2018). Other developments are
based on nonstandard set theories; see Edward Nelson, “Internal Set Theory: A New Ap-
proach to Nonstandard Analysis,” Bulletin of the American Mathematical Society, l iii, 6
(November 1977): 1165–98; Karel Hrbáček, “Axiomatic Foundations of Nonstandard
Analysis,” Fundamenta Mathematicae, cviii, 1 (1978): 1–19; and Vladimir G. Kanovei,
“Undecidable Hypotheses in Edward Nelson’s Internal Set Theory,” Russian Mathemat-
ical Surveys, cvi, 6 (1991): 1–54.



rethin in conver ence to the truth 389

with standard reals. Every true statement about real numbers is also
true in the nonstandard extension. Yet true statements about sets of
real numbers may fail for sets of nonstandard numbers.30 That non-
standard analysis is a conservative extension of ordinary analysis thus
means that a copy of the old theory is part of the new one and that
the new elements are treated to some extent in the same way as the
old ones; in particular, from a first-order perspective infinitesimals be-
have like small real numbers and unlimited numbers like large finite
ones.

The conservative nature of nonstandard analysis may also help with
certain philosophical puzzlements as to the nature of nonstandard
numbers. Are nonstandard numbers genuinely new and distinct from
standard numbers? Or were they there “all along”? Different positions
are possible.31 For what follows (and for other mathematical applica-
tions) adopting one or another position makes no difference. Follow-
ing Robinson, one may follow a nonstandard methodology simply for
instrumental reasons. On this view, nonstandard models of analysis
are useful tools for proving results about finite real numbers. As long
as the nonstandard model conserves the standard model, no harm is
done by using the tool.32

iii nonstan ar probabilit

We are going to work with a type of nonstandard probability space
that was introduced by Nelson, whose theory is known as radically el-
ementary probability theory.33 According to Nelson, a probability space
(Ω,P) satisfies the following two conditions:

30 As an example, consider the completeness property, which says that a set, S, of (stan-
dard) real numbers is an interval if S contains any number between x and y whenever
both x and y are in S. The set of all infinitesimals has the latter property: whenever two
nonstandard numbers are infinitesimally close to zero, so is any number between them.
But that set fails to be an interval. See Keisler, Elementary Calculus, op. cit.

31 Leibniz arguably viewed infinitesimals as idealizations; see Mikhail G. Katz and
David Sherry, “Leibniz’s Infinitesimals: Their Fictionality, Their Modern Implemen-
tations, and Their Foes from Berkeley to Russell and Beyond,” Erkenntnis, l viii, 3
(June 2013): 571–625. Other positions are outlined in sections 5.6 and 5.7 of Peter
Fletcher et al., “Approaches to Analysis with Infinitesimals following Robinson, Nelson,
and Others,” Real Analysis Exchange, lii, 2 (Fall 2017): 193–252.

32 See Abraham Robinson, “Formalism 64,” in Y. Bar-Hillel, ed., Logic, Methodology and
Philosophy of Science (Amsterdam: North-Holland, 1965), pp. 228–46. Robinson’s posi-
tion is close in spirit to Hilbert’s formalism—of course, without Hilbert’s commitment
to eliminating reasoning that involves the actual infinite; see the discussions in Gaif-
man, “Non-standard Models in a Broader Perspective,” op. cit., and Walsh and Button,
Philosophy and Model Theory, op. cit. Walsh and Button also present a precise characteri-
zation of the way in which elementary extensions of the field of real numbers conserve
the standard system of analysis (their Proposition 4.18).

33 Nelson, Radically Elementary Probability Theory, op. cit.
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(i) Ω is the set of elementary events. The number of elements in Ω is
a standard or a nonstandard natural number.

(ii) The probability function P : Ω → [0, 1] assigns real numbers (in-
cluding infinitesimals) to elementary events such that P{ω} > 0
for all ω ∈ Ω and
∑

ω∈Ω

P{ω} = 1 as well as PA =
∑

ω∈A

P{ω},

where the event A may be any subset of Ω.

To illustrate, consider the nonstandard analog of Cantor space: the
set of all binary sequences of length ν, where ν is an (arbitrary) non-
standard natural number. The cardinality of this set is 2ν , another
nonstandard number. Since ν exceeds any standard natural number,
the nonstandard probability space is a legitimate model of flipping a
coin arbitrarily often.

Nelson proved radically elementary analogs of many of the cen-
tral results of standard probability theory, such as the strong law of
large numbers, the martingale convergence theorem, and the cen-
tral limit theorem.34 One salient feature of this framework is that the
standard concept of convergence branches into two nonstandard con-
cepts, only one of which corresponds to finite approximations. This is
at the heart of my treatment of convergence to the truth. I shelve the
topic of convergence for now, however, and return to it in the next
section in order to introduce a few more concepts first. (Appendix a
has more information.)

Certain issues of integration and measurability that arise in stan-
dard probability theory do not play a role in the present frame-
work. In standard probability theory there are non-measurable sets,35

and expectations are in general given by integrals and not by sums.
According to the second clause in the definition of a probability
space, every subset of Ω is assigned a probability (there are no non-
measurable sets). And since probabilities of subsets of Ω are given by
sums, the expected value of any random variable is also given by a
sum (and not by an integral). If X : Ω → R is a random variable, its
expected value is

EX =
∑

ω∈Ω

X (ω)P{ω}.

34 Nelson, Radically Elementary Probability Theory, op. cit. See Frederik S. Herzberg,
Stochastic Calculus with Infinitesimals (Berlin: Springer, 2013), for more results.

35 Events in a probability space that cannot be assigned a probability.
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Here there is a methodological continuity with finite probability
spaces that derives from the fact that unlimited numbers are treated
in nonstandard models like limited numbers (by the transfer princi-
ple).

The second clause says that every element of Ω has a (perhaps in-
finitesimal) positive probability. The resulting probability function is
regular : no event other than the empty set is assigned probability zero.
Some commentators have argued in favor of regularity, a view which
has not escaped critical scrutiny.36 I will not enter this debate here,
but I wish to highlight a technical point: whereas in standard proba-
bility theory conditional expectations are only unique up to probabil-
ity zero, here conditional expectations are unique. To explain what
this means we need to introduce the notion of an algebra. An algebra
A is a subset of the set of all random variables that is closed under
addition and multiplication (if two random variables are in A then
so is their sum and their product). Intuitively, A can be thought of as
the set of those random variables whose values are fully determined
in a particular state of information. For example, the set of random
variables whose values only depend on the first n digits of a binary
sequence of length ν is an algebra. After having observed the first n
digits, each random variable in this algebra has a determinate value.
If we let X be a random variable, then the conditional expectation of
X given the algebra A, denoted EAX , is the expected value of X when
the values of all elements of A are known: EAX is the expectation of
the true value of X in light of the information provided by A. If X
is the indicator of a proposition B, then its conditional expectation
given A is the same as the conditional probability of B given A, PAB.
Both PAB and EAX are themselves unique members of A. Otherwise,
conditional expectations observe the same laws as their counterparts
in ordinary probability theory.37 In particular, EAX and PAB can be
thought of as best estimates of, respectively, X and χB among all ran-
dom variables in A.

Since algebras represent the evidence an agent may have, they lend
themselves to model increasing evidence. If A is a subset of another

36 The advantages have to do with Bayesian conditioning; see, for example, Brian
Skyrms, Causal Necessity: A Pragmatic Investigation of the Necessity of Laws (New Haven,
CT: Yale University Press, 1980); and David Lewis, “A Subjectivist’s Guide to Objective
Chance,” in R. C. Jeffrey, Studies in Inductive Logic and Probability (Berkeley: University of
California Press, 1980), pp. 263–93. For critical reflections, see, for example, Timothy
Williamson, “How Probable Is an Infinite Sequence of Heads?,” Analysis, l vii, 3 (July
2007): 173–80; Alan Hájek, “Is Strict Coherence Coherent?,” Dialectica, l vi, 3 (Septem-
ber 2012): 411–24; and Kenny Easwaran, “Regularity and Hyperreal Credences,” The
Philosophical Review, c iii, 1 (January 2014): 1–41.

37 I explain this in appendix a.
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algebra B, then every random variable in A is also in B. Hence, if
the values of all elements of B are known, then everything in A is
known as well. As a result, an experimental setup that proceeds in
stages and reveals increasing information can be represented in the
following way. Let Pn be the algebra of random variables whose values
are known at stage n, and suppose that Pn is a subset of Pn+1 for all n.
The sequence of algebras P1, . . . ,Pν is called a filtration. If ν is an
unlimited number, the filtration represents an experimental process
that continues indefinitely. If we write the conditional expectation of
a random variable X given Pn as EnX , the sequence E1X , . . . ,EνX
gives an agent’s increasingly informed opinions about the random
variable X .

In the next section we will study ways in which a sequence of condi-
tional expectations or conditional probabilities may converge to the
truth. This requires a notion of when a statement, A, holds almost
everywhere (abbreviated “a.e.”). For instance, A could mean that a se-
quence of random variables converges to a certain value. Intuitively,
A holding a.e. says that A is true for “almost all” ω in Ω. In standard
probability theory, “almost all” is captured by saying that the set of all
ω for which A holds has probability one. In nonstandard probability,
“almost all” means that A holds with probability infinitesimally close
to one. Hence A fails to hold a.e. if the failure of A has non-infinitesimal
positive probability. If we think of this as an event, then the set of all ω
in Ω for which A is false has strictly positive (non-infinitesimal) prob-
ability.38

iv t o t pes of conver ence

Standard convergence has no unique analog in our nonstandard
framework. I am going to explore two ways in which a sequence of
random variables—in particular, a sequence of conditional expecta-
tions of one random variable—can be said to “converge.” The first
one is almost sure convergence; the second one requires a sequence to
be of limited fluctuation.

To get an intuition for almost sure convergence, consider an un-
limited sequence of real numbers x1, . . . , xν . The sequence x1, . . . , xν
is said to converge to x if, for all unlimited n ≤ ν, xn is infinitesimally
close to, and hence indistinguishable from, x, denoted xn � x. Con-
vergence thus defined implies that for all non-infinitesimal positive
ε there is a limited number m such that |xn − x| ≤ ε for all n ≥ m.

38 Within Nelson’s framework things are more nuanced because not every statement
can be used in the formation of sets. This is not relevant for stating the results of the
next section, but I explain the details in appendix a.
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The nonstandard definition of convergence hence captures the idea
of approximating a number.39

Almost sure convergence builds upon the idea of convergence but
is a bit more contrived.40 The relevant characterization involves a uni-
formity criterion: convergence of a sequence of random variables
holds uniformly over all unlimited indices. (See appendix a for de-
tails.) The important thought to keep in mind is that a sequence
of random variables converges almost surely to a given random vari-
able if it approximates the latter with increasing accuracy up to in-
finitesimal probability. If, for instance, the sequence E1X , . . . ,EνX
converges to X almost surely, then EnX gets closer to X for sufficiently
large limited n a.e. In this case the value of X can be approximated by
conditional expectations based on limited evidence. Otherwise, EnX
is bounded away from X for all large finite n by a (non-infinitesimal)
amount with (non-infinitesimal) positive probability.

I show below that E1X , . . . ,EνX converges to X almost surely when-
ever the underlying filtration provides no unlimited evidence, and
vice versa. The idea of unlimited evidence can be made precise as fol-
lows. Let A and B be two algebras with A ⊆ B. We say that X ∈ B

is almost an element of A if EAX � X a.e. Furthermore, A and B are
almost equal if any X ∈ B is almost an element of A.

Recall that EAX can be thought of as the best estimate of X among
all random variables in A. In case X is itself a member of A, then
EAX = X . The concept of being almost an element extends this
thought to cases in which X itself is not in A but is nearly indistin-
guishable from EAX : the true value of X is effectively given by its best
estimate in A, and so X can be regarded as a member of A for all
intents and purposes. If this is the case for all random variables in
B, then A and B are nearly indistinguishable; knowledge of the val-
ues of random variables in B does not give more information than
knowledge of the values of random variables in A.

Now, let P1, . . . ,Pν be a filtration. We say that P1, . . . ,Pν provides
no unlimited information about X if X is almost a member of Pn for all
unlimited n ≤ ν. Since EnX is, in effect, equal to the true value of
X for all unlimited n ≤ ν, unlimited members of the partition reveal
nothing new about X . Along the same lines, we say that P1, . . . ,Pν

provides no unlimited information if it provides no unlimited information
about any random variable in Pν .

39 See Nelson, Radically Elementary Probability Theory, op. cit., p. 20.
40 Suppose that for the sequence of random variables X1, . . . ,Xν we have Xn 
 X

a.e. for all unlimited n ≤ ν. Since the a.e. qualification depends on n, the exceptional
sequences may have strictly positive probability when taken together.
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With these definitions in hand we can prove the following theo-
rem.41

Theorem 1. Let P1, . . . ,Pν be a filtration.

(i) E1X , . . . ,EνX converges to X a.e. if and only if P1, . . . ,Pν pro-
vides no unlimited information about X .

(ii) Suppose P1, . . . ,Pν provides no unlimited information. Then
for every random variable X , E1X , . . . ,EνX converges to EνX
a.e.

The first part of the theorem zooms in on a particular random vari-
able X . It asserts that convergence of conditional expectations to X is
fully characterized by there not being unlimited information about X .
Unless that is the case, there is a non-infinitesimal positive probability
that the sequence of conditional expectations fails to converge to the
true value of X .

This result specializes seamlessly to propositions. The sequence of
conditional probabilities P1A, . . . ,PνA converges to the indicator of
A, χA, if and only if χA is almost a member of every unlimited algebra
of the filtration: convergence to the truth requires that unlimited best
estimates of A are almost indistinguishable from its truth value: PnA �
χA for all unlimited n ≤ ν a.e.

The second part of the theorem speaks to the more restrictive sce-
nario of no unlimited evidence for any random variable in Pν . This is
sufficient for a.e. convergence of conditional expectations. Together
with the first part of the theorem, this implies a.e. convergence to X
for all X whenever Pν is almost the same as the set of all random
variables. The following theorem is a converse.42

Theorem 2. Suppose E1X , . . . ,EνX converges to EνX for all random vari-
ables X . Then P1, . . . ,Pν provides no unlimited information.

The almost everywhere qualification in the definition of unlimited
information is significant. If EAX � X a.e., then X is indistinguish-
able from its best estimate given A relative to a particular probability P.
From a Bayesian point of view the concepts of almost-membership
and almost-equality are not objective but are part of an agent’s proba-
bility judgments. Two agents may disagree as to when a filtration pro-
vides unlimited information.

41 For the proof, see appendix b. The random variable X in this and the following
theorems is assumed to be integrable.

42 It is also proved in appendix b.
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This might lead one to seek a less subjective account of unlimited
information. However, the most obvious candidate turns out to be in-
adequate. Suppose we were to say that a filtration P1, . . . ,Pν provides
no unlimited information about X if X ∈ Pn for all unlimited n ≤ ν.43

Then the first part of Theorem 1 is true without there being any ref-
erence to the underlying probability function. Moreover, even if two
agents disagree in their beliefs, they will agree on whether there is
unlimited information in this alternative sense.

But the alternative is too restrictive. Suppose X ∈ Pn for all unlim-
ited n, and let n be the smallest natural number such that X ∈ Pn.
Then n must be standard—otherwise X is not in Pn−1, where n − 1 is
unlimited, contrary to our assumption. Consequently, convergence to
the truth already happens at a limited stage: there is a standard num-
ber n at which the true value of X is known. While this mode of arriv-
ing at the true value of X clearly falls under the scope of convergence
to the truth, it fails to capture the idea that the true value of X might
never be known but can be approximated as closely as one wishes.
For this reason the more liberal—and more subjective—account of
unlimited information is more adequate.

Let me now turn to the second analog for standard convergence.
In standard analysis, a sequence of (standard) real numbers x1, x2, . . .
admits k ε-fluctuations if there exist (standard) natural numbers n0 <
n1 < · · · < nk such that

|xn0 − xn1 | ≥ ε, |xn1 − xn2 | ≥ ε, . . . , |xnk−1 − xnk | ≥ ε

(here, ε is not infinitesimal and k is standard). It can be shown that
x1, x2, . . . converges44 if and only if for all positive ε there is a k such
that the sequence does not admit k ε-fluctuations. Within the stan-
dard framework, convergence and being of limited fluctuation are
equivalent.

This is not true in the nonstandard framework.45 Here, a sequence
x1, . . . , xν is said to be of limited fluctuation if for all non-infinitesimal
positive ε and all unlimited k, it does not admit k ε-fluctuations: there
is no unlimited number of noticeable fluctuations. Any convergent se-
quence is also of limited fluctuation.46 The converse is false. Consider

43 An argument similar to the following one can be made by assuming that Pn = Pν

for all unlimited n ≤ ν.
44 That is, converges to some value x in the standard sense of convergence.
45 See Nelson, Radically Elementary Probability Theory, op. cit., chapter 6.
46 Recall that convergence of x1, . . . , xν implies that for all positive non-infinitesimal

ε there is a limited m with |xn − x| ≤ ε for all n ≥ m. Thus the sequence can fluctuate
by more than ε only before m is reached.
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the sequence xn = 0 for n = 1, . . . , ν − 1 and xν = 1. This sequence is
of limited fluctuation but clearly fails to converge (not all unlimited
elements of the sequence are infinitesimally close to the same num-
ber). Unlike a convergent sequence, a sequence that is of limited fluc-
tuation can exhibit momentous shifts in the unlimited domain. Thus,
in the nonstandard setting convergence and limited fluctuation come
apart.

The next result, proved in appendix c, shows that the sequence
of conditional expectations of a random variable is always of limited
fluctuation.

Theorem 3. E1X , . . . ,EνX is of limited fluctuation a.e.

The approach via limited fluctuations retains the flavor of the stan-
dard proof of the martingale convergence theorem, which relies on
the idea that a martingale does not exhibit infinitely many upcross-
ings.47

Altogether, then, the following picture emerges. The best estimates
of a random variable are almost always of limited fluctuation. Con-
vergence to the truth is less permissive. If the true value of a random
variable goes substantially beyond what is given by limited evidence,
best estimates may fail to converge to the truth. In the next section I
illustrate this in Cantor space.

v conver ence to the truth reconsi ere

Consider the nonstandard counterpart of Cantor space and define
a sequence of random variables X1, . . . ,Xν that keep track of binary
outcomes: Xn(ω) = 1 if the nth element of the sequence ω is a one and
Xn(ω) = 0 if it is a zero. Let Pn be the algebra generated by the first n
random variables X1, . . . ,Xn. Let P be the radically elementary analog
of fair coin flips: X1, . . . ,Xν are independent and Pm{Xn = 1} = 1

2 for
all m < n. Consider events of the form An = {Xn = 1} (the nth digit
of the coin is a one). For each limited n, the sequence of conditional
probabilities PmAn,m = 1, . . . , ν converges to the indicator of A, χAn

a.e. But this is not true if n is unlimited. For then, PmAn = 1
2 for

m < n and PmAn = χAn a.e. for m ≥ n; thus P1An, . . . ,PνAn does
not converge to χAn a.e. (In fact, the sequence fails to converge to the
truth with probability one.) Nevertheless, the sequence of conditional
probabilities clearly is of limited fluctuation a.e.

Things are similar in the more complex epistemic scenarios Belot
has in mind. An atom of Pn is a maximal subset of Ω on which all

47 See Williams, Probability with Martingales, op. cit., for a rigorous development of this
idea.
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random variables in Pn are constant. Think of atoms as the most fine-
grained pieces of evidence provided by Pn. A subset H of Ω is dense if
for all limited n and all atoms A of Pn we have H ∩A �= ∅. We suppose,
in addition, that the complement of H is also dense, so that H and its
complement are indistinguishable by limited evidence.

To fix ideas, let H be the dense hypotheses that the “last” element
of the binary sequence is one: H = {ω : Xν(ω) = 1}. Then the com-
plement of H is the dense hypothesis that the “last” element is zero.
There is no real loss in focusing on H ; other examples of dense hy-
potheses with dense complements can be treated in a similar way.

How do the results of the previous section play into the charge of
immodesty? According to Theorem 3, the sequence of conditional
probabilities P1H , . . . ,PνH is almost surely of limited fluctuation—
for H as well as for any other dense hypothesis—which means that
a Bayesian does not change her mind noticeably an unlimited num-
ber of times. Yet this does not mean that the truth of H can be ap-
proximated by conditional probabilities: the limited fluctuation of
P1H , . . . ,PνH is compatible with the presence of unlimited evidence.
The unlimited piece of evidence could be observing the outcome
of the “last” element, which is clearly beyond the reach of a finite
agent. The radically elementary framework, as we have seen, is broad
enough to allow for this. An agent’s beliefs can be such that, with
(non-infinitesimal) positive probability, P1H , . . . ,PνH fails to con-
verge to the truth in the presence of unlimited evidence (as asserted
in Theorem 1). Such an agent believes that due to her limited obser-
vational capacities she might never approximate the truth about H .

As a result, nonstandard probability theory can capture modesty
about convergence to the truth. In the most extreme case, an agent
may even believe that P1H , . . . ,PνH fails to converge to χH almost
surely. But the theory does not mandate modesty. If the sequence
P1H , . . . ,PνH does converge to χH almost surely, the agent believes
that limited evidence is basically sufficient to approximate the truth
about H . Whether or not this is plausible depends on the epistemic
situation. Sometimes limited information might exhaust what there
is to know about a dense hypothesis. It is perhaps not so easy to see
this in the example of the “last” element of a binary sequence. But
consider the hypothesis that the limiting relative frequency of ones is
1
2 . Both the hypothesis and its negation are dense, and it is plausible
that their truth value can be approximated by limited evidence about
relative frequencies.48

48 Nelson, Radically Elementary Probability Theory, op. cit., chapter 16, studies conver-
gence and limited fluctuation in the context of relative frequencies.
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I submit that convergence to the truth is treated with appropriate
modesty within the nonstandard framework. One expects to converge
to the truth whenever one thinks that increasing limited evidence is
sufficient for approximating the truth. I also wish to point out that
this does not contradict the standard theorem of convergence to the
truth. The nonstandard theory used here operates within a conserva-
tive extension of classical probability theory. The classical martingale
convergence theorem is still correct. Rather than refuting it, the re-
sults in the foregoing section are refinements of their standard coun-
terpart.49 The nonstandard model provides a fine-grained conceptual
framework that allows us to articulate more precisely when conver-
gence to the truth is expected.

Finally, I wish to suggest that these considerations steer us toward a
Bayesian reply to Belot’s criticism. The Bayesian advocate may main-
tain that in the standard setting it is unclear what exactly the worry
is since it is difficult to distinguish infinite hypotheses that can be ap-
proximated by finite evidence from those that cannot. She can con-
tinue the defense by outlining a plausible way to state the worry in a
nonstandard conservative extension of the classical theory and end by
pointing out that, in this setting, the worry about immodesty dissolves.

vi conclusion

The nonstandard approach gives us an account of when a Bayesian
agent considers an infinite hypothesis to be accessible by a finite in-
quiry. It is then, and only then, that the agent believes in a refined
variant of convergence to the truth. Since the refined variant is fully
compatible with its standard counterpart, it provides one way to spell
out the finite content of convergence to the truth, thereby revealing
a hidden nugget of modesty in Bayesian epistemology.

appen i a the basic frame or

I will use the following notation. If x and y are two numbers, they are
infinitesimally close, denoted x � y, if their difference x−y is infinites-
imal. Thus, x may be less than y, x < y, but only by an infinitesimal
amount. If x < y but it is not the case that x � y, then x is significantly
smaller than y, which we write as x � y.

Let RΩ be the set of all random variables on (Ω,P).50 An algebra A

is a subset of RΩ that is closed under addition and multiplication (for

49 In fact, one could follow Robinson’s strategy of proving standard results via non-
standard proofs by taking either Theorem 1 or Theorem 3 as a starting point. See the
appendix of Nelson, Radically Elementary Probability Theory, op. cit., for more on this.

50 This is the set of all functions from Ω to the set of standard and nonstandard reals.
The functions can take on infinitesimal and unlimited values.
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every X ,Y ∈ A, X + Y ∈ A and XY ∈ A). An atom A of A is a maximal
subset of Ω such that every element of A is constant on A. The atoms
of A form a partition of Ω. Conversely, every partition gives rise to
the algebra of random variables that are constant on its atoms. The
conditional expectation of a random variable X given A is the random
variable defined by

EAX (ω) =
1

PAω

∑

η∈Aω

X (η)P(η),

where Aω is the atom of A that contains ω. Clearly, EAX is constant
on the atoms of A, and thus is itself an element of A. If the random
variable in question is the indicator of some event B, then conditional
expectation reduces to conditional probability:

PAB(ω) =
P(B ∩ Aω)

PAω
.

Since PAω > 0 for each ω, both EAX and PAB exist and are unique.
In Nelson’s probability theory, external statements involve the term

‘standard’, as in ‘n is a standard natural number’ or ‘ν is a nonstan-
dard natural number’. In contrast, internal statements can be identi-
fied with the statements of ordinary mathematics since they do not
refer to the term ‘standard’. Now, in Nelson’s framework sets based
on external statements are not axiomatized: only internal statements
are allowed for defining sets. For example, the theory does not assert
the existence of sets like the set of all standard natural numbers or
the set of all nonstandard numbers, while it does assert the existence
of sets like the set of all natural numbers less than some (standard or
nonstandard) μ.51

Many interesting properties of a nonstandard probability space in-
volve external statements (for example, a sequence of random vari-
ables being infinitesimally close to a given random variable at all
nonstandard elements of the sequence). Since there is no guaran-
tee in Nelson’s theory that the corresponding external sets exist, they
cannot be assigned probabilities. Nelson uses approximations to get
around this problem. The following definition of a statement being
true a.e., and the ensuing definition of almost sure convergence, are
two instances of that idea.52

51 This is known as the principle of illegal set formation; see Nelson, Radically Ele-
mentary Probability Theory, op. cit. It corresponds to the well-known distinction between
internal and external sets in nonstandard analysis.

52 Nelson, Radically Elementary Probability Theory, op. cit., chapter 7.
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Definition 4. The (internal or external) statement A(ω) holds a.e. if for
every ε � 0 there is an event N such that PN ≤ ε and A(ω) holds for all
ω ∈ N c .

If A(ω) is an internal statement, then A(ω) holds a.e. is equivalent to
P{ω : A(ω)} � 1. External statements are evaluated with approxima-
tions by sets that are part of the probability space.

It follows from the definition that if A(ω) does not hold a.e., then
P{ω : not A(ω)} � 0 in case A(ω) is internal. If A(ω) is external and
A(ω) does not hold a.e., then there is an ε � 0 such that for all events
N , PN > ε whenever A(ω) is true for all ω ∈ N c . Thus, every set that
contains all ω for which A(ω) is false has a non-infinitesimal positive
probability. In both cases we may say that A(ω) holds with strictly (that
is, non-infinitesimal) positive probability.

The nonstandard analog of L1 spaces is of particular importance
for proving our results. The L1 norm ‖X‖ of a random variable X is
given by the expectation of the absolute value of X , ‖X‖1 = E|X |. Let
the truncation of a random variable X be given by X n = X χ{|X |≤n}.
We say a random variable X is L1 if ‖X − Xμ‖1 � 0 for all unlimited
μ. This is equivalent to saying that the sum used for calculating E|X |
converges.53 Let us note some basic facts for future reference.54

Lemma 5.

(i) A random variable X is L1 if and only if E|X | � ∞ and for all M
with PM � 0 we have E|X |χM � 0.

(ii) If X and Y are L1 and X � Y a.e., then EX � EY .
(iii) Let A be an algebra and X a random variable. If X is L1, then

EAX is L1.

Let T = {1, . . . , ν}, where ν is nonstandard; T can be thought of as
a nonstandard analog of N. A sequence of random variables or a discrete
stochastic process is a function X : T → R

Ω. Such a process will be
denoted by X1, . . . ,Xν .

We are interested in whether a sequence X1, . . . ,Xν converges al-
most surely to a random variable X . Based on Definition 4 the follow-
ing can be proved.55

Lemma 6. The sequence X1, . . . ,Xν converges to X a.e. if and only if

max
m≤n≤ν

|Xn − X | � 0 a.e.

for all unlimited m ≤ ν.

53 Nelson, Radically Elementary Probability Theory, op. cit., chapter 8.
54 Statement (i) is the radically elementary Radon-Nikodým theorem, and (ii) is the

radically elementary Lebesgue theorem. Together with (iii) they are proved in Nelson,
Radically Elementary Probability Theory, op. cit., pp. 30–31.

55 Nelson, Radically Elementary Probability Theory, op. cit., Theorem 7.2.
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Let P1, . . . ,Pν be a filtration. The sequence of random variables
X1, . . . ,Xν is a P-process if Xn ∈ Pn for n = 1, . . . , ν. If X1, . . . ,Xν is
a P-process, then X1, . . . ,Xν is called a submartingale if, for all m ≤ ν,
EnXm ≥ Xn whenever n ≤ m; a supermartingale if, for all m ≤ ν,
EnXm ≤ Xn whenever n ≤ m; and a martingale if it is both a sub-
martingale and a supermartingale.

Nelson proved the following result about martingales, which is the
foundation for our results below.56 The theorem is very powerful,
since it connects the probabilistic notion of convergence a.e. to the
analytic notion of convergence in L1:

Definition 7. A sequence X1, . . . ,Xν converges to a random variable X in L1

if ‖Xn − X‖1 � 0 for all unlimited n ≤ ν.

Theorem 8. Let X1, . . . ,Xν be a supermartingale or a submartingale that
converges to X in L1. Then it converges to X a.e. Furthermore, if Xν is
L1, then X1, . . . ,Xν converges to X in L1 if and only if it converges to X
a.e.

appen i b conver ence of con itional e pectations

Let (Ω,P) be a probability space, and let X be a random variable.
Let P1, . . . ,Pν be a filtration. Then the sequence E1X , . . . ,EνX is a
martingale since, for all m ≤ ν, EnEmX = EnX whenever n ≤ m.
In order to converge, the sequence E1X , . . . ,EνX has to become ap-
proximately constant. This implies that X must not be affected by un-
limited information. As mentioned in the main text, this can be made
precise by using the following two concepts.

Definition 9. Let A and B be two algebras with A ⊆ B.

(i) X ∈ B is almost an element of A if EAX � X a.e.
(ii) A and B are almost equal if any X ∈ B is almost an element of A.

The following theorem shows that the foregoing concepts are plau-
sible. It says that random variables that are almost elements of an al-
gebra A are almost constant on the atoms of A. This corresponds to
the fact that all elements of A are constant on the atoms of A.

Theorem 10. Let X be L1, and let A ⊆ B be two algebras of random
variables such that X ∈ B. If X is almost a member of A, then for each
atom A of A there exists a constant c such that X � c a.e. on A.

Proof. Let A be an atom of A. Since EAX is an element of A, it is constant
on every atom of A. Thus there is a constant c such that χAEAX = c on A.
Since X is almost in A, X � EAX a.e. Thus |X−EAX |χA ≤ |X−EAX | � 0
a.e. It follows that χAX � χAEnX a.e., and thus X � c a.e. on A.

56 Nelson, Radically Elementary Probability Theory, op. cit., Theorem 11.3(i).
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The next theorem is our first main result. Recall that a filtration
P1, . . . ,Pν provides no unlimited information about X if X is almost
a member of Pn for every unlimited n ≤ ν. Also recall that P1, . . . ,Pν

provides no unlimited information if P1, . . . ,Pν provides no unlim-
ited information about any random variable in Pν , that is, if, for any
unlimited n ≤ ν, Pν and Pn are almost equal.

Theorem 11. Let X be L1, and let P1, . . . ,Pν be a filtration.

(i) E1X , . . . ,EνX converges to X a.e. if and only if P1, . . . ,Pν pro-
vides no unlimited information about X .

(ii) Suppose P1, . . . ,Pν provides no unlimited information. Then
E1X , . . . ,EνX converges to EνX a.e.

Proof. (i) Suppose E1X , . . . ,EνX converges to X a.e. Then by Lemma 6,
maxm≤n≤ν |EnX − X | � 0 a.e. for all unlimited m ≤ ν. This implies
EnX � X a.e. for all unlimited n ≤ ν. Hence P1, . . . ,Pν provides no
unlimited information about X .

For the other direction, we first establish the following fact (which will
also be used below):

Lemma 12. If X and Y are L1, then |X − Y | is L1.

Proof. By Lemma 5(i) it is enough to show that E|X − Y | is limited and
that for all events M with PM � 0 we have E|X − Y |χM � 0. Note that
since both X and Y are L1

E|X − Y | ≤ E|X |+ E|Y | � ∞,

and so E|X − Y | is limited. If PM � 0, then

E|X − Y |χM ≤ E|X |χM + E|Y |χM � 0,

again because X and Y are L1.

Suppose now that P1, . . . ,Pν provides no unlimited information
about X , that is, EnX � X a.e. for all unlimited n ≤ ν. Then |EnX −X | �
0 a.e. for all unlimited n ≤ ν. Lemma 5(iii) implies that EnX is L1. Thus
|EnX − X | is L1 by Lemma 12. It now follows from Lemma 5(ii) that
E|EnX − X | � E0 = 0. Hence for every unlimited n ≤ ν we have
‖EnX − X‖1 � 0, and so E1X , . . . ,EνX converges to X a.e. by Theo-
rem 8.

(ii) If Pn and Pν are almost equal for every unlimited n ≤ ν,
Pn, . . . ,Pν provides no unlimited information about EνX . In addition,
since X is L1, EνX is L1 by Lemma 5(iii). Therefore, by part (i) of the
theorem, E1X , . . . ,EνX converges to EνX a.e.

The next result is the converse of Theorem 11(ii) referred to in the
main text.



rethin in conver ence to the truth 403

Theorem 13. Suppose E1X , . . . ,EνX converges to EνX for all X ∈ R
Ω.

Then P1, . . . ,Pν provides no unlimited information.

Proof. Let X be a random variable. If E1X , . . . ,EνX converges to EνX
a.e., then EnX � EνX a.e. for all unlimited n ≤ ν by the same argument
as in the proof of Theorem 11(ii). Since X is arbitrary, this implies that
for all Y ∈ Pν , EnY � Y a.e. for all unlimited n ≤ ν. Hence, any
element of Pν is almost an element of Pn for any unlimited n ≤ ν. It
follows that P1, . . . ,Pν provides no unlimited information.

appen i c fluctuations of con itional e pectations

The standard convergence to the truth theorem asserts convergence
to the truth for all L1 random variables. Theorem 11 restricts conver-
gence to random variables that are not affected by unlimited informa-
tion. By relaxing the nonstandard concept of convergence we can get
a theorem which is closer to the classical result.

The relevant concept is that of a process that exhibits limited fluctu-
ations.

Definition 14. (i) A sequence x1, x2, . . . xν admits k ε-fluctuations if
there exist numbers n0 < n1 < · · · < nk such that

|xn0 − xn1 | ≥ ε, |xn1 − xn2 | ≥ ε, . . . , |xnk−1 − xnk | ≥ ε.

(ii) A sequence x1, . . . , xν is said to be of limited fluctuation if for all
ε � 0 and all unlimited k, it does not admit k ε-fluctuations.

As mentioned in the main text, any convergent sequence is of limited
fluctuation but not vice versa.

The proof that conditional expectations are of limited fluctuation
is based on the following result.57

Lemma 15. Let X1, . . . ,Xν be a supermartingale or a submartingale with
‖Xν − X1‖1 � ∞. Then X1, . . . ,Xν is of limited fluctuation a.e. for all
n ≤ ν.

Notice that the lemma only requires ‖Xν−X1‖1 to be limited, which
is weaker than assuming that Xν − X1 is L1 (see Lemma 5(i)).

Theorem 16. Let X be L1. Then E1X , . . . ,EνX is of limited fluctuation
a.e.

Proof. If X is L1, then both E1X and EνX are L1 by Lemma 5(iii). It
follows from Lemma 12 that |EνX −E1X | is L1. Lemma 5(i) now implies
that ‖EνX − E1X‖1 is limited. By Lemma 15, E1X , . . . ,EνX is of limited
fluctuation a.e.
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57 Nelson, Radically Elementary Probability Theory, op. cit., Theorem 12.3.


