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Abstract 
 

This essay describes a generic discrete-event simulation (DES) model of a prison system.  
The model tracks individual entities through a prison “career,”  beginning with admission and 
ending with release from custody.  Career stage transitions are modeled as discrete events that 
occur in real time.  With each career transition (or state-change) the model pauses to update the 
appropriate subpopulation databases.  Entities carry information tags into and through the model.  
The tags can be used to create arbitrary subpopulations for forecasting or analysis.  We 
demonstrate the model by forecasting the population of a large corrections system conditioned 
on two policy interventions. 
 

Introduction 
 
 Correctional population modeling begins with Stollmack’s (1973) attempt to predict the 
size of a jail population from admission and release rates.  Where Pt is the population in year-t 
and where λ and μ are annual admission and release rates, this “mathematical-flow” model can 
be written as the autoregressive equation 
 
  Pt = Pt-1 e

–μ  +  (λ/μ)(1-e–μ)      (1) 
 
This early model assumed that λ and μ are constant and that Pt is homogeneous.  Violations of 
either assumption leads to biased forecasts.  To address the problematic assumptions, Blumstein, 
Cohen, and Miller (1980) disaggregated Pt into subpopulations and allowed λ to vary with the at-
risk population.  Barnett (1987) further generalized the model by linking demographic change to 
the admission rate, λ.  Lattimore and Baker (1997) incorporated feedback loops to account for 
recidivism.  Despite these incremental improvements on (1), the performance of mathematical 
flow models has been disappointing. 
 

A parallel approach, pioneered by Alfred Blumstein and colleagues (Blumstein and 
Larsen, 1969; Blumstein, Belkin and Glass, 1971) used Monte Carlo simulation models to 
project prison populations.  To illustrate, a simulation model popularized by Auerhahn (2008b) 
can be written as the reduced differential equation, 

 
 Pt = Pt-1 + λNt + μPt + γRt      (2) 

                                                           
1 Work on this paper was supported by the California Department of Corrections and Rehabilitation through an 
inter-agency agreement with the University California Regents.  Opinions expressed here represent those of the 
authors and do not necessarily represent the position of the California Department of Corrections and Rehabilitation. 
 



 Electronic copy available at: http://ssrn.com/abstract=2622783 

Discrete-Event Simulation Models of a Prison  - Page 2 

 
Here Nt is the general population at-risk, Rt is the population under parole supervision, and γ is a 
recidivism rate.  Except that (2) distinguishes between new admissions and readmissions, the 
structure of this model is similar to Stollmack’s original model (1).  Since (2) can accommodate 
more variables and equations, it more accurately represents a high-dimensional, complex prison 
system.  Model (2) has been used successfully to evaluate the impacts of “three strikes” laws 
(Auerhahn, 2008a), drug treatment programs (Auerhahn, 2004), probation reforms (Auerhahn, 
2007), and sentencing reforms (Auerhahn, 2008b). 
 

Though performing adequately for most purposes, the models used to simulate prison 
systems have their own shortcomings.  Beginning with the earliest attempts (Blumstein and 
Larson, 1969; Blumstein, Belkin and Glass, 1971; Belkin, Blumstein, Glass and Lettre, 1972) 
and into the present (Auerhahn, 2002; 2004; 2007; 2008a; 2008b), virtually all of these models 
rely on the system dynamics simulation (SDS) models popularized by Forrester (1961). 

 
In simple terms, change in an SDS model accrues gradually as individuals flow into and 

out of a set of stocks.2  Since an SDS model uses real-time differential equations to represent the 
accrual process, the prisoners are treated as interchangeable units-of-analysis.  This assumption 
can be relaxed to some extent by partitioning the population into component subpopulations but 
there is no simple way to track the movements of unique prisoners through an SDS model. 

 
A more fundamental shortcoming of the SDS approach follows from the nature of the 

prison population.  Although many dynamic phenomena can be adequately modeled as 
continuous-time flows into and out of a set of stocks, change in a prison population accrues in 
discrete steps as prisoners move through a sequence of discrete “career” stages. 

 
Table 1 – Career Transitions as Discrete Events 

 
 T1 T2 T3 T4 T5 

 
           
Individual 1 S1  S2 S3   S4    

Individual 2 S1    S2   S3    S4 
Individual 3 S1 S2  S3     S4  

Individual 4 S1  S2  S3   S4   

Individual 5 S1   S2 S3 S4     
   

The five hypothetical career paths plotted in Table 1 illustrate a simple career process.  
Each career path consists of four stages, S1, S2, S3 and S4.  Due to individual differences such as 
hard work and good fortune, careers progress at different rates.  The simple model could be made 
more realistic by allowing backward moves, by allowing individuals to compete for 
advancement, and so forth.  But a simple model is sufficient for demonstrating the basic DES 
                                                           

2 To illustrate these terms, Nt, Pt, and Rt in (2) are stocks, λ, μ and γ, are flows.  SDS 
models are known colloquially as “stock-and-flow” models.   
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modeling approach. 
 

Although time runs continuously in the DES model, individual career moves are discrete 
events.  Each row of Table 1 describes an individual career.  At T1, for example, all five 
individuals are in the first stage of their careers.  By T2, the first, third and fourth individuals 
have moved to the second stage.  and can be applied to institutional scales ranging from one 
small jail to a large, complex correctional system.  Individual actors can be distinguished by age, 
sex, prior history, sentence type or any other policy-relevant variable.  Other than standard DES 
assumptions (Schriber and Brunner, 1997), the model’s only requirement is that its prisoner-
entities follow a career path. 
 

The third and fourth individuals move quickly and have completed their careers before 
T4,  The second individual moves slowly, in contrast.  The columns of Table 1 describe the 
system-state at any point in time.  Given five individuals and four career stages, there are twenty 
state-changes in Table 1.  Since the system runs in continuous time, each time-point is a 
“column” with no area.  The probability of a state-change at any time-point then  is zero. 
 

Because a DES model of the system depicted in Table 1 requires only twenty evaluations, 
it consumes fewer resources than an SDS model.  Computational efficiency was an crucial 
consideration when computing resources were rare but, now, has become a minor consideration.  
In the following section, we describe a generic DES model of a correctional system.  The model 
is generic in the sense proposed by Harper (2002) and can be adapted to scales ranging from one 
jail to a several dozen institutions.  Our decision to model the system as a discrete-event process 
-- and hence, to use a DES model -- reflects the close fit of this approach to the institutional 
career process. 
 

Overview of the Generic DES Model 
 

Figure 1 diagrams the Generic DES Model as a flow chart at the start of T1, the time 
interval when the simulation experiment begins.  Barrels in Figure 1 represent four databases, 
Admission, Reception, Prison, and Parole.  Rectangles represent processors that manage the 
databases.  When a prisoner exits Reception and enters Prison, for example, the Reception 
processor copies the prisoner’s record from to the Prison database and erases the record from the 
Reception database.  Because the prisoner’s record includes the time and circumstances of past 
career moves, records grow longer with each move. 

  
In addition to updating databases, the processors use data in prisoner records to keep 

prisoners on their proper career paths and to regulate their rates of progress.  Table 2 lists some 
examples of the variables that might be found in a prisoner’s record.  Path Router variables 
assign prisoners to specific career paths.  The Path Router variable “Probability of Discharge,” 
for example, determines whether a prisoner will exit Reception and enter Prison or, in the case of 
prisoners with short sentences, whether the prisoner will move directly to Discharge.  Temporal 
Trigger variables determine the prisoner’s rate of progress along the career path.  “Waiting Time 
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in Reception,” for example, tells the Reception processor when to send the prisoner to Prison or 
Discharge. 

 Figure 1 – The Generic Prison Model at T1  

   

 

 Table 2 – Example Variables from Prisoners’ Records  

 Path Routers Temporal Triggers Analytic Tags  

 Probability of Death 
Probability of Discharge 
Probability of Parole 
Probability of Revoke/Return 

Month of Admission (T1, …, TN) 
Waiting Time in Reception 
Waiting Time in Prison 
Good Time Credit Rate 
Waiting Time in Parole 

Age at T1 
Gender 
Ethnicity 
County of Admission 
Current Offense 
Prior Offenses 

 

 
 Finally, Analytic Tag variables describe the characteristics of a prisoner.  These variables 
are superfluous to the Model’s logic and operation.  They are not referenced or used during an 
experiment.  They are recorded in all four databases and can be used to sort prisoners into 
arbitrary subpopulations at the end of the experiment.  We illustrate this use of Analytic Tags in 
the applications section below. 
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Design of Simulation Experiments 
  

Prior to the onset of the experiment, at a time-interval designated T0, the Reception, 
Prison and Parole databases are loaded into the Model.  Rows of the Reception and Prison 
databases correspond to prisoners who are housed in reception center or prison beds at T0.  Rows 
of Parole corresponds to released prisoners who are under parole supervision at T0.  The columns 
of the Reception, Prison and Parole databases include the Path Router and Temporal Trigger 
variables required by the Model’s logic as well as any Analytic Tag variables required to analyze 
the experimental results. 
 

Since many Temporal Trigger variables depend on events that are unobserved or unknown 
at T0, their values are imputed from available data.  Variables in the Admission database are 
particularly problematic in that respect.  These variables describe the prisoners who are expected 
to enter the system after the end of T0, all of these values are imputed. 
 

As T1 begins, the Reception processor extracts a prisoner’s record from Admission and 
writes it to the Reception database.  During T1, the Reception, Prison and Parole processors read 
and update their databases.  If a prisoner is scheduled for a career move between T1 and T2, the 
processor extracts the prisoner from its own database and moves the prisoner to the destination 
database.  As T1 ends, all career moves have been recorded.  Before T2 begins, however, the 
Model requires two additional pieces of information. 
 
         Secular trend in admissions.  If the simulation experiment runs for N months, the one-
step ahead forecasts of the monthly populations P1, …, PN are written as 
 
         P1 = P0 + A1 - R1                                                         (3) 

            ::: 
 
         PN = PN-1 + AN - RN 
  
Only P0, the population at T0, is known.  Although the number of prisoners released in each of 
the N months is unknown, R1, …, RN are endogenous, so their values can be predicted accurately 
from the sentence-lengths of prisoners in the Reception and Prison databases at T0.  The number 
of prisoners admitted in each of the N months is wholly exogenous, on the other hand, and must 
be estimated from auxiliary data prior to T1. 
 

A survey of state corrections departments (McCleary and Alexander, 2007) identifies 
three methods for estimating A1, …, AN.  (1) The Delphi method estimates the mean of A1, …, 
AN from the consensus opinion of justice system experts (Day et al., 2013).  (2) The 
demographic trend method estimates A1, …, AN from trends in the at-risk population and, often, 
from crime trends (Olson, 1992; Oregon Department of Administrative Services, 2013).  (3) The 
time series forecasting method uses formal time series models to forecast the values of A1, …, 
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AN.   At least 30 active models use this method and that is the method used in the applications 
section below. 
 

Characteristics of the new admissions.  With A1, …, AN estimated, the experimenter 
must estimate the values of the Path Router, Temporal Trigger, and Analytic Tag variables for the 
newly admitted prisoners.  In principle, these values can be simulated with parameters estimated 
from the records of prisoners in the Reception, Prison and Parole databases at T0.  That approach 
leads to overfitting, however, and more important, is inflexible.. 
 
 A more flexible approach uses synthetic admission cohorts sampled from the population 
of prisoners admitted to the correctional system in the preceding years.  The synthetic admission 
cohort approach assume that the characteristics of newly admitted prisoners change slowly over 
time.  Our research demonstrates that this assumption is plausible for horizons of 60 months or 
less.  For longer horizons, inverse-time weighted sampling is advised.  When the size of 
synthetic cohorts is more than five percent of the population, sampling with replacement is 
advised.  The current version of the Model used a 36 month horizon with a sampling population 
of 75,000 new admissions. 

 

Applications 
 

In 2007, 36 state corrections agencies and the U.S. Bureau of Prisons used simulation 
models to forecast the size of key subpopulations and to evaluate the impacts of new policy 
interventions (Pew Charitable Trusts, 2007).  The generic DES Model is well suited to both 
applications and, especially, to the second application.  The Model evaluates the exogenous 
impact of a new policy intervention by comparing the population expected under the status quo 
condition to the population expected under the novel condition.  We use two recent California 
policy interventions to demonstrate this application. 

 
The first intervention, known as Assembly Bill 109, or AB 109, was a legislative 

response to a 2011 U.S. Court ruling on prison overcrowding.  Although AB 109 was a complex 
legislative package, its central provisions diverted low-level offenders from state prisons to 
county jails (Schlanger, 2013;  Taylor, 2012).  The second intervention, Proposition 47, was a 
ballot initiative approved by California voters in the 2014 general election.  Proposition 47 
redefined several low-level offenses from felonies, which could result in a state prison sentence, 
to misdemeanors which could not (Males and Buchen, 2014).  The results of Proposition 47 were 
unpredictable.  
 

AB 109.  Although AB 109 affected a large reduction in California’s prison population, 
the effect was not evenly distributed across subpopulations.  One unanticipated consequence of 
AB 109 was a slight rise in the number of “second-strikers” admitted to state prisons.  Since 
sentences for second-strikers served were twice as long as the sentences for other prisoners, a 
modest increases in second-strikers admissions can have a large impact on total population.  If 
the large impact accrues gradually, however, it can go undetected until it reaches crisis 
proportions. 
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By 2013, growth in the second-striker subpopulation threatened to reverse the salutary 

effects of AB 109.  To counteract this trend, in February, 2014, a three-judge panel of the U.S. 
District Court ordered an increase in the good-time credit earning rate for second-strikers.  
Figure 2 shows the projected impact of the order.  In terms of “person-year” savings, the court-
ordered change in good-time credits amounts to a reduction of approximately ten percent in the 
total population. 

 
 Figure 2 – California Male Second-Strikers  
   

 
 

 
 Figure 3 – California Total Prisoners  
   

 
 

The projections plotted in Figure 2 were constructed by first running the Model under the 
status quo good time credit rate of 1.2 and, second, under the court-ordered rate of 1.33.  Like all 
useful experimental results, this one has non-obvious elements.  The court-ordered rate 
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counteracts the unanticipated consequences of AB 109 almost exactly.  Over the three-year 
horizon, the second-striker subpopulation is nearly flat. 

 
Proposition 47.  California voters approved Proposition 47 by a wide margin in the 

November, 2014 general election.  Otherwise known as The Safe Neighborhoods and Schools 
Act, Proposition 47 reclassified low-level drug and property offenses from felonies, which called 
for a state prison sentence, to misdemeanors.  The intended effect on prison populations   

 
Figure 3 shows the impact of Proposition 47 on the total adult population.  While 

Proposition 47 diverts all new admissions for drug possession to county-level custody starting in 
2015, it is unclear at this moment what proportion of qualifying inmates will have their sentences 
commuted or at what rate.  The impact analysis summarized in Figure 3 is based on the expected 
reduction in new admissions due to Proposition 47. 

 

Conclusion 
 
The Generic DES Model described here is a generalization of earlier models by Austin, 

Cuvelier and McVey (1992) and Scalia (2004).  Like our Generic Model. these earlier models 
follow actors as they enter an institution and move along “career” paths, encountering delays, 
competing for resources, and satisfying conditions.  Whereas the earlier models processed 
complete careers from start to finish, however, our Generic Model processes discrete events.  
This DES approach offers many practical advantages, especially scalability and flexibility. 

 
Although the career concept originates with Weber’s analysis of the Prussian 

bureaucracy,3 it is well suited to discrete-stage institutional processes.  A hospital career, for 
example, moves from triage, to admission, to treatment, to discharge.  Although hospitals and 
prisons have similar structures, there are salient differences.  Prisons and hospitals operate on 
different natural time scales, for example.  This difference is reflected in the problems the two 
models address.  Patient-flow models are used to locate bottle-necks (Marshall, Christos and El-
Darzi, 2005), to schedule staff (Zhu et al., 2012), and to allocate beds (Gorunescu, McClean and 
Millard, 2002).  Prisoner-flow models are used for population forecasting (Rich and Barnett, 
1985) and evaluating the effects of policy interventions (Auerhahn, 2008). 
  
 The Generic DES Model’s most appealing application is policy impact analysis. Policy 
impacts are ordinarily evaluated by changing one or more of a model’s internal parameters.  
Since the Generic Model has no internal parameters, policy impacts must be evaluated with two 
different tag values. Once a status quo projection is produced, the experimenter simply changes 
the attribute values for a subpopulation affected by the policy change to reflect their values under 
the new policy. As demonstrated in the above applications, the difference between the status quo 
and policy-change population projections can be interpreted as the impact of the policy-change 
                                                           
3 “The official is set for a 'career' within the hierarchical order of the public service. He moves 
from the lower, less important, and lower paid, to the higher positions.” (Gerth and Mills, 1948, 
p. 203).   
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on the projected subpopulation. This type of analysis would serve a multitude of uses for 
corrections department planning and policy evaluation. 
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