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Path integration—the constant updating of position and orientation in an environment—is an important
component of spatial navigation, however, its mechanisms are poorly understood. The aims of this study
are (a) to test the encoding-error model of path integration, which focuses solely on encoding as a
potential source of error, and (b) to develop a model of path integration that best predicts path integration
errors. We tested the encoding-error model by independently measuring participants’ encoding errors in
distance and angle reproduction tasks, and then using those reproduction errors to predict individual
participants’ errors in a triangle completion task. We sampled the distribution of encoding errors using
Monte Carlo methods to predict the homebound path, and then compared the predictions to observed
triangle completion behavior. The correlation between predicted errors and actual errors in the triangle
completion task was extremely weak, whereas an alternative model using execution error alone was
sufficient to describe the observed errors. A model incorporating both encoding and execution errors best
described the triangle completion errors. These results suggest that errors in executing the response may
contribute more to overall errors in path integration than do encoding errors, challenging the assumption
that errors reflect encoding alone. Errors in triangle completion might not arise from failing to know
where you are, but from an inability to get back home.

Public Significance Statement
This study challenges the long-standing assumption that homing errors in path integration stem from
encoding the outbound path. Instead, this study demonstrates that the largest source of error is
carrying out the homebound trajectory. These findings will help us understand more about the
mechanisms underlying navigational systems.
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To navigate successfully through an environment, an animal
needs to sense its own position and orientation with respect to
places in that environment. Path integration is the continuous
updating of position and orientation by integrating changes in
position, velocity, and acceleration based on idiothetic and visual
motion information (H. Mittelstaedt & Mittelstaedt, 1982; M.-L.

Mittelstaedt & Mittelstaedt, 1980). Some researchers have pro-
posed that path integration is the basis for building up spatial
knowledge of the environment, such as a metric cognitive map
(Gallistel, 1990; McNaughton, Battaglia, Jensen, Moser, & Moser,
2006; Wang, 2016) or a labeled cognitive graph (Chrastil &
Warren, 2014b; Warren, 2019; Warren, Rothman, Schnapp, &
Ericson, 2017), by registering the distances and angles between
places and landmarks. Little is known, however, about just how
accurate and stable human path integration is, and whether it could
provide a basis for deriving such spatial knowledge. Few satisfac-
tory models have been proposed that account for the systematic
errors seen in human path integration. The goal of this study is to
test the contributions of potential sources of systematic error in
human path integration in several alternative models.

Some animals, such as desert ants and nocturnal hamsters, have
shown a remarkable ability to return to the nest or home location
by means of path integration, known as homing (Etienne, Saucy, &
Maurer, 1988; M.-L. Mittelstaedt & Mittelstaedt, 1980; Séguinot,
Maurer, & Etienne, 1993; Wehner & Wehner, 1986; Wittlinger,
Wehner, & Wolf, 2006). These animals may have developed
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accurate path integration because they live in environments with-
out stable visible landmarks. Humans, on the contrary, are highly
visual animals, and appear to rely on landmarks and other external
cues for guidance, known as landmark-based navigation. Recent
evidence suggests that while humans have coarse path integration
abilities, visual landmarks dominate shortcut and homing behavior
(Foo, Duchon, Warren, & Tarr, 2007; Foo, Warren, Duchon, &
Tarr, 2005; Zhao & Warren, 2015b). When landmarks are notice-
ably unreliable, however, people fall back on a strategy of path
integration, although the latter does not appear to be an automatic
“backup” system running in the background (Cheng, Shettleworth,
Huttenlocher, & Rieser, 2007; Zhao & Warren, 2015a). Thus,
humans must have some capacity to perform path integration.

The most common method for investigating human path inte-
gration is a homing task known as triangle completion (Fujita,
Loomis, Klatzky, & Golledge, 1990; Kearns, Warren, Duchon, &
Tarr, 2002; Klatzky, Loomis, Beall, Chance, & Golledge, 1998;
Klatzky et al., 1990; Loomis et al., 1993; Péruch, May, & Wart-
enberg, 1997; Tcheang, Bülthoff, & Burgess, 2011). In this task,
an experimenter guides a research participant down one leg of a
triangle, then takes them through a turn, and finally guides them
down a second leg of the triangle. At that point, the participant
must determine both the distance and direction back to the starting
point (“home”) in order to complete the third leg of the triangle.
Triangle completion studies have found systematic errors in path
integration performance, such as treating outbound legs as if they
are equal sides of an isosceles triangle, compressing responses by
overturning small angles and underturning large angles, and over-
shooting short distances and undershooting long distances.

To help explain these systematic errors, Fujita, Klatzky, Loo-
mis, and Golledge (1993; Loomis et al., 1993) broke down such
path-completion tasks into five main components. The first three
elements—sensing, creating a trace of the route, and forming a
survey representation of the outbound path segments—make up
the broader process of “encoding” the outbound path traveled by
the animal. The fourth component is integrating the outbound
segments to determine the appropriate return trajectory back to the
starting location. In other words, once the animal has experienced
the outbound path, the integration step computes the necessary
trajectory for a novel path to a particular goal, namely, the start
position. In the fifth and final component, the animal must execute
that homebound trajectory. It is possible for systematic errors to
accumulate during any of these processes.

The Encoding-Error Model of Path Integration

Fujita et al. (1993) proposed an encoding-error model that
accounts for the systematic errors observed in path integration.
Specifically, they posited that the major component of systematic
error stems from encoding the outbound path. This model further
theorizes that integrating the outbound segments to form the home-
bound trajectory—and executing that trajectory—play no role in
overall path integration error. Thus, their model assumes that once
the path integration system encodes the values of the outbound
path it produces no other systematic errors.

The encoding-error model has four underlying assumptions: (a)
the internal representation of the path satisfies the axioms of
Euclidean geometry, (b) distances are encoded by just one func-
tion, so that equal distances are encoded the same way, (c) angles

are also encoded by one function, and (d) there is no systematic
error in either the integration of path segments or execution of the
homeward trajectory (Fujita et al., 1993). Fujita et al. estimated the
linear encoding functions in distance and angle reproduction tasks,
then used those general functions to predict average path integra-
tion errors.

Although the initial test of the encoding-error model had some
success, the assumption that there is no integration or execution
error has proven problematic. Some studies have found little error
in execution of a computed trajectory (Jürgens, Nasios, & Becker,
2003; Riecke, Van Veen, & Bülthoff, 2002), but others have
demonstrated significant bias in production of simple tasks (Bak-
ker, Werkhoven, & Passenier, 1999, 2001; Chrastil & Warren,
2017; Israël, Sievering, & Koenig, 1995; Jetzschke, Ernst, Mosca-
telli, & Boeddeker, 2016; Klatzky et al., 1990), in violation of
Assumption d. For example, Bakker et al. (1999, 2001) demon-
strated that production errors for verbally specified turns of 90°,
180°, or 270° ranged from approximately 5°–45° in conditions
with visual, vestibular, and proprioceptive information, and from
approximately 20°–120° in a purely visual task. Participants were
verbally instructed which angle they should turn, then used a
rotating turntable to turn through the specified angle. This task
likely taps execution errors since these turn angles are orthogonal
to each other and constitute body axes in an egocentric (viewer-
centered) reference frame. However, even tasks that on the surface
appear to measure pure execution error, such as turning 90°, might
reflect some combination of encoding error and execution error,
with accurate performance if the two elements are calibrated to
compensate each other.

More complex path integration tasks have also cast doubt on the
idea of minimal execution error. For example, Wan, Wang, and
Crowell (2013) found that path integration errors were related to
the length of the correct homebound trajectory, indicating that
execution of that trajectory could contribute to total path integra-
tion errors. Using similar triangles, Harootonian, Wilson, Hejt-
mánek, Ziskin, and Ekstrom (2020) found that participants tended
to undershoot homebound distances as the triangles got bigger, but
there was no change in the turn angle—which would be the same
regardless of size. This result suggests that people could encode
the triangles correctly, since the turn angle did not vary, but they
had difficulty executing different homebound path lengths. Avra-
amides, Klatzky, Loomis, and Golledge (2004) found that verbal
and pointing responses lead to different patterns of error during
imagined spatial updating, suggesting that response mode is an
important factor in path integration. Finally, Chen, He, Kelly,
Fiete, and McNamara (2015) showed that homebound paths are
affected by environmental rescaling, indicating that these trajec-
tories are not simply an executed motor plan, but rather depend on
online information to create the homebound path. Together, these
findings all point to a potential contribution of execution error
during homing.

The assumption of a constant linear encoding function that fits
all contexts (Assumptions b and c) has also been called into
question. Context-free encoding implies that the same encoding
function should apply when all of the leg lengths are short as when
they are all relatively long. In violation of this assumption,
Klatzky, Beall, Loomis, Golledge, and Philbeck (1999) found that
a general linear encoding function was not sufficient for all con-
texts. Distance reproduction tasks generally demonstrate a com-
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pressed distance function, such that small distances are overesti-
mated and large distances are underestimated (Harris, Jenkin, &
Zikovitz, 2000; Israël et al., 2004; Lappe, Jenkin, & Harris, 2007;
May & Klatzky, 2000; M.-L. Mittelstaedt & Mittelstaedt, 2001;
Redlick, Jenkin, & Harris, 2001; Schwartz, 1999; Sun, Campos,
Young, Chan, & Ellard, 2004). This regression to the mean in
these tasks is dependent on the contextual range of distances used
(Petzschner & Glasauer, 2011). Other researchers have also found
that distance reproduction varies depending on the gait type and
speed of the outbound and response paths (Abdolvahab, Carello,
Pinto, Turvey, & Frank, 2015; Chrastil & Warren, 2014a; M.-L.
Mittelstaedt & Mittelstaedt, 2001; Turvey et al., 2009). Angle
reproduction tasks have similarly shown underestimations of large
angles and overestimation of small angles depending on the range
(Becker, Jürgens, & Boss, 2000; Israël, Bronstein, Kanayama,
Faldon, & Gresty, 1996; Ivanenko, Grasso, Israël, & Berthoz,
1997; Jürgens et al., 2003; Klatzky, Loomis, & Golledge, 1997;
Marlinsky, 1999; Siegler, 2000; Siegler, Viaud-Delmon, Israël, &
Berthoz, 2000; Vidal & Bülthoff, 2010). In addition, angle repro-
duction is influenced by memory and the reference frame used
during the task (Arthur, Philbeck, Kleene, & Chichka, 2012),
further suggesting that the encoding function is not context free.

Beyond possible violations of the model’s assumptions, direct
tests of the encoding-error model have been conducted, with mixed
results. Péruch et al. (1997) found that the encoding-error model
accounted for 89% of the variance in distance encoding and 93%
of the variance in angle encoding, supporting the encoding-error
account of path integration. May and Klatzky (2000) also fit their
data to the encoding-error model with a high correlation between
expected and observed errors. Corollary assumptions that emerge
from the model—that variability in each trajectory does not affect
the others, no alignment of the paths into a common reference
frame—have also been supported (Klatzky et al., 1999). On the
contrary, Riecke et al. (2002) point out that participants in the
Péruch et al. (1997) experiment undershot simple 180° turns by
16%, in violation of Assumption d. Riecke et al.’s (2002) appli-
cation of the encoding-error model yielded results that violated
axioms of trigonometry (Assumption a), such as negative values
for encoded distances and angles. Furthermore, although partici-
pants in that study indicated they knew that both outbound legs of
the triangle were equal, five of the 20 participants had mean final
turns that could never complete any isosceles triangle, in violation
of either Assumption a or Assumption d. In addition, when applied
to outbound paths of more than two legs, the authors of the
encoding-error model themselves (Fujita et al., 1993) found that
this model was not sufficient to explain the systematic errors.

Finally, the use of reproduction tasks to generate the encoding
functions in path integration is also problematic. Reproduction
tasks might confound encoding and execution errors: it is not
possible to determine whether an undershoot in distance reproduc-
tion stems from underencoding the distance with accurate execu-
tion, accurate encoding with errors in distance execution, or some
combination of the two. We previously found that magnitude of
the response angle, not the magnitude of the encoded angle,
predicted errors (Chrastil & Warren, 2017). This finding indicates
that execution error—not encoding error—could make the largest
contribution to systematic path integration errors. We also dem-
onstrated that both encoding and execution errors contribute to
total error in a distance reproduction task, and we provided a

quantitative estimate of both types of errors (Chrastil & Warren,
2014a). Participants tended to be more accurate and less variable
when the outbound and response modes matched (e.g., walking on
both the outbound and response paths vs. walking out and then
throwing a beanbag the same distance). These results suggest that
the most accurate reproduction tasks are based on matching idio-
thetic information, rather than some extrinsic distance metric.
Hence, reproduction tasks may be highly calibrated for accurate
reproduction, so they might not reveal the true encoding function.
Indeed, it is possible that encoding during triangle completion is
fundamentally different from encoding during distance reproduc-
tion; in a reproduction task, the encoded information is matched
during the response, whereas in triangle completion the encoded
information is integrated together to generate a completely novel
path.

In sum, the encoding-error model has received support for some
of its assumptions and direct tests have found that the model
accounts for a large portion of the variance. On the other hand,
several of its assumptions do not hold up to scrutiny. Both the
assumption of no execution error and the assumption of a consis-
tent encoding function have been called into question. Even the
assumption of Euclidean geometry may not hold in general (e.g.,
Warren et al., 2017). We will now consider other models of path
integration.

Other Path Integration Models

Klatzky et al. (1999) point out that the encoding-error model is
a configural model, in which the entire outbound journey is stored
in memory, and the entire configuration is used when the animal
wishes to return home. In contrast, other models of path integration
(Fujita et al., 1990; Merkle, Rost, & Alt, 2006; Müller & Wehner,
1988) are moment-by-moment homing vector models, in which the
animal continuously updates a vector back to its home location.
Homing vector models are history free, such that the animal could
not return to any other location on the outbound path. Philbeck,
Klatzky, Behrmann, Loomis, and Goodridge (2001) provide sup-
port for a homing vector model of path integration by demonstrat-
ing the importance of the origin for path integration. Participants
received a brief view of the path layout at the start of each trial, and
then walked without vision for the rest of the path. They were
much more accurate at returning to the origin than to a rotationally
equivalent position they had not previously visited. In a human
neuroimaging study, several brain regions demonstrated increasing
activation corresponding to Euclidean distance from the start lo-
cation during movement in a circular trajectory, consistent with a
homing vector model of path integration (Chrastil, Sherrill, Has-
selmo, & Stern, 2015). Other recent evidence indicates that a
homing vector could have separate position and heading estimates,
with the implication that this homing vector could have an allo-
centric reference frame (Mou & Zhang, 2014; Zhang & Mou,
2017).

Evidence against a homing vector model of human path
integration comes from findings that error and time to initiate
the homeward trajectory both increase with the increasing com-
plexity of the outbound path (Klatzky et al., 1990; Loomis et
al., 1993; Wan et al., 2013) and with changes in the configu-
ration (May & Klatzky, 2000). A homing vector model should
not be affected by increased complexity of the outbound path
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because only the vector back to the start location is stored in
memory, whereas a configural model would be so affected. In
contrast, Wiener and Mallot (2006) found no effect of path
complexity on errors when the length of the outbound path was
controlled. Similarly, Yamamoto, Meléndez, and Menzies
(2014) found that errors during blindfolded walking path inte-
gration were related to the outbound path length and turns, not
to additional complexity in the paths. To potentially explain
these conflicting results, recent research has demonstrated that
humans are capable of both homing vector and configural
strategies (He & McNamara, 2018; Wiener, Berthoz, & Wol-
bers, 2011).

Other models of path integration have focused on the inte-
gration component using different reference frames and coor-
dinate systems (Benhamou, Sauve, & Bovet, 1990; Gallistel,
1990; H. Mittelstaedt & Mittelstaedt, 1982; Merkle et al., 2006;
Müller & Wehner, 1988; Wehner & Wehner, 1986; see Ben-
hamou & Séguinot, 1995; Maurer & Séguinot, 1995; Merkle et
al., 2006 for reviews of path integration models). Many of these
models have developed accurate and normative accounts of
integration (e.g., Gallistel, 1990; Jander, 1957 referenced in
Benhamou & Séguinot, 1995; H. Mittelstaedt & Mittelstaedt,
1982) as a tool for determining what information an animal
must have in principle and how it must use that information,
rather than explaining systematic errors (Maurer & Séguinot,
1995). These models are primarily concerned with describing
the mathematical relationship between the encoded outbound
path and the required response path back to the home location.
A recent model of path integration in humans (Harootonian et
al., 2020) tested a configural model that used vector addition for
the integration process. This model operates under the assump-
tion that people over- or underweight legs of the triangle due to
uneven integration over time. The model fit triangle completion
data better than the encoding-error model, but still focuses
primarily on the encoding component.

More descriptive models have incorporated errors by introduc-
ing random noise (Benhamou et al., 1990) or a correction factor
based on empirical data (Müller & Wehner, 1988). Other models
have attempted to find ways to incorporate some of the systematic
errors seen in distance reproduction (Merkle et al., 2006; Sommer
& Wehner, 2004). In many ways, these models of systematic
underestimations resemble the encoding-error model. For exam-
ple, the systematic errors produced in the Benhamou model (Ben-
hamou et al., 1990) stem not from the integration or execution of
the homebound trajectory, but from errors in the estimations of the
outbound distances and angles. Although Benhamou et al. (1990)
introduced stochastic error and Fujita et al. (1993) used empirically
derived error, they both assumed that once the initial error is
introduced during encoding, no further error accrues during inte-
gration or execution of the homeward trajectory. However, a
“leaky integrator” model, whereby the animal gradually “forgets”
sections of the distance or angle traveled (Lappe & Frenz, 2009;
Lappe et al., 2007), incorporates leakage during the execution
phase of a distance task as well as encoding. In this model, the
leaky integrator counts up during encoding and counts down
during execution, which could provide a route to understanding
how encoding and execution work together. We similarly aimed to
incorporate error in multiple aspects of path integration in the
present study.

Experimental Aims and Overview

The aims of the present study are to (a) directly test the
encoding-error model of path integration, and (b) to compare this
model with alternatives that incorporate other types of error. While
particular aspects of the encoding-error model have been tested
previously, no study has directly tested the basic approach. The
present study first uses distance and angle reproduction tasks to
predict encoding errors in path integration, as in Fujita et al.
(1993). Linearly combining these errors yields a response region in
which errors are expected to lie if encoding is the only source of
systematic error. Errors that lie outside of this region can then be
attributed to integration or execution errors.

For example, a person might encode Legs X and Y and the
interior turn angle � (Figure 1A) as X=, Y=, and �=, respectively
(Figure 1B). The accurate return path for the encoded triangle is
depicted in Figure 1B by the turn � and Leg Z. The encoding-error
model predicts that the navigator turns through the angle � and
walks the distance of Leg Z on the actual triangle (Figure 1A),
without any integration or execution error. Note that � and Leg Z
are the same magnitudes in both figures, indicating the same
execution. Thus, error-prone encoding of the outbound path fol-
lowed by accurate integration and execution of the return path
yields systematic and predictable errors (ellipse in Figure 1A). If
the navigator makes systematic errors other than those predicted
by the encoding-error model, then those errors must be attrib-
uted to the integration or execution components of path inte-
gration.

All experiments in the current study took place in an immersive
virtual environment. In five sessions, participants performed the
triangle completion task, followed by distance and angle repro-
duction tasks to generate empirical data for simulations. In the
simulations, we sampled from the distance and angle reproduction
errors using Monte Carlo methods, and linearly combined them

Figure 1. Predictions of the encoding-error model of path integration.
(A) Actual walked triangle with outbound Legs X and Y and turn angle
�. (B) The encoded triangle, indicated by X=, Y=, and �=. If a navigator
walks the homeward trajectory for the encoded triangle (B) on the
actual triangle (A) without any integration or execution error, as pre-
dicted by the encoding-error model, systematic and predictable errors
should be produced, as indicated by the ellipse in (A). Note that the
magnitude of � and the lengths of Leg Z are the same in both (A) and
(B), indicating the same execution.
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using the law of cosines1 to predict final homing positions. The
final errors were then compared to the actual triangle completion
data. We simulated both average data, as Fujita et al. (1993) did,
but also used each individual person’s encoding functions from
reproduction tasks to model their own triangle completion data.
Finally, we derived alternative models of path integration that
included execution errors.

Note that the triangle completion task was performed in both a
hedge corridor and in an open field scene (Figure 2A). Many
previous triangle completion studies have been conducted in an
open environment or blindfolded, so we also sought to test whether
performance in a hallway setting would generalize to an open
environment.

Method

Participants

Seven females and eight males participated in this study. Most
were undergraduate or graduate students at Brown University, and
all were paid for their time at the rate of $8/hr. One female and one
male withdrew due to symptoms of simulator sickness. Ages of the
remaining 13 participants ranged between 19 and 30, with a mean
age of 25.73. All participants signed forms indicating their in-
formed consent to be a part of the study in fulfillment of the
requirements of the Brown University Institutional Review Board.

Because we conducted several different types of tasks, sample
size was determined based on previous experiments in our lab and
other path integration studies (e.g., Klatzky et al., 1998; Loomis et
al., 1993) that have had large effect sizes with similar sample sizes.
Looking across all the analyses using a post hoc power determi-
nation (Faul, Erdfelder, Lang, & Buchner, 2007) shows that our
experiments had sufficient power to detect effects. For example,
for a repeated-measures analysis of variance (ANOVA) with 13
participants and five measurements (as in the distance reproduc-
tion task), � � .05, a conservative correlation between with-
subject measures of 0.5, the maximum nonsphericity correction of
0.25, and the actual effect size �p

2 � 0.781, the power to detect an
effect is 1.000. All significant and marginal main effects and
interactions from the ANOVAs, as well as all the correlation
analyses, were found to have post hoc power ranging from 0.548
to 1.000, with most of the effects on the higher end of the range.
Any increase in correlation between measures increases the power
substantially, which is a reasonable assumption given our within-
subjects measures of the same types of tasks. For example, our
lowest power of 0.548 becomes 0.906 if the correlation assumption
is increased to 0.8 (while maintaining maximum nonsphericity).
The power for angular measures is more difficult to determine with
the circular statistical analysis, however, they had similar patterns
as the distance measures and so would likely fall into the same
range of power. We note that post hoc power analyses are largely
redundant with the outcomes of the data, therefore, we caution
readers about the relatively small sample size of the study. There
is a possibility that the study is underpowered, however, we note
that most of the within-subjects effects are quite large. The sub-
sequent modeling work uses participants’ data to model their own
outcomes, which mitigates some of the issues with smaller sam-
ples.

Equipment

The experiment took place in the VENLab, a 12-m � 12-m
room using virtual displays. Images were presented to the partic-
ipants using a Cybermind Visette 2 (Kaiserslautern, Germany)
head-mounted display (HMD) with a 60° horizontal � 46.8°
vertical field of view and resolution of 640 � 480 pixels. Partic-
ipant movement was tracked using an InterSense IS900 tracking
system (Billerica, MA) with a 70-ms latency. Participants made
responses with a USB radio mouse. Images were generated on a
graphics PC (Alienware, NVIDIA Quadro FX 3000 graphics card;
Round Rock, TX) using Vizard (WorldViz; Santa Barbara, CA) to
render the images. Cricket sounds were presented to the partici-
pants over headphones to create naturalistic noise to prevent par-
ticipants from receiving information about their location or orien-
tation in the room from auditory cues.

Environment

The environment consisted of hallways made of 3-m high walls
with a hedge texture, an opening for the blue sky above, and a
gravel path below (Figure 2A, top). The corridor was 100 m long,
so as to give no noticeable change in visual angle at end of the hall
when participants walked. The hallway was used for the straight-
line translation segments of triangle completion, distance repro-
duction, and angle reproduction. During the segments of each task
that required rotations in place, the hallway was replaced by a
cylindrical hedge with a 1-m radius surrounding the participant.
This cylinder provided texture cues from optic flow while rotating
without any additional landmark information about how far they
had rotated. For triangle completion, we also conducted a condi-
tion in an open field environment. In the open field, the environ-
ment consisted of the textured ground plane and a green pole 100
m away (Figure 2A, bottom). The ground surface was a gravel
texture, and there were no other visual landmarks. The pole was
designed to give participants some orientation so they could walk
in a straight line but not provide any additional information from
the change of size of the pole as they moved. For all tasks, the
location and orientation of the next trial was marked by an orange
pole with arrows on (“start pole”).

Experimental Tasks

Triangle completion. Triangle completion consisted of walk-
ing one outbound leg, turning, and then walking along a second
outbound leg. At the end of the outbound path, participants were
instructed to turn to face their starting location and click the mouse
once they were facing the start location. They were then instructed
to walk forward toward the starting location and to stop and click
the mouse again when they reached that location. Two conditions
of triangle completion were presented to participants: (a) hallway,
and (b) open field. In the hallway condition, participants walked

1 The law of cosines can be used to find missing elements of any
triangle. Namely, if the first leg has length x, the second has length y, and
the angle between those legs is �, then the length of the third leg, z, is given
by z � (x2 � y2 – 2xy � cos �)1/2. The turn angle � (between legs y and
z) is then specified by � � cos�1(y2 � z2 – x2)/(2yz). In these simulations,
z and � are the path length and turn angle, respectively, for the homebound
trajectory.
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forward along the hallway and stopped when they heard a chime;
the hallway then disappeared and was replaced by the cylindrical
hedge. The participant then turned to the right or the left as
directed by an auditory cue and stopped when they heard the chime
again. Then the cylinder hedge disappeared and a new hallway
opened up. The participant walked along this hallway until the
chime sounded again and the cylindrical hedge appeared. The
participant was instructed to turn to face the starting location and
then click the mouse, whereupon a third hallway appeared, in the
same orientation as the participant was facing when they clicked
the mouse. The participant was then instructed to walk forward
until they thought they reached the start location, then click the
mouse again. All hedges then disappeared and the participant
walked to the start pole for the next trial.

The open field condition was included in order to compare the
results of the hallway experiments to those of other studies. Instead
of hallways, the participant walked forward toward a green pole
100 m away (Figure 2A, bottom). When the chime sounded, the
pole disappeared and the participant turned until they heard the
chime again. Then, a second green pole appeared at the new
orientation, and the participant walked forward toward this pole
until the chime sounded again. Finally, the pole disappeared and
the participants turned to face the start location, clicked the mouse,
and walked forward in the open field until they reached the start
location and then clicked the mouse again. The open field condi-
tion differed from the hallway primarily in amount of visual
texture.

For both the open field and hallway conditions, as well as the
two reproduction tasks, the chime sounded at a threshold 0.5 m
before the length of each leg and within 	 3° of the turn angle. The
position of the chime threshold gave participants the chance to take
a step after it sounded, while preventing them from overshooting
the distance or angle and having to backtrack.

Triangle completion consisted of 48 trials, with an additional six
practice trials at the beginning of the session. None of the triangles
in the practice were part of the experimental block, although they
were of similar scale. The lengths of the legs of the experimental
triangles were 2, 4, or 6 m, and the interior angle between Legs 1

and 2 was 60°, 90°, or 120°; a subset of six triangles were tested
out of the potential 27 combinations (Figure 2B). These triangle
sizes were determined a priori both by the constraints of the
research space and by the desire to have a variety of leg lengths
and interior angles. Interior angles included right, obtuse, and
acute angles, and sometimes the first leg was shorter than the
second leg and vice versa. Both right-handed and left-handed
versions of these six triangles were included; trials alternated
between right and left triangles. The order of presentation was
otherwise randomized for each participant. Each triangle was
presented to a participant eight times: four trials with left turns and
four trials with right turns. There were 24 starting locations and
four starting orientations in the room to prevent participants from
receiving feedback on their performance and from using a constant
frame of reference. These measures increased the likelihood that
participants would treat each triangle as separate from the others.

Distance reproduction. Participants walked down the virtual
hallway until they heard a chime, at which point the hallway
disappeared and the cylindrical hedge surrounded the participant.
Participants then turned 90° to the right or left as directed by an
auditory cue until they heard the chime again. When the chime
sounded again, the cylindrical hedge disappeared and a new hall-
way appeared. Participants were then instructed to walk forward in
this new hallway for the same distance they had walked on the
original path, and then click the mouse.

In order to prevent participants from counting their steps, they
performed an additional interference task. At the start of each trial,
participants were given a seed number between 100 and 500 over
the headphones, chosen randomly from a random subset of 80
numbers. Participants then had to count aloud backward by threes
from this number until they clicked the mouse. Two participants
who were not native English speakers were allowed to count in
their native language.

Distance reproduction consisted of 60 trials, with four additional
practice trials at the beginning of the session. None of the distances
in the practice trials were part of the experimental block. The
magnitudes of the distances were the same as those of the hallways
used in triangle completion plus two additional distances of 8 and

Figure 2. Virtual environments. (A) Views of the hallway and open field conditions of triangle completion.
The hallway was also used for distance and angle reproduction. (B) Triangle types used in the triangle
completion experiments. In parentheses are the names of the triangle types, with the first term specifying the
length of the first leg in meters, the second term indicating the length of the second leg in meters, and the third
term designating the interior turn angle between the first and second legs in degrees. See the online article for
the color version of this figure.
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10 m (2, 4, 6, 8, and 10 m). These magnitudes also match those we
have used in previous work (Chrastil & Warren, 2014). Both right
turns and left turns between the outbound and reproduced leg were
included; trials alternated between right and left turns. The order of
presentation was otherwise randomized for each participant. Each
distance was presented to participants 12 times, with six left and
six right turns. There were four starting locations in the room, each
with a different starting orientation, to prevent participants from
receiving feedback on their performance.

Angle reproduction. The angle reproduction task has previ-
ously been described and the results have been previously reported
in (Chrastil & Warren, 2017). Here, we only present the methods
and results of the basic reproduction task and its relationship to the
modeling work. Participants walked in the hallway until they heard
the chime, which sounded after 5.86 m. The participant was then
surrounded by the cylindrical hedge, and turned right or left as
directed by an auditory cue until they heard the chime again. A
new hallway at the specified angle then replaced the cylindrical
hedge. Participants walked down this hallway until they heard the
chime again, after another 3.5 m, and the cylindrical hedge ap-
peared. In the Same condition, participants were then instructed to
turn back to face in the same direction they had originally walked,
but parallel to the original path (functionally equivalent to repro-
ducing the first angle), then click the mouse, whereupon the
cylindrical hedge disappeared and a new hallway opened up in the
same orientation as the participant. Participants walked forward on
this new path for 1.5 m, as which point the trial ended and they
were instructed to walk to the start location for the next trial
(Figure 3).

In the Opposite condition, the procedure was similar except that
participants were instructed to turn to face in the opposite direc-
tion, parallel to the original path (Chrastil & Warren, 2017). This
required them to turn through the supplement of the first angle: a
parallel path in the opposite direction for a 30° right turn can be

found by turning 150° to the right. These two versions of angle
reproduction were crafted to probe the potential execution error in
turning. If execution error increases as the turn angle increases,
participants would show a greater error for large angles than for
small angles, even if they encoded the turn angle accurately. These
factors are confounded in the Same condition because smaller
response turns are required by smaller outbound turns and larger
response turns are required by larger outbound turns. By including
the Opposite condition—where participants make a smaller re-
sponse for larger outbound turn angles—execution error can be
compared between the two conditions.

Angle reproduction consisted of 60 trials, with four additional
practice trials at the beginning of the session. None of the angles
in the practice trials were part of the experimental block. Magni-
tudes of the turn angle were the same as those used in triangle
completion plus two additional angles of 30° and 150° (30°, 60°,
90°, 120°, 150°; Chrastil & Warren, 2017). Both right turns and
left turns were included; trials alternated between right and left
turns. The order of presentation was otherwise randomized for
each participant. Each turn angle was presented to participants 12
times: six left and six right turns. There were three starting loca-
tions in the room, each with a different starting orientation, to
prevent participants from receiving feedback on their performance
and from using a constant frame of reference in the room.

Procedure

After informed consent was obtained, the interocular distance
for each participant was measured and entered into the graphics
card, then the HMD was placed and adjusted on the participant’s
head. The participant also wore a backpack containing some ca-
bles, which weighed approximately three pounds and did not
impede movement. To prevent participants from tripping over the
cable connecting the HMD to the control box, an experimenter (the
“wrangler”) continuously followed the participant keeping the
cable out of the way at all times. A test environment and several
practice trials for each task served as immersion time (5–10 min)
for the virtual environments. Instructions for each task were pre-
sented over headphones in the HMD, which guided the participants
through practice trials. The instructions for each task were then
repeated before the start of the experiment. Experimental trials
were presented in one block, with frequent opportunity for breaks.
The tasks took between 40 and 60 min to complete. Three indi-
vidual sessions were stopped after 60 min and completed in a
separate session due to time constraints. At the end of the second
through fifth session, participants filled out a brief questionnaire
asking for strategies used in the task and (if applicable) if one
version of the task seemed easier than the other.

Participants completed five sessions for the experimental tasks,
which were run in a semicounterbalanced order. The first two
sessions consisted of triangle completion, with one session of the
open field condition and one session of the hallway condition
counterbalanced across subjects. Sessions 3, 4, and 5 consisted of
the two versions of angle reproduction (Same and Opposite) and
one distance reproduction task. The order of these three tasks was
counterbalanced across participants. The triangle completion ses-
sions were performed first to prevent contamination from the angle
and distance reproduction tasks influencing performance on trian-
gle completion. Sessions were completed over the course of 2 to 6

Figure 3. (left) The Same condition for angle reproduction. Participants
walked in the direction of the arrows turning right, with the initial turn
angle �. The required response is a left turn in the same magnitude of �.
(right) The Opposite condition for angle reproduction. Participants walked
in the direction of arrows turning right, with the initial turn angle �. The
required response is a right turn with a magnitude of 180-� (see Chrastil &
Warren, 2017, for details).
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weeks for each participant, with a break of at least 4 hr between
sessions. Each participant generally came in for a session every 4
days.

Analysis

Analysis was conducted using JMP software (SAS) and SPSS
for linear measures and custom Matlab (Mathworks, Natick, MA)
scripts for angular measures. For triangle completion, each partic-
ipant’s path on the homebound leg was evaluated in relation to an
ideal path between the position where they clicked the mouse to
begin the homeward path (“click location”) and the actual start
location. Three response measures were quantified from this path
(Figure 4): (a) position error was calculated as the absolute dis-
tance between the final position of the participant and the start
location. Path length is the distance traveled by the participant on
the homebound leg, with (b) path length error being the difference
between the observed and ideal path length. A positive error
indicates that the participant traveled too far, while a negative error
indicates that the participant undershot the distance. (c) Initial turn
angle error is the difference between the participant’s heading
direction at the click location and the ideal heading direction from
that point to the home location. These errors are positive if the
participant overturned compared to the correct path and negative if
the participant undershot the correct turn.

ANOVAs were performed on the means of all the response
measures, as well as on their standard deviations (for linear mea-
sures) or angular deviations (for angular measures). For all com-
parisons, right and left turns were collapsed across trials. The
linear measures of position error and path length error were ana-
lyzed with repeated-measures ANOVAs using a 6 (triangle
type) � 2 (hallway or open field condition) design. For these
measures, we report F and p values and indications of effect size
(�p

2). The angular measure of initial turn angle error was analyzed
using a multiple-sample Watson-Williams one-way test for circu-
lar data (Batschelet, 1981). Currently there are no higher order
ANOVAs or computations of effects sizes available for circular
data. Thus, we report F and p values for each comparison, and all
two-way interactions were tested as Bonferroni-corrected separate
one-way effects. Standard and angular deviations for all these
measures were also analyzed. Linear regressions and correlation
coefficients were also found for these measures to determine if
there is a relationship between the initial distance/angle and the
reproduced distance/angle or their errors.

For distance and angle reproduction, the only response measures
were path length error and turn angle error, respectively. Distance
error was calculated as the difference between the observed dis-
tance walked and the ideal response. A positive error indicated an
overshoot of the distance while a negative error indicated an
undershoot. Angle reproduction error was calculated as the differ-
ence between the direction the participant was facing after they
made their response and the ideal heading direction. As distance
error is a linear measure, a repeated-measures ANOVA using the
five distances reproduced in this task was performed. Angular
error was analyzed using a multisample Watson-Williams one-way
ANOVA, collapsing across left and right turns. In addition to
testing the factor of angle, the factor of condition (walk parallel in
the same or opposite direction) was tested. Standard and angular
deviations for all these measures were also analyzed. Linear re-
gressions and correlation coefficients were also computed for path
length and turn angle to determine whether there is a relationship
between the ideal and actual responses.

Trials were excluded from analysis in cases of a software crash,
a loss of tracking in the virtual environment, or the participant
indicated that they had terminated the trial too early. In addition,
trials from the distance and angle reproduction tasks were ex-
cluded if the participant walked too close to the physical wall of
the room during their response. Portions of triangle completion
data were also excluded for this reason, however, initial informa-
tion such as initial angle error was included in the analyses because
this measure could be collected before the participant went out of
bounds. In addition, if during triangle completion the participant
drifted from the lines and was more than 1.5 m from the actual
location of the second vertex of the triangle (click location) when
they clicked to return to home, only initial angle error were
collected. This drift was more common in the open field condition
due to the lack of hallways to keep people on course. In all,
between 0.38% and 2.05% of the reproduction trials were ex-
cluded. 1.36% of the triangle completion trials were completely
excluded, while 9.38% of triangle completion trials contained only
initial angle information.

Results

Triangle Completion

Overall triangle completion performance is shown in Figure 5.
Linear measures. A 6 (triangle type) � 2 (hallway or open field

condition) repeated-measures ANOVA was first conducted on the
mean position errors. Mean absolute position errors showed a signif-
icant main effect of triangle type (F5,60 � 2.607, p � .034, �p

2 �
0.178), suggesting that some triangles were more difficult for partic-
ipants to return to the start location (Figure 6). There was no effect of
open field/hall (F1,12 � 0.005, p � .946, �p

2 � 0.000) and no
interaction (F5,60 � 1.465, p � .215, �p

2 � 0.109) for position error.
A 6 � 2 ANOVA on the standard deviation of position error only
showed a marginal effect of triangle type (F5,60 � 2.048, p � .085,
�p

2 � 0.146), and there was no main effect of open field/hall (F1,12 �
0.974, p � .343, �p

2 � 0.075) and no interaction (F5,60 � 0.941, p �
.461, �p

2 � 0.073).
For path length, overall participants showed a compression of

distance responses, as seen in previous work. For homeward trajec-
tories that called for a shorter path length, participants generallyFigure 4. Response measures for triangle completion. See text for details.
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walked too far, while they did not walk far enough for longer ideal
paths (Figure 7A). Path length did increase with the ideal path length
(hallway: y � 0.391x � 2.761, r � .915; open field: y � 0.431x �
2.399, r � .868). Path length errors differed between triangle types
(Figure 7B). A 6 (triangle type) � 2 (hallway or open field condition)
repeated-measures ANOVA found a significant effect of triangle type
on path length errors (F5,60 � 38.576, p 
 .001, �p

2 � 0.763). There
was no main effect of open field/hall condition (F1,12 � 2.683, p �
.127, �p

2 � 0.183), and there was only a marginal interaction (F5,60 �

2.103, p � .077, �p
2 � 0.149). Analysis of the path length errors

standard deviations yielded no significant main effect for open field/
hall (F1,12 � 0.004, p � .954, �p

2 � 0.000), although the Triangle
Type � Open Field/Hall interaction was marginal (F5,60 � 2.164,
p � .070, �p

2 � 0.153), as was the main effect of triangle type (F5,60 �
1.978, p � .095, �p

2 � 0.141).
Angular measures. Large angular errors were observed relative

to the magnitude of the correct angle. For both conditions, initial turn
angle increased with the ideal turn angle, indicating that participants

Figure 5. Overall pattern of results from triangle completion. (A) Open field condition. (B) Hallway condition.
Individual dots represent individual trials by the 13 participants. The filled circle at the origin (0,0) is the start
location. The filled diamond is the mean final location averaged over all the participants. Ellipses indicate 95%
confidence intervals for the data. Left turns have been reversed and combined with right turns.
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were able to able to discriminate between triangle types (hallway: y �
0.502x � 22.635, r � .964; open field: y � 0.609x � 19.931, r �
.999; Figure 8A). Turn angles were somewhat compressed, such that
small turn angles were overestimated and larger turn angles were
underestimated. Turn angle errors revealed some slight differences
between the open field and hallway conditions. In the hallway con-
dition, a Watson-Williams test for circular data on the mean initial
turn angle error (F5,12 � 3.8426, p 
 .05, �p

2 � 0.199) showed
significant effects of triangle type (Figure 8B). In the open field
condition, on the contrary, there was no main effect of triangle type on
mean initial turn angle error. However, an examination of individual
pairwise comparisons between the open field and its matched hallway
triangle type produced no significant differences.

Overall, the hallway condition had a slightly more divergent pattern
of errors, leading to an overall main effect of triangle type, while the
somewhat smaller range of errors in the open field condition was not
strong enough to create a main effect. For any given triangle type,
there was no difference between the open field and hallway condition,
but when examining the overall range of errors, the hallway condition
had reliably more pronounced errors. This result likely stems from the
fact that participants were less able to distinguish between angles in
the hallway condition, leading to more similar turn angles. The angle

errors were consequently larger in the hallway condition because the
participants were not making the full range of turns. However, this
effect of open field/hallway is fairly small, considering that none of
the individual contrasts showed an effect. The angular deviations for
initial turn error showed no main effects of triangle type for either the
open field or the hallway condition.

Distance Reproduction

Mean reproduced distance as a function of initial distance ap-
pears in Figure 9A. Linear regression of reproduced distance on
initial distance revealed that the slope was less than 1 with a
positive intercept (y � 0.75x � 1.28, r � .975), meaning that
participants overestimated shorter distances and underestimated
longer distances. The distance reproduction regression equation is
similar to the distance encoding function used by Fujita et al.
(1993: y � 0.60x � 1.20), although with a somewhat steeper slope.
There was a significant main effect of distance on reproduction
errors (F4,48 � 42.763, p 
 .0001, �p

2 � 0.781). Post hoc pairwise
comparisons revealed significantly different errors between the
following pairs (all p 
 .05, Bonferroni corrected): 2 m–10 m, 4
m–8 m, 4 m–10 m, 6 m–8 m, 6 m–10 m, and 8 m–10 m. These
results confirm that long distances tend to be undershot and short
distances tend to be overshot. The standard deviations of distance
errors also showed a main effect of distance (F4,48 � 19.693, p 

.0001, �p

2 � 0.621). Post hoc tests showed that the 2-m distance
had significantly less variability than all other distances (all p 

.001, Bonferroni corrected).

Angle Reproduction

Results for angle reproduction have been reported elsewhere
(Chrastil & Warren, 2017) and those previously reported data are
summarized here. Mean reproduced angle is plotted as a function
of initial angle in Figure 10A. In the Same condition, the repro-
duced angle increased linearly with the initial angle (y � 0.63x �
50.7, r � .999), whereas in the Opposite condition the reproduced
angle corresponded to the supplement of the initial angle, and so
decreased (y � �0.52x � 152.9, r � .993). The regression

Figure 7. (A) Path length, compared to the ideal values for path length. Filled circles/solid line: hallway
condition. Open circles/dashed line: open field condition. Diagonal line indicates correct performance. There
were six triangle types; however, for two triangles the ideal path length turned out to be the same distance as
two other triangles, resulting in only four ideal path length values on the x-axis. (B) Path length errors in the
triangle completion tasks. Negative errors indicate undershoots while positive errors indicate overshoots. Error
bars indicate between-subjects standard error.

Figure 6. Position error in the triangle completion tasks, measured as the
absolute distance between the final position and the starting location. Error
bars indicate between-subjects standard error.

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

22 CHRASTIL AND WARREN



equation is similar to the encoding function for angle used by
Fujita et al. (1993: y � 0.48x � 50), although with a somewhat
steeper slope, suggesting that this method of angle reproduction is
comparable to theirs. Participants tended to underturn when a large
response was required, and overturn when a small response was
required. Responses of approximately 120°–135° were made rel-
atively accurately.

For mean angular errors, in both the Same and Opposite the
Watson-Williams test found a main effect of turn angle (Same:
F4,12 � 7.3003, p 
 .01, �p

2 � 0.319; Opposite: F4,12 � 5.8438,
p 
 .01, �p

2 � 0.266). When reorganized by the required response
angle (e.g., required response of 30° for an initial angle Same 30°
or for Opposite 150°), rather than the initial angle, the reproduction
errors are quite similar (Figure 10B). Paired Watson-Williams tests
showed no significant differences between these pairs, even before
Bonferroni correction (see Chrastil & Warren, 2017, for more
details). In other words, when responding to an initial turn of 30°,
the participants made different errors in the Same condition (re-
quiring a 30° turn) and in the Opposite condition (requiring a 150°
turn). On the contrary, errors were equivalent when responding to
a 30° turn angle in the Same condition and a 150° turn angle in the
Opposite (both requiring a response turn of 30°). These results
suggest substantial execution errors, such that people overshoot

small turns and undershoot large turns. In our previous analysis of
angular errors (Chrastil & Warren, 2017), we also found main
effect of encoding angle and an Angle � Condition interaction,
consistent with a contribution of encoding error. Overall, these
findings suggest a large contribution of execution error, but that
encoding error plays a role in angle reproduction as well.

Questionnaires

In triangle completion, participants reported attempting strate-
gies such as counting steps and trying to envision the angle they
turned through. Some attempted to measure the angle with their
feet or arms. Participants were fairly evenly split as to which
version of the task (open field or hallway) they felt was easier, but
generally reported that the task was quite difficult. If anything,
participants felt whichever version they completed second was
easier, likely due to increased comfort with the task. Despite the
counting distracter task in the distance reproduction task, partici-
pants reported attempting to count their steps. For the angle re-
production task, participants generally tried to “unturn” the angle
they originally turned or gauged the angle relative to a reference
angle of 90°, and some participants attempted to use their feet to
measure the angle. In all tasks, several participants said that they
relied on intuition or visualization of the layout.

Simulations

Procedure

Triangle completion was simulated using Monte Carlo methods to
sample from the distribution of errors from the distance and angle
reproduction tasks. Simulations were designed to replicate the
encoding-error model (Fujita et al., 1993). Triangle completion was
simulated for each participant individually; each participant had an
individual distribution for each distance and angle tested in the repro-
duction tasks, with their mean and standard/angular deviation taken
from their individual data. Note that for angle encoding, we only used
the Same condition, since this follows the encoding-error model’s
assumption that reproduction errors reflect only errors in encoding.
However, as we will discuss below, the reproduction tasks also likely

Figure 8. (A) Initial turn angle as a function of the ideal turn angle. Filled squares/solid line: hallway condition.
Open squares/dashed line: open field condition. Diagonal line indicates correct performance. (B) Initial turn
angle errors. Negative values indicate an underturn, while positive values indicate an overturn. Error bars
indicate between-subjects standard error.

Figure 9. Responses in the distance reproduction task compared to the
actual distance walked. Dashed line indicates veridical performance. Error
bars indicate between-subjects standard error.
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reflect a degree of execution error. This sampling method assumes a
normal distribution. Each distance and angle were successfully fit to
models of normal or lognormal distributions when combining all of
the trials for all participants, and so the assumption of a normal
distribution was deemed justified.

For each iteration of the simulation, a value for the encoding
distance of both legs and the turn angle was sampled randomly
from a normal distribution, with the mean taken from the partici-
pant’s mean reproduction data at that distance or angle, and the
standard deviation taken from the participant’s standard deviation
at that distance or angle. For example, a triangle with an actual
outbound path of a 4-m leg, followed by a 60° interior turn, and a
second leg of 6 m might be sampled as 4.58 m, 73.85°, and 5.92
m, respectively. These values were then combined linearly using
the law of cosines to compute the location where the simulated
participant encoded the second vertex. Assuming no integration
error and no execution error on the homeward trajectory, as pro-
posed by the encoding-error model, the model then used trigonom-
etry to predict the location where the participant should walk when
returning to the start location. The simulation was iterated 10,000
times for each of the six triangle types for each participant. The
mean simulated final position was calculated, as well as the path
length and turn angle for the homeward trajectory.

As Fujita et al. (1993) point out, the observed and model-
predicted path length and turn angle will always be correlated to a

certain extent, as a longer observed path will generally also have
a longer model-predicted path. Path length error and turn angle
error, however, will not necessarily be correlated and are thus
more sensitive tests of the model’s predictive power. Thus, the
observed path length and turn angle errors were plotted against the
models’ path length and turn angle errors by combining the data
across all triangle types for all participants (hallway condition
only), yielding 78 points of comparison (6 triangle types � 13
participants). The slope and intercept of this relationship was
computed and the effect size of the relationship was indicated by
the r value; we report whether this relationship was significantly
different from 0. Error ellipses were computed for a 95% confi-
dence interval of the final simulated locations. In addition to
simulating the encoding-error model, we simulated triangle com-
pletion using four other possible models (described below). We
conducted a test on the r value of each alternative model’s corre-
lation, transformed to Fisher’s Z, compared with the baseline
encoding-error model’s r (transformed to z) value. Table 1 shows
equations, r values, and significance levels for the encoding-error
model and each of the four alternative models.

Results

The results for all five simulations are summarized in Table 1.

Figure 10. Results from the angle reproduction task. Filled squares and solid lines indicate data from the Same
condition. Open circles and dotted lines indicate data from the Opposite condition. The dashed lines show
veridical performance. Error bars indicate between-subjects standard error. (A) Actual turns from the angle
reproduction task. (B) Reproduction as a function of the required response in angle reproduction tasks.

Table 1
Summary of the Simulation Results

Model name
Path length

error equation
Path length

error r value
Turn angle

error equation
Turn angle

error r value

1. Encoding-error model y � .45x � .024 0.4818��� y � �.14x � 8.1 �0.2282�

2. Encoding-error model with execution error y � .73x � .078 0.6378��� y � .35x � 6.7 0.4837���†††

3. Execution error only model y � .43x � .051 0.7351���† y � .33x � 3.1 0.4514���†††

4. Encoding-error model (new functions) y � .049x � .78 0.3910��� y � .082x � 3.2 0.4355���†††

5. Encoding-error model (new functions) with execution error y � .49x � .6 0.7509���†† y � .36x � 1.3 0.4626���†††

Note. Distance function: y � 0.9156x � 0.703; Angle function: y � 0.8356x � 21.217.
† p 
 .05. †† p 
 .01. ††† p 
 .001. � Indicates a significant correlation between the actual errors and the simulated errors, p 
 .05. �� Indicates a
significant correlation between the actual errors and the simulated errors, p 
 .01. ��� Indicates a significant correlation between the actual errors and the
simulated errors, p 
 .001. † Indicates significant difference in correlation between the alternative model and the encoding-error model (Model 1).
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Encoding-error model. The simulations of triangle comple-
tion using the encoding-error model yielded 10,000 estimated final
positions for each participant for each triangle type. The mean
estimated final position was then found for each set; the mean path
length and turn angle errors were computed for that location.
Figures 11 and 12 provide examples of two representative partic-
ipants in the study. Part (a) of these figures show the results for the
encoding-error model simulations. Participant 11 (see Figure 11)
was not very accurate at triangle completion and was highly
variable in both triangle completion and the reproduction tasks,
with large error ellipses representing the final position. It should be
noted, however, that even with the large ellipses for the simulated
final positions for Participant 11 in panel (a), the actual data
collected from that participant generally still laid far outside of that
ellipse. Participant 10 (see Figure 12) was much more accurate and
precise for all tasks, with a very small cluster of simulated final
positions generally quite close to the participant’s final position.
However, several of the empirically collected data points for
Participant 10 also lay outside of the simulation position (Figure
12A).

Figure 13A summarizes all the simulations, plotting model-
predicted errors against actual errors for each participant. The
relationship between actual and predicted path length errors is
described by the equation y � .45x � 0.024, r(76) � 0.4818, p 

.001, while for turn angle errors the relationship is described by
y � �.14x – 8.1, r(76) � �0.2282, p � .044. Note that the
correlation coefficient for turn angle errors is negative, indicating
that the model negatively predicted actual errors. In general, the
model predicted path lengths that were longer than those taken by
the participants, and compressed the range of turn angles compared
to the range taken by participants. Although the model was close
for participants who were more accurate or who had less variabil-
ity in their responses, it proved less successful at predicting the
responses of participants with high variability or low accuracy.

The original encoding-error model used aggregate data to derive
the encoding functions: average encoding functions predicted av-
erage participant performance (Fujita et al., 1993). In contrast, we
used each participant’s individual distance and angle reproduction
data as their individual encoding function. To replicate the ap-
proach from the original encoding-error model, we used the aver-
age distance and angle errors derived from the reproduction tasks,
combined with the average within-subject standard/angular devi-
ations, to simulate the six triangles. Fujita et al. (1993) found very
high correlations between their predicted and observed values: r2

of .93 and .92 for distance and angle errors, respectively, with
slopes of 1.17 for distance error and .98 for angle error. In contrast,
we found a much reduced correlation between predicted and
observed values. For distance error, we found r(4) � 0.9702, p 

.001, with the equation y � 0.35x � .0045 describing the relation-
ship. Although the r value is very high, the slope is much lower
than those found by Fujita et al. For angle error, we found
r(4) � �0.4013, p � .4, with the equation y � �0.22x – 8.3
describing the relationship. Thus, there was no relationship be-
tween the predicted angular errors and the actual angular errors
when considering an “average” participant. These results are in
discord with those of Fujita et al., suggesting that their findings
either do not replicate or their assumptions are not sufficient to
explain systematic errors in triangle completion.

Encoding-error model including execution error. Although
the path length errors and turn angle errors in the encoding-error
model alone were significantly correlated with actual errors, the
correlation was negative for turn angle error, indicating the insuf-
ficiency of the encoding-error model. We attempted to improve
upon this model by adding a component of execution error.

In the new model, the encoding of the outbound path was
simulated the same way as in the encoding-error model (Model 1).
Instead of assuming that the response path is perfectly integrated
and executed, like the encoding-error model does, we added an
error term in the execution of the homebound path. Each partici-
pant had an execution error term derived from their own repro-
duction data, as follows. A regression line2 was fit to the distance
reproduction tasks for each participant to describe the relationship
between the desired distance and the actual distance walked. For
distance, this regression line is essentially the same computation as
for the distance reproduction task shown in Figure 9, but for each
person individually. Likewise, a regression equation was derived
from the combined Same and Opposite angle reproduction. The
actual responses for these two conditions were plotted against the
required response for each person, similar to Figure 10B, and a line
was fit to those 10 data points. Thus, execution functions were fit
for both distance and angle that depended on the required response,
rather than the outbound distance or angle. Although this method
is not perfect—it still includes some aspect of encoding—at pres-
ent it provides a fairly close estimate for execution error. In
addition, the findings from the angle reproduction segment of the
experiment (Chrastil & Warren, 2017) suggest that errors in re-
production are primarily driven by the required execution, not the
encoding angle. We therefore feel reasonably confident in these
estimates for execution error.

The outbound path of this model (Model 2) was computed in the
same way as the encoding-error model (Model 1). To add execu-
tion error in the homebound path, the desired path length and turn
angle were entered into the execution functions described in the
previous paragraph for the participant. The resulting path length
and turn angle were used for the simulation. For example, the
encoding-error model might yield a desired homebound path of 7
m with a turn angle of 45°. These values were entered into the
participant’s individual execution functions, and now the home-
bound path might be something like 6.4 m with a turn angle of 61°.
These values were used as the means for our sampling procedure,
which added a measure of variability to these execution functions.
First, we generated individual regression lines for standard and
angular deviation from the empirical reproduction data, much like
we did for the execution error functions. Next, we sampled using
the means from the execution function and the standard deviations
derived from the regression lines. Note that adding variance to the
execution error does not change the mean values of the final
position, but it does create a larger spread in the simulated results,
as evidenced by the 95% confidence ellipses.

The results of the simulations of the encoding-error model
including execution error show an improvement over the

2 We used linear fits for both distance and angle. Given our relatively
small distances and angles used, and to match the original encoding-error
model, this assumption seemed reasonable. However, for larger distances
and angles a logarithmic leaky integrator fit might be more appropriate.
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Figure 11. Results of simulations for Participant 11using three different path integration models. Filled circles
are the start location, which is also the correct end location. Stars are the individual data points from the eight
triangle completion hallway trials. Filled diamonds are the mean final location from the data. Open diamonds are
the mean final location from the simulation. Ellipses indicate 95% confidence intervals for the simulation. The
stars and filled diamonds are in the same locations across the five simulations because they represent empirical
data, but the open diamonds and confidence ellipses differ based on the model. (A) encoding-error model, (B)
encoding-error model with execution error, (C) execution error only, (D) encoding-error model using our new
encoding function, and (E) encoding-error model using the new encoding function and including execution error.
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Figure 12. Results of simulations for Participant 10 using three different path integration models. Filled circles
are the start location, which is also the correct end location. Stars are the individual data points from the eight
triangle completion hallway trials. Filled diamonds are the mean final location from the data. Open diamonds are
the mean final location from the simulation. Ellipses indicate 95% confidence intervals for the simulation. The
stars and filled diamonds are in the same locations across the five simulations because they represent empirical
data, but the open diamonds and confidence ellipses differ based on the model. (A) encoding-error model, (B)
encoding-error model with execution error, (C) execution error only, (D) encoding-error model using our new
encoding function, and (E) encoding-error model using the new encoding function and including execution error.
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encoding-error model alone. For path length errors, the function
y � 0.73x � 0.078, r(76) � 0.6378, p 
 .001 related the model-
predicted path length errors to the actual path length errors. For
turn angle errors, the equation y � 0.35x – 6.7, r(76) � 0.4837,
p 
 .001 related the actual and model-predicted errors. The cor-
relation coefficients were tested against those of the encoding-
error model (Model 1) using a Fisher’s Z score (see Table 1). The
correlation coefficient for path length errors was not significantly
different from Model 1 (Z � �1.4, p � .162), but those for the
turn angle errors were significantly different from Model 1
(Z � �4.65, p 
 .001).

Figure 13B summarizes the data for all participants. Examina-
tion of Figures 11B and 12B reveals that the addition of execution
error to the representative participants has improved the explana-
tory power of the simulations. Although the original encoding-
error model did a reasonable job predicting errors for Participant
10, it did not predict Participant 11 very well. The addition of
execution error did not make the predictions worse for Participant
10, but it dramatically improved those for Participant 11. Note that
the predicted values for this model are closer to the actual data than
for the encoding-error model alone, but they do not overlap per-

fectly. The addition of execution error makes the model much
more predictive of actual errors, but still does not explain all of the
variance.

Execution error only. Our findings from angle reproduction
suggest that execution error may be the primary source of error in
path integration. The poor results from the encoding-error model
(Model 1), coupled with the large improvement from the addition
of execution error (Model 2) suggest that a model that only
incorporates execution error may be sufficient to describe the
errors in path integration.

For this model, we assumed that encoding error was negligible.
This assumption implies that participants were completely accurate at
encoding the outbound path, and that their encoded location at the end
of the second leg was their actual location. Under this assumption, we
used the execution functions from Model 2 based on the reproduction
tasks (distance and the combined Same and Opposite for angle) as an
estimate of pure execution error. We then added execution error in the
same manner as in Model 2. Note that because there is no distribution
of outbound locations in this simulation (since encoding was perfectly
accurate), there was only one predicted outcome of the homebound
path. Sampling from the distribution of the execution error using the

Figure 13. Path length errors (left column) and turn angle errors (right column) on the return path, comparing
actual errors made by participants with the errors predicted by each model. Data for individual participants are
plotted in different colors; there are six data points for each participant, representing the six triangle types. (A)
encoding-error model (Model 1), (B) encoding-error model with execution error (Model 2), (C) execution error
only (Model 3), (D) encoding-error model using our new encoding function (Model 4), and (E) encoding-error
model using the new encoding function and including execution error (Model 5). See the online article for the
color version of this figure.
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means and standard deviations added some variance, but it was much
reduced from that of Model 2.

The results of this simulation for all participants are shown in
Figure 13C, with details of two representative participants shown
in Figures 11C and 12C. For path length errors the equation y �
0.43x � 0.051 (r(76) � 0.7351, p 
 .001) described the relation-
ship between actual and model-predicted errors. For turn angle
errors the equation y � 0.33x � 3.1, r(76) � 0.4514, p 
 .001,
described that relationship. The correlation coefficients were tested
against those of Model 1 using a Fisher’s Z score (see Table 1).
The correlation coefficient for both path length errors and turn
angle errors were significantly different from Model 1 (path
length: Z � �2.54, p � .011; turn angle: Z � �4.4, p 
 .001).
Based on the significant improvement in the correlation value
compared to the baseline encoding-error model, this model appears
to be better than the combined model (Model 2) at predicting the
path length errors, and the turn angle errors are virtually un-
changed from Model 2. However, we also note that the slope for
Model 2 is greater than for Model 3. This simpler Model 3
describes the errors as well as the more complicated model that
includes encoding error, therefore these results suggest that most
of the error can be attributed to execution error.

Encoding-error model with independently estimated encod-
ing functions. As we noted above, it may not be appropriate to
use reproduction data to estimate encoding error, for reproduction
error may include both encoding and execution errors. Elsewhere
we have derived encoding functions for distance and angle based
on independent data, which may provide better estimates (Chrastil
& Warren, 2014a; unpublished data; see the online supplemental
materials). Briefly, we began with reproduction data and sub-
tracted out errors from tasks that more closely reflected execution
error, such as blind walking to a target.

For distance, Chrastil and Warren (2014a) had participants walk
an outbound distance, and then turn and reproduce that distance.
This formed the estimate for reproduction. Participants also
viewed a target and then turned and walked an equivalent distance.
This formed the estimate for production; because participants did
not encode the target distance by walking, this task provides a
useful—although not perfect—estimate of execution error. We
assume that encoding error from vision is minimal, but not nec-
essarily zero. Encoding distance from vision minimizes the pri-
mary problem of canceling errors in pure reproduction, but does
not eliminate this issue altogether. Under the assumption of linear
combination, we subtracted the value of execution error from
reproduction error to estimate the encoding error at each distance.
The encoding function was estimated by a linear regression of
error (m) on distance (m), yielding y � 0.9156x � 0.703 (r4 �
0.916).

For angle, we used a modified reproduction task (unpublished
data; see the online supplemental materials for details of the task).
We removed the second hallway in between the encoding and
reproduction turns, reducing any memory decay that could occur
between the two turns. We also changed the instructions to “re-
verse the total of the turns to face in the original direction” rather
than “walk parallel to the original path,” which could lead to other
errors. Although this task is still essentially a reproduction task, it
yields an estimate that is closer to production/execution error than
the reproduction task (Same condition) reported above. Encoding
error was then computed as the difference between the reproduc-

tion data (Same condition) in the present study and our earlier
production data at each turn angle. A linear regression of encoding
error on turn angle yielded y � 0.8356x � 21.217 (r4 � 0.999).

Note that these derived encoding functions have slopes much
closer to 1 than both the functions used by Fujita et al. (1993) and
the functions derived from reproduction data above (see the Re-
sults section), implying that encoding error is quite low.

The model simulation procedure was similar to that for the
encoding-error model (Model 1). However, instead of using
individual encoding functions for each participant, we applied
the new encoding functions to group averages. Thus, all par-
ticipants were modeled with the same encoding function, using
the overall mean standard deviations from the reproduction
data.

Because the new encoding functions predict fairly accurate
encoding of the outbound path, the predicted performance
should also be fairly accurate. In addition, since we used the
same encoding function for each participant, the predicted
errors were very similar for all participants (Figures 11D and
12D). Actual path length errors were correlated with predicted
path length errors, r(76) � 0.3910, p 
 .001, with y � 0.049x �
0.78 describing the relationship (Figure 13D, Table 1). Actual
turn angle errors were also correlated with predicted turn angle
errors, r(76) � 0.4355, p 
 .001, with y � 0.082x � 3.2
describing the relationship. The correlation coefficient for path
length errors was not significantly different from Model 1 (Z �
0.69, p � .490), while those for the turn angle errors were
significantly different from Model 1 (Z � �4.28, p 
 .001).
Although the correlation coefficient for angle is an improve-
ment compared to Model 1, the slopes for both turn angle and
path length were nearly 0.

We also analyzed this encoding function using the overall
average participant data by correlating the average turn angle
and path length errors for the six triangles with the predicted
errors from the model. We found the distance error was de-
scribed by y � 0.13x � 0.81, r(4) � 0.6294, p � .181. This
result shows somewhat less predictive value than the encoding-
error model. However, the results for the turn angle errors were
much improved over the encoding-error model: y � 0.39x �
2.1, r(4) � 0.9565, p � .003. Overall, this model appears to
predict errors better than the original encoding error model, at
least for an average participant.

Encoding-error model with independently estimated encod-
ing functions, including execution error. The final model
added execution error to Model 4, using the execution error
functions from Model 2. All participants were again modeled
with the same encoding function because it was not possible to
derive individual encoding functions.

The results of this model showed much improvement over
Model 4 (Figures 11E, 12E, and 13E). The addition of execution
errors yielded y � 0.49x � 0.6, r(76) � 0.7509, p 
 .001
describing the relationship between actual and predicted path
length errors. For turn angle errors, the equation y � 0.36x – 1.3,
r(76) � 0.4626, p 
 .001 described the relationship between actual
and predicted errors. The correlation coefficient for path length
errors was significantly different from Model 1 (Z � �2.75, p �
.006), as was that for turn angle errors (Z � �4.49, p 
 .001; refer
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to Table 1). This result is also a slight improvement over Model 3
(execution error only). The path length errors were described better
by Model 5, but the turn angle errors are almost identical. Thus,
execution error appears to account for most of the error, but the
encoding functions we derived also describe the data better than
the encoding-error model.

Discussion

This experiment and accompanying simulations examined
sources of error in path integration by segregating encoding and
execution errors. Participants reproduced distances and angles in
virtual hallways, and we used that reproduction data to model their
performance in a triangle completion task. We found minimal
differences in path integration performance between an open field
and a hallway environment for triangle completion. Simulations
revealed that the encoding-error model of path integration was
insufficient to explain errors in path integration, but the inclusion
of execution error significantly improved the model. Indeed, a
model that only included execution error—and no encoding er-
ror—predicted the empirical data substantially better than the
encoding-error model.

Triangle Completion

Errors from the triangle completion task indicate that partici-
pants tended to overturn small angles and underturn large angles.
They also compressed the range of the length of the homebound
path. These results fit the general pattern seen in other triangle
completion studies (Kearns et al., 2002; Klatzky et al., 1990;
Loomis et al., 1993; Péruch et al., 1997). Maurer & Séguinot
(Maurer & Séguinot, 1995) noted that most animals overturn on
the return path, which puts them back on the outbound path and
provides a safety mechanism. In the present study, two triangle
types produced underturns, contradicting those observations.

Other accounts of the systematic turn biases observed in triangle
completion have been proposed. Maurer & Séguinot (1995) iden-
tified the ratio between the first and second legs of the triangle as
key to turn angle error. After examining several triangle comple-
tion tasks in the literature, they found that undershoots and small
overshoots were predicted when the first leg was shorter than or
equal to the second leg (ratio �1). Large overshoots were pre-
dicted when the second leg was longer than the first leg (ratio �1).
The results from the present study are not incompatible with this
proposal, but the linear relationship found by Maurer and Séguinot
does not hold. Although our triangle types with underturns had
ratios less than 1, the triangle type with the highest ratio—the 6, 2,
120 type with a ratio of 3—had an overshoot of less than 10°. In
contrast, the 4, 2, 60 type—with a ratio of 2—had the greatest
magnitude of overshoot. Therefore, the leg ratio seems to have
some predictive power for turn angle errors, but it does not appear
to be as good a predictor as the magnitude of the turn response,
described in the next section.

In general, the open field and hallway conditions produced
similar results, with some notable exceptions. Turn angle errors in
the open field condition were generally closer to zero than those in
the hallway condition because participants tended to undershoot
and overshoot more in the hallway condition. Participants also
generally walked somewhat further on the homebound leg in the

hallway condition than in the open field. Variability for all mea-
sures was similar in both open field and hallway conditions,
although the open field showed occasional increased variability for
angular measures. While the data do not indicate that these con-
ditions are completely equivalent, they do suggest that the para-
digms are similar enough to be able to generalize results from the
hallway to those in an open field. The correspondence of errors
between the open field and hallway conditions in triangle comple-
tion implies that the additional optic flow information in the
hallway environment may not aid path integration greatly. These
results agree with those of Kearns et al. (2002), who found similar
accuracy in triangle completion between arenas with full optic
flow information and those with reduced optic flow. The relatively
small field of view (60° horizontal � 46.8° vertical) in the HMD
may have also reduced the amount of optic flow overall.

Reproduction Tasks

Distance reproduction errors show that participants compressed
the response space, generally overshooting short distances and
undershooting long distances. These results agree with most pre-
vious work on distance reproduction (Israël et al., 2004; May &
Klatzky, 2000; M.-L. Mittelstaedt & Mittelstaedt, 2001; Schwartz,
1999; Sun et al., 2004). Moreover, the average regression equation
for the distance reproduction task in this study is very similar to the
encoding function used by Fujita et al. (1993). As seen in the tests
of the encoding-error model by Klatzky et al. (1999), the com-
pression of distance seen in previous work seems to be a regression
to the mean, depending on the context (Petzschner & Glasauer,
2011; Schwartz, 1999).

Angle reproduction errors indicate that participants tended to
overturn small responses—not necessarily small encoding an-
gles—and underturned large responses (for detailed discussion of
angle estimation, see Chrastil & Warren, 2017). As a result, it
appears that the errors in angle reproduction stemmed less from
encoding the turn angle than from executing the required response.
The compression for the response angles was not centered around
the mean, as might be expected from previous studies. Instead,
participants overturned small responses by a large margin and only
underturned large responses by a small amount. Thus, instead of
having the most accurate responses being at 90°, as expected for
the mean value, the most accurate responses came when partici-
pants had to turn 120° to 135°, leaving a 60°–45° internal angle.

These angle reproduction errors yield a striking result when
examined in light of the turn angle errors from the triangle com-
pletion task. In triangle completion, the two most accurate triangle
types (triangle types 4, 6, 60 and 6, 2, 120; compare results shown
in Figure 8B with the patterns seen in Figure 10B), called for
homebound turns of 139.11° and 133.90°, respectively, which fall
within or near this accurate range. Likewise, the errors for the 6, 4,
90 triangle type should be fairly small; the data agree with this
prediction. The 4, 2, 60 triangle type calls for a 90° turn. Accord-
ing to the angle reproduction task, 90° should be overshot by
15°–20°, which falls within the standard error of the actual over-
shoot of 27°. Finally, the two triangle types for which participants
tended to turn not far enough (types 2, 4, 120 and 2, 6, 90) called
for response turns of 160.89° and 161.56°, respectively. Based on
the angle reproduction errors, these responses should be under-
turned by about 10°, which is in line with the actual errors seen in
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the triangle completion task. Thus, the turn required to make an
accurate response in triangle completion may dictate the pattern of
turn angle errors. This observation is supported by the results from
the simulations indicating that execution error makes the largest
contribution to the errors in path integration.

Encoding-Error Model

Our simulations demonstrate that the encoding-error model of
path integration did not successfully describe empirical errors in
triangle completion. The predicted path length and turn angle
errors in the homebound path had a weak correlation with actual
distance errors, and a negative correlation with actual angle errors.
Yet, both our average distance and angle reproduction functions
are similar to those of the encoding-error model. Thus, the source
of the differing results in these two studies must lie either in the
application of these encoding functions, or in the performance of
triangle completion itself. Fujita and colleagues (1993) applied
their aggregate functions to both aggregate and individual triangle
completion data. Their aggregate data matched well, but the indi-
vidual data did not match as well. The current experiment used
individual encoding functions and applied them to individual tri-
angle completion data, with poor results for the encoding-error
model. We also used our average encoding functions to predict an
average participant’s performance. The results of those simulations
produced high correlations for distance errors, but still yielded
negative correlations for angle errors. Thus, when simulating both
individual participant performance and overall average perfor-
mance, the encoding-error model did not capture the errors ob-
served in triangle completion.

In addition to poor simulation results, the experimental data
contradict the encoding-error model in other ways. Violations of
either the first assumption (satisfaction of euclidean axioms) or the
fourth assumption (no integration or execution error) were seen in
instances in which participants had negative turn angles (i.e., they
turned �180°) for the homebound trajectory (e.g., Figure 11,
upper right triangle). Even if encoded poorly, no Euclidean trian-
gle would call for such a response. In addition, the results from the
angle reproduction task violate the encoding-error model’s as-
sumption of no execution error: a 90° turn should be executed
fairly accurately because it lies on a reference axis, but participants
overshot this turn by 15°–20°.

As noted in the introduction, other researchers have attempted to
use the encoding-error model to explain their data. These previous
efforts have been mixed in their assessment. The original
encoding-error model (Fujita et al., 1993) and subsequent positive
tests (Klatzky et al., 1999; May & Klatzky, 2000) stemmed from
blind walking tasks in Loomis et al. (1993) and used blindfolded
participants. Thus, the encoding functions they found may only
apply to nonvisual navigation. Even so, Klatzky et al. (1999) found
inconsistencies in one of the assumptions of the encoding-error
model using a blind-walking paradigm. In purely visual tasks,
Péruch et al. (1997) successfully applied the encoding functions to
triangle completion in desktop VR, but Riecke et al. (2002) did not
have the same success. However, they used feedback during train-
ing on triangle completion, possibly influencing performance. We
used both visual and idiothetic information in the reproduction and
triangle completion tasks. Previous research suggests that both
visual and idiothetic information make similar contributions to

path integration (Chrastil, Nicora, & Huang, 2019; Kearns et al.,
2002; Tcheang et al., 2011). Although our methods differed from
those who used blindfolded walking, the basic assumptions of the
encoding-error model should still hold. However, our findings
went largely against this model.

The results of our simulations, although contrary to some of the
assumptions of the encoding-error model, do not completely dis-
credit the model altogether. Evidence suggests that encoding func-
tions may be context-dependent and can be modified by the
experience of the navigator (Abdolvahab et al., 2015; Arthur et al.,
2012; Chrastil & Warren, 2014a; Klatzky et al., 1999; Petzschner
& Glasauer, 2011; Schwartz, 1999; Turvey et al., 2009), in oppo-
sition to the assumptions of the encoding-error model. However, in
the current study, each participant had their own encoding func-
tions, using a range of values for leg length and turn angle
experienced in both the outbound and return paths of triangle
completion. Furthermore, the size and structure of the environment
were similar for both the triangle completion and reproduction
tasks. Given these restrictions, the assumption of a single encoding
function for each person—at least for the scale and structure of this
environment—seems reasonable. Although it is not necessarily the
case that encoding plays no role in path integration, the simulation
results indicate that encoding alone cannot account for all of the
systematic errors seen in path integration.

Other Models of Path Integration

Because the encoding-error model of path integration proved
inadequate to describe the errors observed during a triangle com-
pletion task, we extended and modified this model in several ways.
We then simulated path integration data for these alternative
models using the same Monte Carlo methods used to test the
encoding-error model. The alternative models showed significant
improvement over the encoding-error model.

The first alternative (Model 2) incorporated execution errors
into the basic encoding-error model. The addition of execution
errors proved to be a significant improvement over the encoding-
error model for predicting the angular errors. Although the corre-
lation coefficient was not significantly better than the encoding-
error model for distance errors, Model 2 had the best slope of any
alternative model. This improvement was so striking that we next
attempted to explain the variance through execution errors alone.
This model (Model 3) also improved predictions for angular error
in the simulations compared to the encoding error model. From
these results, we determined that encoding may make a minor
contribution to path integration errors, but the majority of error
was explained by execution error alone.

Although the encoding-error model showed only limited suc-
cess, the approach was not abandoned altogether. Instead, we
considered the possibility that the reproduction task used to esti-
mate the encoding functions for this model were not appropriate.
As noted earlier, reproduction tasks confound encoding and exe-
cution errors. If the primary source of error in reproduction tasks
stems from execution rather than encoding, as suggested by the
results of the angle tasks (Chrastil & Warren, 2017), then those
encoding functions were heavily weighted toward execution error.
This could be a reason that the encoding-error model (Model 1) did
not perform well. Model 4 returned to a model comprised of only
encoding errors, but used encoding functions derived from inde-
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pendent data (Chrastil & Warren, 2014a; unpublished data), yield-
ing low, but not negligible, encoding error. The resulting simula-
tions had higher correlations with angular errors, but the slopes for
both distance and angle errors were nearly 0. Thus, although the
fits appeared better, this model predicted similar errors for all
triangle types. Finally, Model 5 combined the encoding error
model using our new encoding functions with the addition of
execution error. This model was significantly better at predicting
both distance and angle errors than the encoding-error model.
These results suggest that a model which incorporates small en-
coding errors and large execution errors best describes the errors in
path integration.

The slopes and correlation coefficients for angular error be-
tween Models 2, 3, and 5 were very similar, suggesting that the
addition of execution error was primarily responsible for the
angular component of error (Table 1, last two columns). Unlike for
angular error, distance error was affected by the encoding function
used; the slopes for distance errors between Models 2 and 5
differed quite a bit (.73 and .49, respectively, see Table 1). On the
one hand, Model 2 has a slope closer to 1, but on the other hand,
the correlation effect size is stronger in Model 5. In either case, the
addition of execution error is important for improving the predic-
tive value of the model. These results suggest that encoding error
may make a much smaller contribution than execution error, but
that it is not completely negligible.

Although the encoding-error model showed only limited suc-
cess, it is possible that the encoding functions used in the
encoding-error model were not appropriate for this task. As noted
earlier, it is difficult to measure pure encoding or execution errors,
and so both the encoding functions derived from reproduction data
(Models 1 and 3) and the new encoding functions derived from
subtracting out production errors (Models 4 and 5) could include a
degree of execution error (and vice versa for the execution func-
tions). Under a purely encoding-error model, reproduction tasks
reflect encoding, but it is possible that encoding and execution
compensate for each other in these tasks. In that case, reproduction
tasks might underestimate both encoding and execution errors.
Having two measures of execution in the angle reproduction tasks
gives us greater confidence in those functions, as does the blind
walking measure of production our distance encoding function.
Our attempts at deriving new encoding functions, which minimize
the contribution of execution, are a step in the direction toward
separating these factors. However, we acknowledge that these
functions are not perfect and still include both encoding and
execution errors. Methods for separating encoding and execution
are still not resolved and thus we cannot conclude with full
confidence that execution error is the primary source of error.
However, our results suggest it is a major source of error. Further-
more, the models demonstrate that encoding error alone is not
sufficient to explain path integration errors.

Finally, it is important to consider other limitations of these
models. First, we did not include an explicit term for integration
error—the error involved in computing the trajectory for the home-
bound path—which could be substantial. At present, we have not
found an appropriate method for isolating and quantifying integra-
tion error; thus, integration error cannot be directly added to the
alternative models of path integration. Accurate encoding coupled
with substantial errors in integration could pose a problem for the
idea of a metric cognitive map. Although a metric map assumes

that distances and angles can be measured accurately, it also
requires accurate integration for a global metric embedding. How-
ever, integration errors would be consistent with a labeled graph,
which only requires roughly accurate encoding (Warren, 2019).

Second, all of the models assume that errors add linearly based
on configural path integration. It is possible that a model involving
a homing vector is more appropriate to describe path integration,
although its stepwise error accumulation follows a similar pattern
to that seen in the encoding-error model. As described in the
introduction, the evidence is mixed as to whether human path
integration follows a configurational or homing vector model
(Fujita et al., 1990; Mou & Zhang, 2014; Müller & Wehner, 1988),
although recent behavioral and neural evidence points to both
systems being present (Chrastil et al., 2015; Chrastil, Sherrill,
Hasselmo, & Stern, 2016; He & McNamara, 2018; Wiener et al.,
2011). However, there are no current methods of predicting the
individual differences observed in human path integration using a
homing vector model, whereas configurational models allow for
predicting errors on an individual basis. The dissociation between
position and heading estimations with an allocentric homing vector
(Mou & Zhang, 2014; Zhang & Mou, 2017) could prove informa-
tive as a hybrid model in the future.

Summary and Conclusions

A triangle completion task was used to test the encoding-error
model of path integration. Errors from the open field and hallway
version of triangle completion were similar, indicating that find-
ings in a hallway generalize to other environments. Participants
generally underturned large required turns and overturned small
required turns, and underestimated long distances and overesti-
mated short distances. Angle reproduction showed that errors were
not proportional to the outbound turn angle, but instead to the
required response turn. When the errors from the distance and
angle reproduction tasks were applied to simulations of the
encoding-error model, it did not adequately describe the systematic
errors seen in a triangle completion task. Analysis of the alterna-
tive models revealed that both encoding and execution error con-
tribute to errors in path integration, but with execution errors
playing the dominant role. These results challenge the assumption
that errors in both reproduction tasks and more complex path
integration experiments stem solely from errors in encoding. Er-
rors in triangle completion might not arise from failing to know
where you are, but from an inability to get back home.
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