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Abstract

These are elementary lectures about collider physics prepared for the ICTP summer school on

particle physcs in June of 2011. They are aimed at graduate students who have some background

in computing Feynman diagrams and the Standard Model, but assume no particular sophistication

with the physics of high energy colliders.
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I. INTRODUCTION

High energy colliders are currently our most powerful tools providing information about

short distance physics. With the LHC now gathering data in earnest, this is a very exciting

time with huge potential for new discoveries that may transform our view of physics at the

electroweak scale. Understanding how to make predictions and understand the experimental

results will be an essential part of those discoveries. These notes aim to provide a (very)

elementary introduction to some of the key concepts, hopefully providing a launching pad

for learning from more sophisticated treatments.

They are similar in philosophy to three very nice lectures about collider physics given by

T. Han, T. Plehn and M. Perelstein at previous years of the TASI summer school [1–3] (and

while typing these up in the back of the TASI 2011 lecture hall, L.T. Wang was giving what

promises to be another addition to this list). While the similarities between these reviews

are largely the result of convergent evolution (of thoughts), I did benefit in polishing these

lectures from the previous ones, and readers interested in more detail than I was able to

provide here and/or alternative perspectives are highly encouraged to read them as well.

II. KINEMATICS

Let’s begin by reminding ourselves of what we all learned back in ordinary quantum

mechanics. If we want to study a potential V (~x) by scattering some kind of particle a

off of it, we prepare a beam of particles with four-momentum pa, and measure their out-

going (scattered) four momenta p1 (see Figure 1a). The 4-vector Q ≡ p1 − pa describes the

momentum transfer in each reaction, and the amplitude for scattering for a given Q is given

by the Fourier transform of V :

A(Q) ∝
∫

d3~x ei~q·~x V (~x) . (1)

Since large values of |~q| correspond to small distances, the large |~q| events provide information

about small structure in V .

Most often in particle physics, we are more interested in the short distance physics of

another particle. We can replace V (x) with another particle b, and study the 2→ 2 reaction,

pa + pb → p1 + p2 , (2)
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FIG. 1: Left: a particle scattering off of an external potential. Right: Two particles scattering.

(see Figure 1b) in which case we simultaneously study the short distance interactions between

a and b in the large Q ≡ p1 − pa regime. In fact, particles 1 and 2 need not even be the

same as a and b, so for high enough energies we may succeed at producing new particles we

have never seen before. In any case, energy-momentum conservation implies,

pa + pb = p1 + p2 . (3)

It is easy to choose any coordinate system we like by applying Lorentz transformations to

all four of the momenta. In practice, a convenient choice is the center of momentum (CoM)

frame, in which ~pa = −~pb. Since these momenta define a line (and nothing in the initial

state distinguishes anything going on in the transverse directions1, we can always choose the

axis defined by ~p to be the ẑ-axis. In this case, we can write the 4-momenta of the incoming

particles,

pa ≡ (Ea, 0, 0, p)

pb ≡ (Eb, 0, 0,−p) (4)

where Ea ≡
√
p2 +m2

a and Eb ≡
√
p2 +m2

b so the particles are on-shell. An important

thing to notice is that the quantity p completely specifies the momenta of the initial state

(if our particles have spins we should also define their components along ẑ). We can encode

this information in a Lorentz-invariant way by defining the Mandelstam s variable,

s ≡ (pa + pb)
2 = (p1 + p2)2 = (ECoM

a + ECoM
b )2 (5)

1 Including spins: since we can measure at most one component of the spin (if any) of a and b, we can

choose the spin measurement axis to also be the ẑ-axis.
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where the second equality follows from energy conservation and the last emphasizes that

these are related to the initial energies in the center of mass frame. That final expression

makes it obvious that s ≥ (ma +mb)
2 and it should also be clear that s ≥ (m1 +m2)2.

Now let’s discuss the final state particles 1 and 2. In the CoM frame, they must have

equal and opposite spatial momenta, since pa+pb has only a time-component by construction

in that frame. We can always choose our x̂-axis to lie in the plane formed by ~p1 and ~pa, and

we can write the four-momenta as,

p1 ≡ (E1, p
′sθ, 0, p

′cθ)

p2 ≡ (E2,−p′sθ, 0,−p′cθ) (6)

where E1 ≡
√
p′ 2 +m2

1 and E2 ≡
√
p′ 2 +m2

2 and I have introduced the short-hand notation

sθ ≡ sin θ and so on. Energy conservation tells us that E1 +E2 = Ea +Eb, or written out as

functions of p and p′, that the magnitude p′ is determined entirely by p and the four masses.

Thus, p′ will always turn out the same in a 2→ 2 reaction involving the same particles and

fixed p, and the final state is defined by the scattering angle θ and the (trivial) azimuthal

angle φ which defines the orientation of the x̂-axis.

We can encode the dependence on the scattering angle θ in a Lorentz invariant,

t ≡ (p1 − pa)2 = (pb − p2)2 = m2
1 +m2

a − 2p1 · pa
= m2

1 +m2
a − 2(ECoM

a ECoM
1 − pp′ cos θ) . (7)

Needless to say, if we know s and t, we know everything interesting about the momenta

involved in a 2→ 2 reaction. Notice that t = Q2 from our earlier discussion, and it tells us

about the 4-momentum transfer and the distance scale being probed.

The physical range of t can be easily determined by remembering that −1 ≤ cθ ≤ +1.

Thus, we have:

t1 ≤ t ≤ t0 , (8)

where,

t0,1 =

(
m2
a −m2

1 −m2
b +m2

2

2
√
s

)2

− (p∓ p′)2. (9)
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For very high energy reactions (all energies much larger than all masses):

pa → (
√
s/2, 0, 0,

√
s/2)

pb → (
√
s/2, 0, 0,−√s/2)

p1 → (
√
s/2,
√
s/2sθ, 0,

√
s/2cθ)

p2 → (
√
s/2,−√s/2sθ, 0,−

√
s/2cθ)

and the limits on t become t0 → 0 and t1 → −s. This helps make it clear why we need high

energies to probe short distances: it is not enough to have high energy (large s), but we

need high energy to reach large values of t, for which we have wide angle scattering which

probes short distances.

Before closing the section on kinematics, I should mention that some people define a third

Mandelstam invariant,

u ≡ (p1 − pb)2 = (pa − p2)2 . (10)

Since it is redundant with s and t, we have a relation among the three:

s+ t+ u = m2
a +m2

b +m2
1 +m2

2 . (11)

III. CROSS SECTIONS

If we are looking for events of some kind, we can write the rate at which they occur in a

way which is independent of how we prepare the initial particles going into the reaction in

terms of the cross section σ,

N = σ L ε (12)

where N is the number of events observed, σ is the cross section for the reaction, typically

measured in barns (1 bn = 10−24cm2) or GeV−2. L ≡
∫
dt L is the integrated luminosity,

which represents how much collision data was collected, and can be expressed in barn−1 or

GeV2. Finally, ε is a dimensionless number that represents the fact that particle detectors

typically have a limited efficiency to record every particle produced. In practice, ε is some-

thing the experimentalists need to determine for themselves (and then tell to the world when

they commission their detectors). L is determined by how long the accelerator was running

and collecting data.
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To compute a cross section, we compute the matrix element squared (|M|2) for the

quantum transition of interest, and we sum over the allowed final states,

dσ =
1

2s

(
N∏

i=1

d3~pi
(2π)3

1

2Ei

)
(2π)4 δ(4)(pa + pb −

∑

i

pi) |M(pa, pb → {pi})|2 (13)

where the first factor corrects for the flux of the incoming (treated as massless) particles, and

the 4-delta function enforces energy momentum conservation. If our particles have spins,

we can specify them as part ofM, or (more often) we cannot prepare the spin of the initial

state or measure the spins of the final state. In such cases, we sum over the final spins and

average over the initial ones. We call the matrix element squared after this operation |M|2.

In these lectures, we will always be interested in these summed/averaged matrix elements.

Note that we wrote dσ in the CoM frame, but it is invariant under boosts along the

beam axis, so we will rarely have to worry about that fact. Also notice that each final

state particle has 3 independent momentum components, for 3N total. Since there are 4

energy-momentum constraints, the total number of independent quantities is 3N − 4. In a

2→ 2 reaction, these would be the θ and φ angles describing the final state momenta, where

we previously ignored φ because we knew the matrix element cannot possibly depend on it.

A. Phase Space Recursion

There is a very useful way to rewrite the phase space integrals for complicated many-

particle final states in terms of a two particle final state like the ones we discussed in

Section II. First, let’s introduce some more compact notation. We can represent the phase

space measure for a given particle i by,

dΠi ≡
d3~pi

(2π)3

1

2Ei
. (14)

from which we can build the n-body (particle) phase space,

dΦn(P ; p1, ...pn) ≡ (2π)4 δ

(
P −

∑

i

pi

)
N∏

i=1

dΠi (15)

where P is the incoming 4-momentum (pa + pb in our previous discussion). Our useful

identity is,

dΦn(P ; p1, ..., pn) = dΦn−j+1(P ; pj+1, ...pn) dΦj(q; p1, ...pj)
dq2

(2π)
, (16)
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which in effect takes the whole n-particle phase space and splits it into the phase space to

produce particles j + 1 through n plus a fictitious particle q, followed by the “decay” of q

into particles 1 through j. Since q is just a way to think about splitting the integration up

into smaller pieces, we should integrate over all possible values of the fictitious mass2, q2.

We will make use of this expression for n = 3 (and j = 2) when we discuss e+e− → qq̄g

below. One immediate place where we can see the utility of this kind of decomposition

would be when we have intermediate particles which are close to on-shell inside our matrix

elements. As we will see when we discuss resonances below, such cases will have matrix

elements which can often be approximated as containing δ-functions in q2. Rewriting the

full phase space this way allows us to easily perform the integration over q2 and get some

intuition for what the (otherwise in general complicated) momenta typically look like in such

a reaction.

IV. e+e− → µ+µ−

Let’s think about e+e− → µ+µ−. Since mµ ∼ 200×me, if we have enough energy to make

muons in the first place, it must be a reasonably good approximation to drop me compared

to either mµ or
√
s. So we will treat the electron (but not, for now, the muon) as massless.

Applying our formula for the cross section, Eq. (13),

dσ =
1

8π2s

|~p1|2d|~p1|
2E1

dΩ1
|~p2|2d|~p2|

2E2

dΩ2 δ
(4)(pa + pb − p1 − p2) |M|2 (17)

where dΩi ≡ d cos θidφi and we’ll discuss |M|2 at length later on. For now let’s focus on the

kinematics.

The 3 spatial pieces of the delta function require:

|~p2| = |~p1| ≡ p

θ2 = −θ1

φ2 = π + φ1 (18)

and we can use those three factors to do the d3~p2 integration, with the understanding that

we replace ~p2 → −~p1 inside the matrix element as well as in E2, which is now equal to E1

as a result. We arrive at,

dσ =
1

2s

1

(2π)2

p2

4E2
1

δ(Ea + Eb − E1 − E2) |M|2 dΩ1dp . (19)
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FIG. 2: Feynman diagrams at leading order for e+e− → µ+µ− in the Standard Model.

To use the remaining delta function, it is useful to change the integration over dp into

one over dE. That is easily accomplished by noting that E =
√
p2 +m2, so:

dE =
p

E
dp . (20)

We will also make use of the CoM frame for which Ea + Eb =
√
s. Thus,

dσ =
1

2s

1

(2π)2

p(E1)

4E1

|M|2 δ(√s− 2E1)dΩ1dE1 (21)

dσ =
1

32π2s

p(E1)√
s
|M|2 dΩ . (22)

Since φ1 is trivial (|M|2 does not depend on it), we may as well integrate over it, which

physically just means that we will accept any event where e+e− → µ+µ− independently

from what value φ1 happens to take. The last thing to notice is that by changing variables

from dp to dE1, p has become a function of E1:

p(E1) =
√
E2

1 −m2 =

√
s

4
−m2 =

√
s

2

√
1− 4m2

s
(23)

where one often sees the definition β =
√

1− 4m2/s used in the literature. Altogether, this

leads us to,

dσ

d cos θ
=

1

32πs

√
1− 4m2

s
|M|2(s, θ) . (24)

Of course, all of the interesting stuff is actually the s and θ dependence of |M|2, and we will

discuss this next.

In the Standard Model (SM), there are two Feynman diagrams contributing to the reac-

tion e+e− → µ+µ− at leading order in perturbation theory (see Figure 2). They correspond

to exchange of a virtual photon (γ∗) or Z-boson, respectively. To start out, let’s take
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FIG. 3: Distribution of dσ/d cos θ in e+e− → µ+µ− as well as the dependence of the inclusive cross

section on the incoming energy, σ(s) .

√
s � MZ . In this limit, the Z exchange graph is suppressed compared to the photon

graph, so we can approximate the whole answer as the photon result,

−iM = [ū1ieγ
µv2]
−igµν + ...

s
[v̄bieγ

νua] , (25)

where e is the QED gauge coupling and the ... include terms which drop out in the limit of

zero electron mass. Squared and averaged/summed over initial/final spins, this is:

|M|2 =
e4 (s+ 2m2)

s2

(
1 + cos2 θ

)
. (26)

Thus,

dσ

d cos θ
=

πα2

2s

s+ 2m2

s

√
1− 4m2

s

(
1 + cos2 θ

)
, (27)

where α ≡ e2/(4π) is the usual fine structure constant. This expression indicates that

muons tend to be produced more in both the forward and backward directions, as shown

in Figure 3a. If we integrate this expression over cos θ, we arrive at the dependence of the

inclusive cross section on the initial energy s,

σ(s) =

∫ +1

−1

d cos θ
dσ

d cos θ
=

4πα2(s+ 2m2)

3s2

√
1− 4m2

s
. (28)

This function is plotted in Figure 3b, which shows the sharp turn-on at s ' 4m2
µ and

subsequent fall as 1/s at large energies.

Homework: Derive the θ and energy dependence for production of scalar muons, e+e− →
µ̃+µ̃−. In reality, scalar muons must be heavy enough that it is not a good approximation
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to neglect the Z boson, but neglect it anyway. You should find a differential cross section

proportional to sin2 θ.

The results of the exercise illustrate an important point. Though we cannot directly

measure the spin of the final state particles, we can sometimes infer them through the

kinematic distributions. In this case, the key is that the intermediate particle (photon) is

spin-1. As a result, we can track the flow of angular momentum through the two processes:

e+e− → γ∗ → µ+µ−

S = 1 S = 1 S = 1
versus

e+e− → γ∗ → µ̃+µ̃−

S = 1 S = 1 L = 1

The intermediate photon requires angular momentum J = 1. For ordinary muons, as

fermions, this is most easily realized in the s-wave (L = 0) for an S = 1 spin state. For

scalar muons, there is no spin to make up J = 1, and we are forced to go to an L = 1

(p-wave) configuration, with different angular and threshold energy dependence.

It is worth mentioning in passing that the process e+e− → hadrons begins at lowest order

at energies far below the Z boson mass with exactly the same photon exchange, with quarks

in the final state (since gluons carry no electric charge they cannot be produced at lowest

order in perturbation theory) instead of muons, and the replacement of the muon electric

charge by the quark charge, effectively multiplying the cross section by Nc

∑
Q2
q, where

Q = +2/3 for the up-type quarks and −1/3 for the down-type quarks and Nc = 3 counts

the three colors of each quark. We’ll say more about this below in Section V, but for now

let’s note an important point: just being able to produce new particles already can lead us

to discover them! In fact, both the charm and bottom quarks were discovered by looking at

the process e+e− → hadrons as a function of energy. If we define a quantity normalized to

the muon rate,

R ≡ e+e− → hadrons

e+e− → µ+µ−
. (29)

It effectively just counts the number of quarks we have enough energy to produce, weighted

by their electric charge squared. In Figure 4 we see a plot of experimental data for this ratio,

including the jumps it experiences when the collider has enough energy to produce pairs of

charm or bottom quarks.

Now let’s go back to the Z-exchange diagram. It looks a lot like the photon graph,

with the difference that the Z itself has a non-zero mass and the couplings to electrons and
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6 41. Plots of cross sections and related quantities

σ and R in e+e− Collisions
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Figure 41.6: World data on the total cross section of e+e− → hadrons and the ratio R(s) = σ(e+e− → hadrons, s)/σ(e+e− → µ+µ−, s).
σ(e+e− → hadrons, s) is the experimental cross section corrected for initial state radiation and electron-positron vertex loops, σ(e+e− →
µ+µ−, s) = 4πα2(s)/3s. Data errors are total below 2 GeV and statistical above 2 GeV. The curves are an educative guide: the broken one
(green) is a naive quark-parton model prediction, and the solid one (red) is 3-loop pQCD prediction (see “Quantum Chromodynamics” section of
this Review, Eq. (9.7) or, for more details, K. G. Chetyrkin et al., Nucl. Phys. B586, 56 (2000) (Erratum ibid. B634, 413 (2002)). Breit-Wigner
parameterizations of J/ψ, ψ(2S), and Υ(nS), n = 1, 2, 3, 4 are also shown. The full list of references to the original data and the details of
the R ratio extraction from them can be found in [arXiv:hep-ph/0312114]. Corresponding computer-readable data files are available at
http://pdg.lbl.gov/current/xsect/. (Courtesy of the COMPAS (Protvino) and HEPDATA (Durham) Groups, May 2010.) See full-color
version on color pages at end of book.

FIG. 4: The ratio of production of hadrons in e+e− annihilations to production of muons, as a

function of the center-of-mass energy, and for a variety of high energy experiments, from [5].

muons are chiral (meaning: they couple differently to left- and right-handed fermions). We

will assume that the Z couplings to electrons and muons are equal, as is predicted by the

Standard Model and verified to exquisite accuracy [4]. The matrix element is,

−iM = [ū1iγ
µ (gRPR + gLPL) v2]

−igµν + ...

s−M2
Z

[v̄biγ
ν (gRPR + gLPL)ua] , (30)

where PL/R are the left-handed/right-handed projectors and once again the ... refer to terms

that vanish for the massless electrons. We can see from the propagator denominator that

this graph will get very large when s ' M2
Z , which will allow us to neglect both the muon

mass and the photon exchange contribution for such energies.

In fact, things seem problematic for s ' M2
Z – the amplitude not only becomes large,

but seems to be infinite right at M2
Z . Such behavior is obviously unphysical. In fact, it is

an artifact of our working to leading order in perturbation theory. At the next-to-leading

order, the denominator of the propagator picks up an imaginary part,

G−1(p2) = p2 −M2
Z + iMZΓZ (31)

from diagrams such as those shown in Figure 5. (That Feynman graph also corrects the real

part of the propagator, and those corrections turn out to be UV divergent, and require both
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FIG. 5: First order correction to the Z propagator from a loop of fermions.

mass and wave function renormalization – but the imaginary part is finite). The optical

theorem relates the imaginary part of the loop amplitude to the intermediate particles going

onto their mass shells, and thus is guaranteed to produce the actual decay width2. Having

included the imaginary part of the propagator, |M|2 is now proportional to,

|M|2 ∝ 1

(s−M2
Z)

2
+M2

ZΓ2
Z

, (32)

the famous Breit-Wigner function (see figure 6).

The chiral couplings of the Z lead to a more interesting angular dependence:

|M|2 =
s

(s−M2
Z)

2
+M2

ZΓ2
Z

{(
g2
L + g2

R

)2 (
1 + cos2 θ

)
+ 2

(
g2
L − g2

R

)2
cos θ

}
(33)

which we can use to separately extract |gL|2 and |gR|2 by studying the angular distributions

of the outgoing muons from Z decays. Let’s see how this works.

LEP produced millions of approximately on-shell Z bosons through e+e− annihilation.

From here, one easy quantity to derive is the number of Z → µ+µ− decays divided by the

number of Z → hadron decays,

Rµ ≡
e+e− → Z → µ+µ−

e+e− → Z → hadrons
(34)

It is somewhat amusing that Rµ = 1/R in terms of the quantity we looked at before at

lower energies to discover the c and b quarks. Since this quantity accepts muons no matter

at which θ they are produced, we integrate dσ/d cos θ over cos θ. The term proportional to

2 You can find a much more detailed discussion along with many models of resonances discussed in my

lectures at TASI-08 [6]. A copy of these lectures should be posted as supplementary information on the

school website, and can also be obtained from my UCI home page. Note that they are aimed at a slightly

higher level than these lectures!
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cos θ integrates away, and we are left with a prediction for Rµ:

Rµ =
(gµ 2
L + gµ 2

R )∑
q(g

q 2
L + gq 2

R )
, (35)

which measures the sum of the muon couplings squared relatively the sum over couplings to

all quarks which are light enough to appear in a Z boson decay: u, d, s, c, and b.

A second useful quantity to measure is the “forward-backward asymmetry”, which mea-

sures the number of muons which go forward (cos θ > 0) compared to the number which go

backward (cos θ < 0),

AµFB =
NF −NB

NF +NB

(36)

Taking our differential cross section and performing the integrals results in,

AµFB =
3

4

(gµ 2
L − gµ 2

R )

(gµ 2
L + gµ 2

R )

(ge 2
L − ge 2

R )

(ge 2
L + ge 2

R )
(37)
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where just to make a point, we have separated out the electron from the muon couplings,

despite their being equal in the SM. We sometimes define the asymmetry

Aµ =
(gµ 2
L − gµ 2

R )

(gµ 2
L + gµ 2

R )
(38)

for which AµFB = 3/4AµAe. We can define a similar Af for any fermion f for which we

can measure cos θ. In practice, this is all three charged leptons, e, µ, and τ , and the heavy

quarks b and c (whose decays into leptons tell us whether we have a heavy quark or a heavy

anti-quark3 experiencing the decay. Obviously the top quark does not arise from Z decays,

but we can use the same technique to measure a forward-backward asymmetry for it at

Fermilab.

Homework: Derive |M|2(e+e− → Z → ff̄) for an arbitrary fermion f . Derive Rf and

AfFB, and check your predictions for Rb and AbFB against their measured values [4].

V. e+e− → HADRONS

We have already seen the basics of e+e− → hadrons. At lowest order in perturbation

theory, we can compute the rate into qq̄ pairs, and sum over all of the quarks accessible at

the energy of interest. In practice, we should still worry about a few details:

1. Because the QCD coupling strength gS is not very small, we should worry about the

possibility that there could be a reasonably large chance to radiate additional quarks

or gluons which will appear in our description of the final state.

2. Quarks and gluons are not asymptotic states. Because of confinement, they are con-

fined into colorless hadrons which are what actually interact with particle detectors.

A. Hadronization

Let’s discuss the second issue first, even though it is somewhat later in our picture of how a

given event evolves from the initial annihilation to being detected. We have perfect evidence

3 Nonetheless, it is a subtle determination because meson-anti-meson mixing confuses things.
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FIG. 7: Schematic picture for hadronization.

that quarks and gluons are always confined at large distances into hadrons. However, because

this involves QCD at very low scales, the coupling is large and we can’t use perturbation

theory to understand it quantitatively. We can get some information from nonperturbative

numerical simulations (such as lattice QCD), but even so, the state of the art is far away

from being able to describe very complicated configurations of partons, such as occur in high

energy collider reactions.

As a result, we have no first principles description of hadronization. To turn a set of

models into a set of hadrons, we have to rely on models (popular computer codes such as

PYTHIA [8] or HERWIG [9] contain different models, and it is worthwhile to remember that

while all of them are reasonable, none of them are really absolutely correct). To discuss a

definite picture, I will consider a “string”-like model, similar to (but not really the same as)

the one used by PYTHIA.

First consider a qq̄ pair, as shown in Figure 7a. Because of confinement, as they are

produced and move away from one another (assuming they have some kinetic energy when

created), a flux tube of gluon field stretches between them and tries to confine them. While

we don’t know much about this process, we can guess that the characteristics of the flux

tube are determined by the scale of nonperturbative QCD, Λ ∼ 300 MeV. In particular, up

to order one numbers we can expect that the transverse sides of the tube are of order ∼ 1/Λ
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and the energy density inside the tube is Λ4. Thus, the total energy contained in the string

is:

E ∼ Λ2L (39)

where L is the string length, or in other words, the distance between the q and the q̄.

As the quarks move apart, the string stretches, converting the kinetic energy into the

energy of the flux tube. This can continue either until the quarks run out of kinetic energy,

or there is enough energy stored in the flux of glue to create a q′q̄′ pair. I write these as q′

to emphasize that these could be differently flavored quarks than the ones I started with. In

practice md ∼ mu and ms (and even in most cases mc and mb) are very small compared with

the typical energies we encounter at modern colliders. After the creating the new pair of

quarks, the string “snaps” into two strings, neither of which see any large color charge from

the other, and so continue to evolve independently from one another (Figure 7b). Provided

the quarks at its endpoint still have enough kinetic energy, each string will continue to grow,

and continue to snap into pairs of light quarks when it can. Ultimately, this process will end

when every quark has kinetic energy of order ∼ Λ. At this point, the strings stop growing

and we can identify the resulting hadrons by identifying each string with a meson4. An

(overly simplified) example starting from the initial production of a pair of energetic strange

quarks is shown in Figure 7c.

In practice the probability for the string to snap into a given flavored pair of quark

and anti-quark and the probability for given final string whose end-points correspond to a

comibation of one flavor and one anti-flavor to turn into a particular hadron are all described

by parameters in the model which can be tuned to match data. Experience has shown that

a certain amount of retuning of these parameters will need to be done at each new collider

or center-of-mass energy to keep the predictions reasonably accurate.

Moral: We don’t quantitatively understand hadronization. If you are designing a measure-

ment which depends very sensitively on the details of how it happens, you should treat

whatever model you are using with deep suspicion. The differences between competing

hadronization models may be large, and the spread in results they give may not capture the

4 Realistic models will also produce baryons, but this is beyond the scope of our cartoon discussion.
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FIG. 8: Feynman diagrams for qq̄g production. The blue circles represent any interaction which

can produce a qq̄ pair; in the explicit calculations I will assume that this was a vertex for an

incoming γ∗.

extent of the uncertainties in the model’s predictions.

B. Extra Radiation : The Parton Shower

Now let’s approach the second issue, the possibility of extra radiation. We know that in

perturbation theory, the lowest order production of hadrons starts with e+e− → qq̄. The

first possibility for radiation is from the process,

e+e− → qq̄ + g (40)

(see Figure 8) which is O(αS) compared to the leading rate. If we are working at high

energies, say s ' M2
Z , αS ∼ 0.1, which is big enough that we need to be careful, but small

enough that we can hope that perturbation theory can teach us something about how it

works. The matrix element for producing qq̄ along with a gluon of color index a is,

−iM =

[
ūf igSλ

a 6 εgi
(6pq+ 6pg +mq)

(pq + pg)2 −m2
q

γµvq̄

]
+

[
ūqγ

µi
(− 6pq̄− 6pg +mq)

(pq̄ + pg)2 −m2
q

igSλ
a 6 εgvq̄

]
(41)

where λa is the Gell-Mann color matrix, εµg is the gluon polarization vector, and gS is the

strong coupling constant. I have included the gamma matrix γµ alluding to the possibility

that our original qq̄ pair were the result of virtual photon exchange, but it should become

clear very soon that the actual production mechanism of the qq̄ is not important, and our
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results will hold equally well for production through exchange of a Z boson or any other

particle (not necessarily s-channel or even a vector).

Let’s focus on the graph where the gluon is radiated from the quark. We have kept

the quark mass, despite the fact that we are interested in high energy production where

E � mq. In general, we will go ahead and ignore mq, but it is helpful to remember where

it appears as we proceed with the discussion below. The propagator can be expanded in

terms of the final state gluon energy Eg, the final state quark energy Eq, and the angle in

between their spatial momenta θqg:

(pg + pq)
2 ' 2pg · pq = 2EgEq (1− cos θqg) (42)

we can see that there are two problem regions where the graph becomes large:

Eg → 0 : soft region

cos θqg → 1 : collinear region

For both regions, the propagator denominator seems to vanish (at least for mq → 0), and

the amplitude becomes large. These facts already motivate the idea that there is a large

probability for there to be extra soft or collinear radiation present. However, we can work

at a more quantitative level to see how this works explicitly.

As we proceed, it will be useful to switch notation slightly. Let’s call by pq the original

quark 4-momentum, before it splits into the final quark carrying momentum pf and the

final gluon momentum pg. We’ll choose to align our ẑ-axis along the direction of the original

quark 3-momentum and the x̂-axis along the direction of the emitted gluon momentum

which is transverse to the ẑ-axis. In order to split into a real gluon and final quark, that

means the original quark must be slightly off-shell. So we can write:

pq = (E, 0, 0, p)

pg =

(
zE, zpT , 0, z

√
E2 − p2

T

)

pf =

(
(1− z)E, − zpT , 0,

√
(1− z)2E2 − z2p2

T

)
(43)

where z is a real number between zero and one which measures the fraction of energy from the

original quark carried away by the gluon, and the ẑ components of pf and pg are determined

by the fact that they are final state (approximately) massless particles. In this language,

the soft region is z → 0 and the collinear region is pT → 0.
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FIG. 9: Virtual gluon exchange.

First, let’s discuss the soft region. A gluon with no energy essentially does not exist.

It cannot escape from the quark nearby to it, and is really nothing more than a label

keeping track of color. It will get bound inside whatever hadron captures the nearby quark.

Thus, from the point of view of observation, it is not distinguishable from just having a qq̄

final state. Thus, to consistently speak about this order of perturbation theory, we should

include the one-loop diagram with a gluon attached to the quarks (Figure 9). This gluon is

completely virtual and the graph’s interference with the leading order production is the same

order (LO × αS) as the emission diagram squared. The Kinoshita-Lee-Naumberg (KLN)

theorem guarantees that the soft singularity in the one-loop and the emission diagrams will

cancel at any order in perturbation theory. Thus, once we properly sum the one-loop and

the soft region of the real emission diagrams appropriately, we need not worry.

The collinear region is defined by small pT . If we expand the quark propagator momentum

pq as a series in pT/E, we find

p2
q '

z p2
T

(1− z)
(44)

In this limit, the matrix element for our first Feynman diagram becomes,

M1 → [ūf igSλ
a 6 εgi(6pq +mq)γ

µvq̄]×
(1− z)

z(p2
T +m2

q)
, (45)

where I have reintroduced m2
q just to act as a regulator for the collinear divergence, and I am

being a little careless with the numbers that multiply it for that reason. Since for pT → 0, pq

goes on-shell, we can replace it with a sum over polarizations of the corresponding on-shell
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spinor5:

6pq +mq →
∑

(s)

u(s)
q ū(s)

q . (46)

and the matrix element separates into two factors:

M →
∑

(s)

−igS
[
ūfλ

a 6 εgu(s)
q

]
× (1− z)

z(p2
T +m2

q)
×
[
ū(s)
q γµvq̄

]
(47)

where the first factor describes the emission of the gluon and the second factor is just the LO

matrix element to produce the original qq̄ pair. It should be pretty clear from the derivation

here that this factorization of the amplitude occurs independently of how the original qq̄ are

produced: a different production process will just result in the appropriate matrix element

appearing as the rightmost factor in the expression. We say that in the collinear limit, the

amplitude factorizes into the leading order production matrix element times a factor that

is always the same for any collinear gluon emitted from a quark, regardless of where that

original quark actually came from. It should also be clear that we can repeat this argument

for the second diagram where the anti-quark emits the gluon, and we will find the same kind

of factorization. In fact, with some thought you should be able to convince yourself that the

same kind of reasoning can be applied to graphs with multiple collinear gluons emitted. As

long as they are all collinear, each emission produces the leading e+e− → qq̄ matrix element

times a product of factorized sub-amplitudes which describe the splitting of a quark into a

quark + a collinear gluon as a function of its energy fraction and relative pT .

For our specific process, we have found,

M(e+e− → qq̄gcollinear) = M(e+e− → qq̄)× (1− z)

z(p2
T +m2

q)
×M(q → qgcollinear) (48)

whereM(q → qgcollinear) is a function of z, the fraction of energy that the gluon takes from its

parent quark, and depends on the relative pT between the parent quark and radiated gluon

as 1/p2
T . To turn this into a cross section, we square the matrix element, and integrate over

the final state momenta. Let’s introduce some short-hand:

dΦ3(pf , pg, pq̄) ≡
d3pf

2Ef (2π)3

d3pg
2Eg(2π)3

d3pq̄
2Eq̄(2π)3

(2π)4δ4(pa + pb − pf − pg − pq̄) (49)

5 I learned this trick from [3]. It makes this derivation MUCH clearer than the alternative I had planned

to use.
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and now we can write the cross section by splitting the integration between the collinear

and noncollinear regions as:

σ(e+e− → qq̄g) =

∫
dΦ3(pf , pg, pq̄) |M(e+e− → qq̄g)|2

=

∫

p2T<µ
2

dΦ3(pf , pg, pq̄) |M(e+e− → qq̄)|2 × (1− z)2

z2(p2
T +m2

q)
× |M(q → qgcollinear)|2

p2
T

+

∫

p2T>µ
2

dΦ3(pf , pg, pq̄) |M(e+e− → qq̄gnc)|2

where we have introduced a scale µ which defines what we consider to be collinear or non-

collinear, and we organized the (p2
T + m2

q)
2 denominator with one factor together with the

matrix element for collinear splitting because it will eventually turn out to be proportional

to p2
T , and so this factor is actually independent of pT . Note also that I should have also

separated out the part where the pT between the gluon and q̄ is less than µ, but it is easy

to follow our derivation and reconstruct these terms, so I will leave it for you to do.

In principle we can choose any value for µ that we find convenient, but in practice we

should choose µ small enough that the approximations made in the first term’s matrix

elements are valid. The second (noncollinear or “nc”) term contains no problematic prop-

agators, and so we can expect that it will be naturally of order αS ∼ 0.1 times the LO

diagram. In other words, it is a small correction to the LO rate, and does not qualitatively

change the picture, but instead is a modest quantitative correction to it.

Now let’s finish up with the collinear term. We can rewrite the phase space integrals as:

dΦ3(pf , pg, pq̄) = dΦ2(P ; pq, pq̄) dΦ2(q; pf , pg)
dp2

q

2π
(50)

where we used our phase space recursion decomposition, Eq. (16). The region with small

pT is also the region with p2
q ' 0 (see Eq. (44)), so we can convert the integration over p2

q

into an integration over p2
T :

dp2
q =

z

1− zdp
2
T . (51)

Note also that for small p2
q, inside the collinear term we have |M(e+e− → qq̄)|2dΦ2(P ; pq, pq̄),

which integrates

where in the second equality of the last line, I went ahead and did the integral over

dφ. Combining this with our factorized matrix elements, and doing the integrals over
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dΠq dΠq̄ dp
2
T , we find:

σ(e+e− → qq̄gcollinear) =

∫
dz

1

16π2

[
(1− z)4

z3

|M(q → qgcollinear)|2
p2
T

]
log

(
µ2

m2
q

)

× σ(e+e− → qq̄) (52)

We can work out the matrix element squared for gluon emission as a function of z. It’s

customary to extract out the g2
S and the sum/average over colors from it, and write,

σ(e+e− → qq̄gcollinear) = σ(e+e− → qq̄) × αS
2π

4

3
log

µ2

m2
q

∫
dz Pq→g(z) (53)

where

Pq→g(z) =
1 + (1− z)2

z
(54)

is called the splitting function.

Homework: Derive the splitting function Pq→g(z) by squaring the matrix elementM(q →
qgcollinear) and summing and averaging it appropriately over spin and color.

These results make it clear why jets of partons ultimately emerge from production of a

single hard parton. A collinear splitting produces a factor6 of αS × log(µ2/m2
q). If µ >> mq

(and I’ll say more about this below), the rate for producing the qq̄ pair together with a

collinear gluon can be greater than the rate of production of a qq̄ pair by itself, because

the log can compensate for αS. This is an indication that usual perturbation theory is

sick, and can’t be trusted. However, the fact that this badly behaved region also leads to

factorization means that if I am clever, I can “re-sum” those parts of phase space to all orders,

because I can easily write down the expression to any order I want, given the leading order

matrix elements and the splitting functions. The showering Monte Carlo programs use the

factorization theorem to numerically estimate how likely it is to get a given configuration

6 I should mention again at this point that because of confinement, mq is not particularly meaningful as

a kinematic quantity. Any light quark of low enough energy for me to “notice that it has a mass”, is

really confined in a hadron. So it would be more appropriate to replace mq by Λ, the QCD scale, in the

logarithm. This choice also more easily allows us to hand off a “showered” simulation of an event to a

hadronization model.
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of collinear partons. Since the parton shower is derived from perturbative QCD, we can

trust it to describe the collinear region pretty accurately. Where we should not trust it is to

correctly describe additional radiation at wide angles – we need the exact matrix elements

to describe those kinematics.

One should keep firmly in mind that the scale µ is something we invented to conveniently

cut up the phase space of the gluon. The original problem knew nothing of such a scale,

and just as in the case of renormalization, we can sometimes use this fact to our advantage.

Since we were able to compute the dependence of the collinear piece of term and found it to

go like log µ2, we know that this explicit dependence must be cancelled by the noncollinear

piece, which must also contain an implicit log dependence on µ. Since µ is dimensionful

and the argument of a log should be dimensionless, something from the high energy process

needs to appear to cancel the dimensions of µ in the argument of the log. In the case of

e+e− → qq̄g, the only dimensionful quantities are the Lorentz invariants which describe the

initial state beam momenta and the final state parton momenta. For this process, all of

these are of the order of the Mandelstam s variable. So I should choose µ2 ∼ s in order to

keep perturbation theory in the noncollinear terms under control. In practice, if someone

has already done the complete higher order calculation, I know exactly which invariants

appear together with µ in the logs, and I can make a more informed decision about how to

choose it.

A few comments to wrap up this discussion: First of all, notice that the discussion

of collinear emission made to reference to confinement. In fact, for high enough energy

processes involving low enough mass fermions, we are guaranteed to get into a regime where

perturbation theory breaks down and needs to be improved in the way we have discussed.

This is even true for QED at energies where log(s/m2
e) ∼ 1/α. The reason for jets of

collinear particles is not really because the coupling is strong, but instead because quarks

and gluons are (nearly) massless; the strength of the coupling determines at which energy

the phenomenon emerges, not the fact that it occurs.

C. Jets

In practice, the parton shower takes a primary hard parton and turns it into a whole

collection of softer partons (and eventually via the hadronization model, hadrons) moving in
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roughly the same direction. These spread out and hit slightly different parts of the detectors,

resulting in an experimental problem in which we need to correctly group the individual

detector cells together to reconstruct the energy of the original parton. In practice, this can

only ever be a statistical game, in which one designs an algorithm for clustering hadrons

together which works most of the time. The code FastJet [10] provides some tools one can

use to implement many of the popular jet algorithms with relative ease.

For simple purposes, it is not completely crazy to work at the level of the hard partons

and treat the initially produced quarks and gluons as cones of energy centered on the parent

parton momentum. More detailed questions depend on correctly simulating the parton

shower and choosing a jet algorithm, but if your question doesn’t require deeply rigorous

treatment, this is not a bad place to start. A rule of thumb is: for jet energies on the order

of hundreds of GeV, a typical high energy particle detector will be able to detect its presence

with very high efficiency, and the complications of showering and jet clustering will smear

the reconstructed energy relative to the parent parton and spread out the jet constituents

into roughly a cone centered on the parent parton.

VI. HADRON COLLIDERS

Hadron colliders are currently the tools which provide the most energetic reactions. As

of a few days before this writing, the LHC experiments have collected ∼ 1 fb−1 and the

next year will find them well-poised to make significant statements about the Higgs and

new physics.

The really new feature of high energy hadronic reactions is the fact that any given re-

action involves partons carrying a fraction of their parent hadron’s energy. As a result, for

any given event we do not control the initial state at the parton level and instead see a

statistical distribution of combinations of quarks and/or gluons carrying a distribution of

initial energies.

A. Parton Distribution Functions

The initial mapping from a parent hadron to a child parton carrying a fraction x of its

parent’s energy is described by the parton distribution functions (PDFs) typically denoted
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FIG. 10: Schematic picture of a hadron undergoing high energy scattering through one of its

constituent partons.

fp/H(x, µ), where p labels the parton participating in the large energy scattering, H is the

type of parent hadron, and x the fraction of the hadron’s energy carried by the parton7.

There is a schematic picture in Figure 10. A factorization theorem similar to the one derived

above allows us to define universal PDFs for all high energy processes. These theorems are

really the key to our understanding of hadronic collisions: we have a limited set of functions

which we can measure carefully at one experiment, and the same functions allow us to make

predictions at future experiments.

In principle, describing the matrix elements for the overlap of the initial hadron state

with the intermediate “initial” partons is just as nonperturbative and incalculable as the

hadronization models described above. The difference is that because we have isolated

the nonperturbative input into a relatively small number of functions for which we have a

wealth of precise data, these functions are actually pretty well known. The initial partons

can also radiate quarks and gluons, and have the same collinear singularities we saw in the

final state of e+e− → qq̄g when the internal parton goes on the mass shell. Once again,

a factorization scale µ describes the division of phase space into collinear (enhanced) and

noncollinear (perturbative correction) regimes. Thus, when one measures the PDFs, one

7 In fixed target collisions, x should be interpreted as the fraction of the light cone momentum p+
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needs to choose a scale in the perturbative calculation, and the PDFs become functions of

this scale choice. However, since we understand the dependence on this scale in terms of

the splitting functions, we know how to use perturbation theory to evolve the PDFs at one

scale into any other scale at which αS is perturbative. So in principle, if we had a perfect

measurement of the all of the PDFs at one scale, we would know them at any other scale.

In practice, the PDFs are global fits to data collected from observables characterized by a

variety of scales.

Much of the data driving the fits to the PDFs was collected at the HERA collider, an

e±p machine operating at a center of momentum energy of 318 GeV. The basic process is

depicted in Figure 10. We can relate the cross section for proton-electron scattering (which

for low momentum transfer can be approximated as pure photon exchange) at lowest order

in perturbation theory as,

σ
(
pe− → e− + jet

)
=
∑

q

∫
dx

x
fq/p(x, µ) σ

(
q(xEp)e

− → e− + jet
)
. (55)

By measuring the out-going electron kinematics (and knowing its incoming energy), one can

reconstruct the momentum transfer (which provides an appropriate choice for µ) and the x

of a particular collision. At higher orders in perturbation theory, one also becomes sensitive

to the gluon distribution.

You can find global fits of the set of f(x) to very large sets of data available in easy-to-

use packages such as MSTW [11] or CTEQ [12]. In Figure 11, we show the MSTW PDFs,

plotted as xf(x) for two choices of factorization scale as a function of x. The width of each

band represents a measure of the uncertainty in that particular function. A few obvious

trends are that all of the PDFs fall quickly as x→ 1, and at very large momentum fraction

x the valence u and d quarks dominate. At smaller x, the gluon (which is divided by 10 in

the figure) is the single largest contributor. One can obtain the PDFs for anti-protons by

replacing the valence quarks u↔ ū and d↔ d̄ in the proton PDFs. The PDFs for neutrons

are obtained by replacing u↔ d and ū↔ d̄.

The fact that high energy collisions actually involve partons carrying a fraction of the

parent hadron complicates the analysis of the reactions somewhat. Consider the collision of
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Fig. 14. MSTW-2008 pdf’s at Q2 = 10 GeV2 and 104 GeV2. The width of the lines indicates the error bars. From Ref.8

that, as Q is increased, new partons are added that come from collinear splittings of the original partons.

Since splitting always lowers x, this increases density at low x and suppresses it at high x. This effect can be

clearly seen in Fig. 14. Since splitting amplitudes are proportional to the QCD coupling constant evaluated

at the scale Q, the speed of the evolution decreases with Q due to asymptotic freedom of QCD.

3.2. Electroweak Gauge Boson Production

As an example of a hadron collider process, let us consider production of a single Z boson. We will first

compute the total production cross section of the Z at the Tevatron and the LHC, and then proceed to

discuss its kinematic distributions.

3.2.1. Cross Section

At leading (tree) level in perturbation theory, the Z can only be produced in qq̄ collisions, with cross section

σ(qq̄ → Z) =
4π2

3

Γ(Z → qq̄)

MZ
δ(ŝ − M2

Z) , (71)

where Γ(Z → qq̄) = ΓZ · Br (Z → qq̄) is the partial decay width of the Z in the qq̄ channel. At the hadron

level, this yields

σ(pp → Z + X) =
4π2

3

ΓZ

MZ

∫ 1

0

dx1

∫ 1

0

dx2

∑

q

2fq(x1, Q)fq̄(x2, Q) Br (Z → qq̄) δ(x1x2s − M2
Z) . (72)

The same formula applies to pp̄ collisions, with the substitution

2fq(x1, Q)fq̄(x2, Q) −→ fq(x1, Q)fq(x2, Q) + fq̄(x1, Q)fq̄(x2, Q) . (73)

FIG. 11: MSTW parton distribution functions plotted as xf(x) versus x at two different energy

scales. The width of each band reflects the uncertainty at that point. From [11].

p and p̄ (such as at Fermilab) to produce a lepton pair:

σ
(
pp̄→ e+e−

)
=
∑

q

∫
dx1

x1

dx2

x2

{
fq/p(x1)fq̄/p̄(x2) σ

(
q(x1Ep)q̄(x2Ep̄)→ e+e−

)

+ fq̄/p(x1)fq/p̄(x2) σ
(
q(x2Ep̄)q̄(x1Ep)→ e+e−

)}
(56)

where I have suppressed the PDF dependence on µ just to keep the expression more compact

and explicitly used the fact that in the Standard Model, only quarks and anti-quarks of the

same flavor can annihilate at tree level into leptons. The two terms keep track of the fact

that it is possible to get the quark out of the proton (and the q̄ from the p̄) or vice-versa

(though looking at Figure 11 makes it clear that it is much more likely that the former will

happen than the latter). Note that σ(qq̄ → e+e−) is the time-reversal of same process we

discussed before. Since under time reversal, s → s and t → t, we already know just about

everything there is to worry about here.

Any given event will correspond to initial parton kinematics described by the values of
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x1 and x2. In practice, nothing we can measure in the hadronic reaction tells us what

these values are, or even whether x1 describes the quark and x2 the anti-quark, or vice-

versa. Thus, even if the lab frame is the center of momentum frame of the hadrons, for any

given event the hard part of the scattering will have a net boost along the beam direction

proportional to x1 − x2, and we need to use measurements of the final state to learn about

the center of momentum collision energy for any particular event. In practice, this makes

searches involving invisible particles like neutrinos (or dark matter) much more challenging

at hadron colliders than at e+e− machines.

B. Cartoon of a Collider Detector

Before discussing some particular observables, it is useful to develop a mental picture

of what a collider detector looks like and how it measures particles. While in principle,

there is a very sophisticated simulation modeling any particular detector, in practice these

simulations are not available to theorists, and we should be able to get roughly correct ideas

for what can or cannot be measured from a simple picture.

To begin with, the angle in a hadron collider is usually expressed in terms of the pseu-

dorapidity,

η ≡ − log

[
tan

(
θ

2

)]
. (57)

η = 0 is the direction perpendicular to the beam axis, and increasing η in the positive sense

moves (in the logarithmic steps) toward the positive ẑ axis. For massless particles, η is

equivalent to the rapidity,

y ≡ 1

2
log

[
E + pz
E − pz

]
. (58)

In practice, we are often sloppy when speaking, and will say “rapidity” even when we tech-

nically mean pseudo-rapidity. For massless particles, this confusion doesn’t really matter,

but it is worth emphasizing that for massive particles they are not the same. In particular,

particle detectors themselves really determine η.

The nice thing about these variables is that for boosts along the beam axis, y transforms

additively. If we do a ẑ-boost characterized by boost parameter β, the transformed rapidity
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is,

yboosted = yoriginal +
1

2
log

(
1 + β

1− β

)
. (59)

The connection between the lab frame and the parton center of momentum frame is given

by,

β =
x1 − x2

x1 + x2

. (60)

Now let’s look at a cross section of a cartoon collider detector. In Figure 12, which

shows a cross sectional slice of the detector looking along the beam line. The detector is

approximately cylindrically symmetric, and has a series of concentric elements centered on

the beam axis designed to catch different types of particles. Moving outward from the beam,

the elements typically include:

• A Silicon tracker with a size on the order of cm, designed to track charged particles

very close to the interaction point. This precise tracker aims to accurately reconstruct
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the tracks close enough to the interaction point so as to be able to detect decays of

heavy quarks separated from the primary interaction point.

• A larger and less precise tracker on the order of ∼ 100 cm, which measures charged

particle tracks (and through their bending in the magnetic field, their momenta).

• An electromagnetic (EM) calorimeter with a size on the order of ∼ m, designed to

measure energies of photons and charged particles.

• A hadronic calorimeter of ∼ m scale size designed to measure the energy of hadrons.

• A muon system which is designed to identify and measure the energy of muons.

These components work together to provide object identification:

• Jets appear as collections of large numbers of hadrons close together in a region of

the detector. Since there are typically many constituents, some electrically charged

and some neutral, a jet will typically have many tracks associated with it, along with

some energy in the electromagnetic calorimeter and a large amount in the hadronic

calorimeter. In addition, radiation and decay of the component hadrons may produce

(typically low energy) photons, electrons, and/or muons inside the jet.

• Bottom-jets are jets initiated by a hard bottom quark. Since they contain a b

quark, they will typically contain a b-flavored hadron, whose typical lifetime can be

long enough that it travels a macroscopic distance before decaying. Since the decay

is displaced from the primary interaction vertex, b-jets can be distinguished from

ordinary jets by reconstructing the secondary vertex associated with the decay.

• Photons will typically deposit most of their energy in the electromagnetic calorimeter,

but being electrically neutral, do not have a track associated with them.

• Electrons will typically lose their energy in the EM calorimeter, and do have a track

associated with the energy deposition.

• Muons have a track, but do not lose much energy until they reach the muon system

in the outer part of the detector.
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• Tau leptons have hadronic decays (also producing neutrinos) which are sometimes

reconstructed as jets with small sizes and numbers of particles, making them very

challenging to identify.

• Neutrinos interact too weakly to be detected at all. Their presence can often be

inferred through seeing an imbalance in the final state momenta of the visible particles.

If there are new kinds of charged or hadronic particles which live long enough to reach

the detectors, they can usually be reconstructed through the unusual way in which they lose

kinetic energy as they traverse the detector elements [13].

C. Resonance Signals

Now let’s look at one of the classic signals of physics beyond the Standard Model: a

resonance. The usual example of a new resonance is a new neutral gauge boson, or Z ′,

which is something that often occurs in theories of physics beyond the Standard Model. For

example, if nature realizes an SO(10) GUT, breaking down to the MSSM involves an extra

diagonal generator which can break at a much lower scale and produces a Z ′. Similarly,

left-right models have a neutral WR, little Higgs theories have an extended gauge sector,

and KK theories may have towers of SM gauge bosons, all of which contain objects which

behave like some kind of Z ′.

If a Z ′ couples to both quarks and leptons, it can contribute to the process qq̄ → e+e−,

in analogy with the SM Z boson exchange graph of Figure 2. Despite the fact that we

don’t know the initial state energies of the colliding partons, we can still easily look for this

kind of new particle by constructing the invariant mass of the final state leptons, Mee ≡√
(pe+ + pe−)2. At tree level, this is actually just the square-root of the partonic Mandelstam

s variable. Since there are also photon and Z boson exchange graphs, we expect to see the

same kind of structure we saw in e+e− → hadrons, with an extra resonance at the position of

MZ′ . The only qualitative difference is that the PDFs will cause the rate to fall off faster than

the 1/s behavior we saw before, because they themselves fall with larger s. This behavior is

illustrated in Figure 13. In practice, the experimentalists can fit the region at small s where

the photon and SM Z boson dominate, and use it to calibrate their background models.

Discovering a Z ′ in this way would immediately give a measurement of its mass, as the
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FIG. 13: Distribution of dσ/dMee in the reaction pp→ e+e−, including the SM γ and Z contribu-

tions, along with a new Z ′ boson .

position of the bump in Mee, and an upper bound on its inclusive decay width, as the width

of the Breit-Wigner. It will turn out to be a measurement of the width if the width is larger

than the experimental resolution on Mee close to MZ′ , and otherwise an upper bound. The

height of the resonance above the SM background can be related to a sum of quark couplings

weighted by PDFs times the branching ratio into e+e− [14–17]. If we can measure several

decay modes, we can get ratios of g2
L + g2

R for as many different fermions as we can identify,

in analogy to the Rf ratios that were useful to analyze the Z boson decays8.

The remaining quantities we would like to measure are the analogues of the AfFB observ-

ables. At the LHC, this is a somewhat subtle point. Because we don’t know which proton

donates the quark and which the anti-quark, we cannot actually define the direction of the

positive ẑ-axis. As a result, for any given event, we can’t tell cos θ from − cos θ, which

means we don’t know how to construct the observable that picks out the g2
L − g2

R depen-

8 In practice, it is probably not convenient to normalize to the decays into hadrons here, because this

channel will have a large SM background from QCD production of two jets.
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dence. However, it is possible to reconstruct something useful in a statistical sense. Since

the valence quark PDFs are much larger than the anti-quarks or the sea quarks, we can

expect that unless the Z ′ has strongly family-dependent couplings, most of its production

will be through a mix of initial states containing uū and dd̄. Since the valence quark PDFs

have support out to larger values of parton x, for any given Z ′ event it is more likely that

the net boost of the system will be in the direction that the incoming quark was traveling

than the anti-quark. Thus, for each event I can choose the positive ẑ-axis along the direction

of the net boost of the e+e− pair, and I will choose it correctly somewhat more often than

incorrectly, and I can extract a meaningful AFB measurement. Interested readers should

consult the more sophisticated discussion which can be found in Ref. [18].

D. Missing Energy Signals

Our second example of a signal of physics beyond the Standard Model is missing trans-

verse momentum. We typically refer to such signals as missing energy, because in practice an

important part of how we construct the momentum of visible particles is through measuring

their energies in the calorimeters and using the on-shell relation together with directional

measurements to reconstruct the momentum.

In general, missing energy signals can occur in the Standard Model when we produce a

weak boson decaying as W → `ν (such as are often produced when a top quark decays) or

Z → νν̄ along with a jet. It also can occur because of mismeasurements of jet energies, which

can create an imbalance in apparent transverse energy, even when there is none in reality. In

theories beyond the SM, we find missing energy in theories containing dark matter which can

be produced at the LHC (i.e. [19] for some studies in the context of effective field theories),

including in cascade decays of other particles such as SUSY or UED [20]; in theories with

large extra dimensions [21], where a KK graviton can be produced which escapes from our

brane world; or any signal whose decays produce W or Z bosons.

To learn about events with missing energy, let’s start with the process

pp → W → `ν (61)

where the W can be of either charge, and the charged lepton ` can be any flavor and will

match that charge. When we move to the partonic cross sections, at leading order we will
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have a qq̄′ initial state. If we could measure all of the particles involved, this process is

very much like producing Z → e+e−: the invariant mass of the neutrino and lepton will

reconstruct something close to the W mass. However, since we can’t detect the neutrino, in

practice things are a little complicated.

We know that the initial state had no momentum transverse to the beam (the x̂ and ŷ

directions), and the initial partons had some net boost (which at the LHC was probably

pointed in the quark direction for the same reasons discussed above) relative to the lab

frame. At the same time, we can measure all three momentum components of the charged

lepton, as well as any extra hard jets that may occur in a particular event. Using momentum

conservation, we infer the x̂ and ŷ components of the neutrino momentum:

~p ν
T = −~p `

T −
∑

jets

~p jet
T (62)

where the notation ~qT reminds us that ~qT is a vector whose non-zero components are only

along the x̂ and ŷ axes9. In practice, we can generalize this definition to include the transverse

components of any particle I can measure in the final state: electrons, muons, jets (including

b and τ -originated jets), and photons, and the missing transverse momentum is the sum of

all of the particles we are unable to detect.

The ẑ component of the neutrino momentum cannot be determined this way, because we

don’t know the boost of the partons along that axis for a particular event. Even if we are

pretty sure that the missing energy is actually a neutrino (and not, say, a WIMP, whose

mass we don’t know a priori and may not be able to ignore), we also can’t reconstruct Eν ,

because we are missing pνz .

While the missing component of the neutrino momentum means we can’t uniquely re-

construct the kinematics of the event, we can make do with what we have. We introduce

the transverse energy of the neutrino, which is defined to be just the part of the energy

we can reconstruct, Ef
T ≡ |~p f

T | for the particle f , which we have assumed is massless. The

transverse mass is defined as,

MT ≡
√(

Eν
T + E`

T

)2 − (~p ν
T + ~p `

T )2 . (63)

It is easy to show that for a `ν pair produced from an on-shell W decay, MT ≤MW . There

9 Transverse projections are not completely trivial. A nice (and readable) guide can be found in [22].
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FIG. 2: The (a) mT , (b) pe
T , and (c) /ET distributions for data and fastmc simulation with backgrounds. The χ values are

shown below each distribution where χi = [Ni − (fastmci)]/σi for each point in the distribution, Ni is the data yield in bin i
and only the statistical uncertainty is used. The fit ranges are indicated by the double-ended horizontal arrows.

TABLE II: Systematic uncertainties of the MW measurement.

∆MW (MeV)
Source mT pe

T /ET

Electron energy calibration 34 34 34
Electron resolution model 2 2 3
Electron shower modeling 4 6 7
Electron energy loss model 4 4 4
Hadronic recoil model 6 12 20
Electron efficiencies 5 6 5
Backgrounds 2 5 4
Experimental Subtotal 35 37 41
PDF 10 11 11
QED 7 7 9
Boson pT 2 5 2
Production Subtotal 12 14 14
Total 37 40 43

used to transport calibrations from the Z to the W sam-
ple. The electron efficiency systematic is determined by
varying the efficiency by one standard deviation. Table II
also shows the MW uncertainties arising from variation
of the background uncertainties indicated above.

Among the production uncertainties, the parton dis-
tribution function (PDF) uncertainty is determined by
generating W boson events with the pythia [17] pro-
gram using the CTEQ6.1M [18] PDF set. The CTEQ
prescription [18] is used to determine a one standard de-
viation uncertainty [8] on MW . The QED uncertainty is
determined using wgrad [19] and zgrad [20], varying
the photon-related parameters and assessing the varia-
tion in MW and by comparisons between these and pho-
tos. The boson pT uncertainty is determined by varying
g2 by its quoted uncertainty [13]. Variation of g1 and g3

has negligible impact.

The quality of the simulation is indicated by the good
χ2 values computed for the difference between the data
and fastmc shown in the figures. The data are also sub-

divided into statistically independent categories based on
instantaneous luminosity, time, the total hadronic trans-
verse energy in the event, the vector sum of the hadronic
energy, and electron pseudorapidity range. The fit ranges
are also varied. The results are stable to within the mea-
surement uncertainty for each of these tests.

The results from the three methods have combined
statistical and systematic correlation coefficients of 0.83,
0.82, and 0.68 for (mT , pe

T ), (mT , /ET ), and (pe
T , /ET ) re-

spectively. The correlation coefficients are determined
using ensembles of simulated events. The results are com-
bined [21] including these correlations to give the final
result

MW = 80.401 ± 0.021 (stat) ± 0.038 (syst) GeV

= 80.401 ± 0.043 GeV.

The dominant uncertainties arise from the available
statistics of the W → eν and Z → ee samples. Thus,
this measurement can still be expected to improve as
more data are analyzed. The MW measurement reported
here agrees with the world average and the individual
measurements and is more precise than any other single
measurement. Its introduction in global electroweak fits
is expected to lower the upper bound on the SM Higgs
mass, although it is not expected to change the best fit
value [1].
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underlying event or additional hadron-hadron interactions. The hard and soft components of
the recoil are modeled separately. A sample of Z boson decays is then used to fix the recoil
momentum scale and resolution, using the imbalance between the transverse momentum of the
Z boson (determined using the well-measured leptons) and the measured recoil momentum.

The magnitude of the systematic uncertainty on the W boson mass due to the recoil modeling
strongly depends on which kinematic variable is used to fit for the W boson mass. For D0 (CDF),
the uncertainties are 6 MeV (9 MeV) for the fit using the transverse mass, 12 MeV (17 MeV)
for the fit with the lepton transverse momentum and 20 MeV (30 MeV) for the fit to the /ET

spectrum.

3 Results

The CDF collaboration analyzed a data-set corresponding to an integrated luminosity of 200 pb−1.
In the muon (electron) channel, 51000 (64000) W boson candidates were identified. In Fig. 1, dis-
tributions of the transverse mass in the two channels are shown. The data points agree well with
the expectation from the parameterized simulation, for the best-fit value of the W boson mass.
A statistical combination, taking into account all correlations, of in total six measurements (elec-
tron and muon channel, using pT(!), /ET or mT) yields mW = 80.413±0.034stat ±0.034syst GeV,
corresponding to a total uncertainty of 48 MeV.

The results of the D0 analysis, based on a data-set corresponding to an integrated luminosity
of 1 fb−1, are shown in Fig. 2. Very good agreement is seen between the 500000 W boson can-
didates in data and the simulation. The three measurements of mW are: 80.401± 0.023stat GeV
for the fit to the transverse mass, 80.400 ± 0.027stat GeV for the lepton transverse momen-
tum and 80.402 ± 0.023stat GeV for the neutrino transverse momentum. Combining these
three measurements, taking into account the strong correlations between them gives mW =
80.401 ± 0.021stat ± 0.038syst GeV, or a total uncertainty of 43 MeV. This is the most precise
single measurement of the W boson mass.

3.1 Combination

The two W boson mass measurements presented here are in excellent agreement with each
other. These measurements and previous Tevatron measurements have been combined, taking
into account correlated systematic uncertainties (due to parton distribution functions, photon
radiation and the W boson width). The combination also corrects the measurements to the
same value of the W boson width. The result, mW = 80.420 ± 0.031 GeV, is in good agreement
with the LEP combined measurement of mW = 80.376± 0.033 GeV. Based on the Tevatron and
LEP measurements, the world average is mW = 80.399 ± 0.023 GeV.
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Figure 1: Distributions of the transverse mass in the muon channel (left) and electron channel (right) in 200 pb−1

of CDF data. The data are shown by the points, the histogram indicates the simulation for the best-fit mW. The
fit range is indicated by the arrows.

FIG. 14: Transverse mass of W boson as measured by D0 (left) and CDF (right) [23].

is a kinematic edge in the MT distribution which is used at Fermilab to measure the W

mass, and is currently the world’s most precise measurement [23].

Sometimes we are pretty sure there was one missing neutrino in an event, and can use

kinematic relations to reconstruct the kinematics. For example, if we are sure that a neutrino

came from W → `ν decay (perhaps because we see evidence that the W itself came from

a top decay, and we reconstruct the remainder of the event including some b-tags), we

can use the fact that we expect the W to be approximately on-shell to reconstruct the

neutrino. If we define its energy as a function of the unknown pz (and inferred px and py),

Eν(pz) =
√
p2
x + p2

y + p2
z, we can approximate,

M2
W ' (p` + pν)

2 = 2p` · pν = 2 (E`Eν(pz)− ~p` · ~pν) . (64)

This equation is quadratic in pz, and thus typically yields two solutions. Sometimes, one

(or both) of them will be unphysical, and can be discarded, but in general there will be two,

and both could describe the actual kinematics. In the case where the W boson itself arises

from a top decay, t → Wb, we could combine both solutions with the ` and the b-jet and

use the one which results in the top closer to being on-shell

VII. OUTLOOK

Colliders are currently our most precise probe of short distance physics. The next few

years will see large increases in the LHC integrated luminosity, and will allow us to probe
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increasingly rarer processes and higher energies. Tools such as understanding of collinear

behavior, parton distribution functions, and carefully chosen variables will be essential to

tease the new physics from the background and ultimately understand what it is. Putting

simple tools such as these together can result in very sophisticated analysis of collider data,

and will be a lot of the fun of seeing what the LHC tells us!
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