M82 starburst galaxy: possible origin of the northern hot spot

Toshikazu Ebisuzaki and Akira Mizuta (RIKEN) Toshiki Tajima (UC Irvine)

contents

- 1. Star burst galaxy M82 and North hot spot
- 2. Bow wake acceleration
- 3. Bending by cosmological filaments
- 4. Future Observations
- 5. Conclusion

M82 galaxy

M82: Nearest Star Burst Galaxy

M82 X-1: 100-10000 Ms BH

Just after the collision with M81

Composite of X-ray, IR, and optical emissions

NASA / CXC / JHU / D. Strickland; optical: NASA / ESA / STSCI / AURA/ Hubble Heritage Team; IR: NASA / JPL-Caltech /Univ. of AZ / C. Engelbracht; inset – NASA / CXC / Tsinghua University / H.4Feng et al.

UC Irvine November 16, 2017

Ground Based Observatories

November 1

TA 507 surface detectors 700 km²

One hemisphere by one instrument

Some (5%) disuniformity due to clouds, continents and moon phase

Arrival Direction Map (Auger/TA)

TA Hot Spot: UHECRs from M82?

He, Kusenko, Nagataki + PRD 2016.

contents

1. Star burst galaxy M82 and North hot spot

- 2. Bow wake acceleration
- 3. Bending by cosmological filaments
- 4. Future Observations
- 5. Conclusion

Eruption of magnetic field in an accretion disk

A Burst of Torsional Alfven Waves

Tajima and Gilden 1987, ApJ 320, 741-745 Haswell, Tajima, and Sakai, 1992, ApJ, 401,

Accretion Disk around a BH

3-D relativistic MHD simulation

Bow wake acceleration

Laser Wakefield

T. Tajima and J. M. Dawson (1979)

FIG. 2. (Color) Plasma density perturbation excited by Gaussian laser pulse with $a_0=1.5$, $k_0/k_p=20$, $k_pL_{rms}=1$, and $k_pr_0=8$. Laser pulse is traveling to the left.

Electron bunch by a single shot of laser beam

Nakamura et al. (2007) Phys. Plasma, 14, 056078

1D Particle-in-Cell simulation

with the code by Nagata2008

Acceleration by pondermotive force at "bow wake"

cosmic ray acceleration and gamma-ray emission

Nine nearby Fermi AGNs

Counterpart name	LII	BII	Class	Redshift	Flux1GeV-100 GeV (erg cm ⁻² s ⁻¹)	Spectral index f	Radio lux(mJy)(6	X Flux erg cm ⁻² s ⁻¹)
NGC 0253	97.39	-87.97	Starburst galaxy	0.001	(6.2+/-1.2) e-10	2.313	2994	6.02E-12
NGC 1068	172.1	-51.94	Seyfert galaxy	0.00419	(5.1+/-1.1) e-10	2.146	4849	4.55E-11
For A	240.15	-56.7	Radio Galaxy	0.005	(5.3+/-1.2) e-10	2.158	255	2.38E-12
M 82	141.41	40.56	Starburst galaxy	0.001236	(10.2+/-1.3) e-10	2.28	6205	2.29E-11
M 87	283.78	74.48	Radio Galaxy	0.0036	(17.3+/-1.8) e-10	2.174	138488	6.30E-11
Cen A Core	309.51	19.41	Radio Galaxy	0.00183	(30.3+/-2.4) e-10	2.763	42000	9.00E-12
NGC 4945	305.27	13.33	Seyfert galaxy	0.002	(7.5+/-1.7) e-10	2.103	5776	2.36E-12
Cen B	309.72	1.72	Radio Galaxy	0.012916	(18.6+/-3.5) e-10	2.325	8890	8.83E-12
NGC 6814 2017/11/16	29.35	-16.02	Seyfert galaxy UC	0.0052 Irvine Novem	(6.8+/-1.6) e-10 ber 16, 2017	2.544	52	1.56E-11

Nine nearby Fermi AGNs (Sky Map)

2MASS galaxy distribution

IPAC/Caltech, by Thomas Jarrett - "Large Scale Structure in the Local Universe: 20The 2MASS Galaxy Catalog", Jarrett in the Action 2004 PASA, 21, 396

M82 X-1 is promising

• $F_{\gamma M82} = 10.2 \times 10^{-10} \text{erg s}^{-1} \text{ cm}^{-2} \rightarrow$ $L_{\rm \gamma M82} = 1.3 \times 10^{42} \, {\rm erg \, s^{-1}}$ 1% of M82 total ← M82 X-1 $L_{\rm UHECR\,M82X-1} = 1.3 \times 10^{39} \,\rm erg\,s^{-1}$ $\leftarrow \frac{L_{\text{UHECR}}}{L_{\text{v}}} = 0.1$ $F_{\text{UHECR M82X-1}} \sim 3 \text{ UHECRs}/100 \text{km}^2/\text{yr}$ $\sim F_{\rm HotSpot}$

Light Curves

Energy Spectra

An AGN-like Jet in M87? X-ray/Radio (flare in 1981)

Xu et al. 2015 ApJ Letters 799, L28

28

Astrophysical Implication

- Hot spot component came from M82

 too near for GZK (D=3.4 Mpc)
 mainly proton
- How about magnetic deflection?
 - We need $B \sim 10 \text{ nG}$ for D = 3.2 Mpc

•
$$\theta = 0.5^{\circ} \left(\frac{D}{Mpc}\right) \left(\frac{B}{nG}\right) \sim 17.4^{\circ}$$

• $\Delta \theta = 0.36 \left(\frac{D}{Mpc}\right)^{1/2} \left(\frac{D_c}{Mpc}\right)^{1/2} \left(\frac{B_r}{nG}\right) \sim 9.4^{\circ}$

contents

- 1. Star burst galaxy M82 and North hot spot
- 2. Bow wake acceleration
- 3. Bending by cosmological filaments
- 4. Future Observations
- 5. Conclusion

UHECR propagation among the cosmological web (1)

Galaxies in Supergalactic plane (|Z|<1 Mpc)

Ryu et al. 2010 ApJ, 710, 1422

We are living on a filament of the cosmological web!

UHECR propagation among cosmological magnetic web (2)

- Huge variation \sim 1-100°
 - Strongly depends on the source location and the path
- Average ~10°at 3 Mpc

•
$$\epsilon_{\rm B} = \phi\left(\frac{t}{t_{\rm eddy}}\right)\epsilon_{\rm turb}$$

- t_{eddy} and ϵ_{turb} : simulation
- ϕ : different simulations with fine meshes

Ryu et al. 2010 ApJ, 710, 1422

How about Cen A and M87/Vir A ?

Cen A

- $D = 4.3 \text{Mpc} \ge D_{\text{M87}} = 3.4 \text{Mpc}$
- In the filaments
- θ , $\Delta \theta \sim 10 20$ degree
- CNO rich?
 - =WR stars in the jets

• M87/Vir A

- $D = 18 \text{ Mpc} \gg D_{M87} = 3.4 \text{ Mpc}$
- In the filaments
 - Virgo centric inflow
- $-\theta, \Delta\theta \sim 60$ degree
- \rightarrow diffuse source along SGP

Galaxies in Supergalactic plane (|Z|<1 Mpc)

全天Map (TA >57EeV, Auger > 57EeV)

UHECR emission: Isotropic or Beaming?

- Radio galaxies: Angle to Line of sight θ>10-20°
 - M87 43°
 - Cen A 50-80°
- Blazers: $\theta < 10^{\circ}$
- No information for M82 X-1
 - Single jet?
- UHECR beam may suffer from the from the local magnetic field

Background Component: Numerous number of Distant Sources Ebisuzaki and Tajima 2014

• Distant Blazers

- Local gamma-ray Luminosity of blazers: $l_{\gamma} = 10^{37} \cdot 10^{38} \text{ erg s}^{-1} \text{ Mpc}^{-3}$ $\rightarrow \Phi_{\text{UHECR}} \sim 0.1 \text{ particles}/(100 \text{ km}^2 \text{ yr sr})$ GZK (if mainly protons) $\rightarrow \Phi_{\text{UHE}\nu} \sim 5 \text{ particles}/(100 \text{ km}^2 \text{ yr sr})$ for $E_{\text{UHE}\nu} > 10^{20} \text{ eV}$ Figure 3 from Spectral Properties of Bright Fermi-Detected Blazars in the Gamma-Ray Band A. A. Abdo et al. 2010 ApJ 710 1271 doi:10.1088/0004-637X/710/2/1271

contents

- 1. Star burst galaxy M82 and North hot spot
- 2. Bow wake acceleration
- 3. Bending by cosmological filaments
- 4. Future Observations

5. Conclusion

K-EUSO

Russian Federal Space Program

- Passed the stage of preliminary design with Roscosmoc
- Technical requirements, accomodation, operations study performed by Energia space corporation
- Evolution of KLYPVE Russian detector (reflector)
- Mission of opportunity Launch in 2022

Science of K-EUSO

- . Study of UHECR fux from space with uniform response
- 2. flux E>3 10¹⁹ eV north & south
- 3. Anysotropy
- 4. Earth observations, bioluminescence
- 5. Debris tracking and removal

-60

N-S spectral difference

Uniform response over both hemispheres

Declination **\delta** 0° +60° +90° -90° -60° -30° +30° 6 Local annual exposure [linsley / (10⁻³ π -sr-sky)] - K-EUSO TA 5 - TA×4 Auger SD з 2 0 -0.5 0.5 0 -1 sin(Declination δ)

Some (5%) disuniformity due to clouds, continents and moon phase

K-EUSO exposure

ADVANCED SCHMIDT OPTICAL DESIGN LAYOUT

Spherical mirror

Entrance aperture

Double Donut Schmidt Camera (named by P. Mazzinghi)

How about neutrinos?

Greisen-Zatsepin-Kuz'min Process

Greisen1966; Zatsepin and Kuz'min1966

Neutrino and gamma ray flux

Taken from Anchordoqui et al. 2014, Phys. Rev. D., 89, 127304 2017/11/16 and Yacobi et al. 2016, Ap. J., 823, 89, modified by TE

47

Conclusions

• M82: the nearest starburst galaxy

- M82 X-1: Intermediate Mass Blackholes (10²-10⁴ Ms)
 =possible origin of northern hot spot
- Bow Wake Acceleration
 - Accreting BH+disk+jet

= Astronomical Linear accelerator

- − Bursts of Intense Alfven waves ←Laser
- − Jet \leftarrow wave guide
- Bending by magnetic field
 - $-\ B{\sim}10nG$ in the cosmic filaments of local supercluster
 - Study of supercluster magnetic field
- K-EUSO
 - Confirmation of south-north anisotropy
 - Identification of M82 and other sources
- Ultra High energy neutrinos from distant blazers
 - Ice Cube and POEMMA

Back up

cosmic ray acceleration and gamma-ray emission

GW150914

- Merging of Binary BH: 36Ms+29Ms
- Distance: 410 Mpc=0.410 Gpc (Z=0.09)

Shinkai, kanda, and Ebisuzaki, 2017, ApJ, 835, 276-283.

Theoretical Upper limit of Fermi mech. < 10²⁰ eV

Fermi mechanism requires bending→synchrotron loss

Difficulties of Fermi acceleration in UHECR

1. Bending is inevitable

 \rightarrow synchrotron loss

2. Confinement is difficult

 \rightarrow no acceleration

3. Escape problem

→magnetic field does not disappear without adiabatic loss

Wakefield acceleration

Difficulties of Fermi acceleration in UHECR

1. Bending is inevitable

 \rightarrow synchrotron loss

2. Confinement is difficult

 \rightarrow no acceleration

Radio/X-ray nots in Cen X-1 Jets

Hardcastle et al. 2003, ApJ 903 160-183

Wolf-Rayet Stars in the Jets? effective CNO supply? ()

Fermi gamma-ray galaxies (Nearby)

Cosmic-ray acceleration

Wake of a ship

 $I_{2017/_{11}/_{11}} = 1.3 \times 10^{38} m\dot{m} \text{ erg s}^{-1}_{6, 2017}$

Relativistic coherence

Extremely relativistic
 →freezing-out

Origin of Cosmic rays

- 100 years enigma
 - Discovered in 1912

by Victor Hess

They loose original directions because of magnetic field

Isotropic distribution

201

