M82 starburst galaxy: possible origin of the northern hot spot

Toshikazu Ebisuzaki and Akira Mizuta (RIKEN)

Toshiki Tajima (UC Irvine)

contents

1. Star burst galaxy M82 and North hot spot
2. Bow wake acceleration
3. Bending by cosmological filaments
4. Conclusion

M82 galaxy

M82: Nearest Star Burst Galaxy

Just after the collision with M81
Composite of X-ray, IR, and optical emissions NASA / CXC / JHU / D. Strickland; optical: NASA / ESA / STScI / AURA/ Hubble Heritage Team; IR: NASA / JPL-Caltech /Univ. of AZ / C. Engelbracht; inset - NASA / CXC / Tsinghua University / H. Feng et al.

Arrival Direction Map (Auger/TA)

TA Hot Spot: UHECRs from M82?

He, Kusenko, Nagataki + PRD 2016.

The most likely Source Position As a Result of Our Analysis. With 1,2,3-sigma Errors.

M82 is very Close from the most likely Source Position!

contents

1. Star burst galaxy M82 and North hot spot
2. Bow wake acceleration
3. Bending by cosmological filaments
4. Conclusion

Formation of extragalactic jets from black hole accretion disk

Wake at the bow of the Alfven Pulse

Eruption of magnetic field in an accretion disk

Formation of extragalactic jets from black hole accretion disk

Bow wake acceleration

One of the wake field acceleration, which takes place when $a_{0} \gg 1$

Acceleration by

 pondermotive force at "bow wake"$$
\begin{aligned}
& W_{\max }=z \int_{0}^{D_{3}} F_{\mathrm{pm}} d D \\
& F_{\mathrm{pm}}=\Gamma m_{\mathrm{e}} c a_{0} \omega_{A}
\end{aligned}
$$

comic ray acceleration and gamma-ray emission

$$
L_{\mathrm{tot}}=1.3 \times 10^{38} \mathrm{~m} \dot{\mathrm{~m}} \mathrm{erg} \mathrm{~s}^{-1}
$$

Energy Flow and Spectra

wakefield

protons

electrons

cosmic rays 1:1 gamma rays

UHECRs 0.1:1

Nine nearby Fermi AGNs

Counterpart name	LII	BII	Class	Redshift	$\begin{aligned} & \text { Flux } 1 \mathrm{GeV}-100 \mathrm{GeV} \\ & \quad\left(\mathrm{erg} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}\right) \end{aligned}$	Spectral index	Radio ux(mJy)	$\begin{aligned} & \text { X Flux } \\ & \left.\mathrm{rg} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}\right) \end{aligned}$
NGC 0253	97.39	-87.97	Starburst galaxy	0.001	(6.2+/-1.2) e-10	2.313	2994	$6.02 \mathrm{E}-12$
NGC 1068	172.1	-51.94	Seyfert galaxy	0.00419	(5.1+/-1.1) e-10	2.146	4849	$4.55 \mathrm{E}-11$
For A	240.15	-56.7	Radio Galaxy	0.005	(5.3+/-1.2) e-10	2.158	255	$2.38 \mathrm{E}-12$
M 82	141.41	40.56	Starburst galaxy	0.001236	(10.2+/-1.3) e-10	2.28	6205	$2.29 \mathrm{E}-11$
M 87	283.78	74.48	Radio Galaxy	0.0036	(17.3+/-1.8) e-10	2.174	138488	$6.30 \mathrm{E}-11$
Cen A Core	309.51	19.41	Radio Galaxy	0.00183	(30.3+/-2.4) e-10	2.763	42000	$9.00 \mathrm{E}-12$
NGC 4945	305.27	13.33	Seyfert galaxy	0.002	(7.5+/-1.7) e-10	2.103	5776	$2.36 \mathrm{E}-12$
Cen B	309.72	1.72	Radio Galaxy	0.012916	(18.6+/-3.5) e-10	2.325	8890	8.83E-12
NGC 6814	29.35	-16.02	Seyfert galaxy	Onal JEMOESSo		2.544	52	$1.56 \mathrm{E}-11$

Fermi gamma-ray galaxies (Nearby)

Ebisuzaki and Tajima 2014, Eur. Phys. J. Special Topics, 223, 1113-1120.

- Seyfert Galaxy
son Starburst Galaxy

M82 X-1 is promising

- $F_{\gamma \mathrm{M} 82}=10.2 \times 10^{-10} \mathrm{erg} \mathrm{s}^{-1} \mathrm{~cm}^{-2} \rightarrow$

$$
L_{\gamma \mathrm{M} 82}=1.3 \times 10^{42} \mathrm{erg} \mathrm{~s}^{-1}
$$

- 1% of M82 total \leftarrow M82 X-1

$$
\begin{aligned}
L_{\text {UHECR M82X }-1} & =1.3 \times 10^{39} \mathrm{erg} \mathrm{~s}^{-1} \\
\qquad \frac{L_{\text {UHECR }}}{L_{\gamma}} & =0.1 \\
F_{\text {UHECR M82X }-1} & \sim 3 \text { UHECRs } / 100 \mathrm{~km}^{2} / \mathrm{yr} \\
& \sim F_{\text {HotSpot }}
\end{aligned}
$$

Astrophysical Implication

- Hot spot component came from M82
- too near for GZK ($\mathrm{D}=3.4 \mathrm{Mpc}$)
- mainly proton
- How about magnetic deflection?
- We need $B \sim 10 \mathrm{nG}$ for $D=3.2 \mathrm{Mpc}$
- $\theta=0.5^{\circ}\left(\frac{D}{\mathrm{Mpc}}\right)\left(\frac{B}{\mathrm{nG}}\right) \sim 17.4^{\circ}$
- $\Delta \theta=0.36\left(\frac{D}{\mathrm{Mpc}}\right)^{1 / 2}\left(\frac{D_{\mathrm{c}}}{\mathrm{Mpc}}\right)^{1 / 2}\left(\frac{B_{\mathrm{r}}}{\mathrm{nG}}\right) \sim 9.4^{\circ}$

contents

1. Star burst galaxy M82 and North hot spot
2. Bow wake acceleration
3. Bending by cosmological filaments
4. Conclusion

UHECR propagation among the cosmological web (1)

Ryu et al. 2010 ApJ, 710, 1422

We are living on a filament of the cosmological web!

UHECR propagation among cosmological magnetic web (2)

- Huge variation $\sim 1-100^{\circ}$
- Strongly depends on the source location and the path
- Average $\sim 10^{\circ}$ at 3 Mpc
- $\epsilon_{\mathrm{B}}=\phi\left(\frac{t}{t_{\mathrm{eddy}}}\right) \epsilon_{\mathrm{turb}}$
- $t_{\text {eddy }}$ and $\epsilon_{\text {turb }}$: simulation
- ϕ : different simulations with fine meshes

Ryu et al. 2010 ApJ, 710, 1422

How about Cen A and M87/Vir A ?

- Cen A
$-D=4.3 \mathrm{Mpc} \geq D_{\mathrm{M} 87}=3.4 \mathrm{Mpc}$
- In the filaments
$-\theta, \Delta \theta \sim 10-20$ degree
- CNO rich?
$=$ WR stars in the jets
- M87/Vir A
$-D=18 \mathrm{Mpc} \gg D_{\mathrm{M} 87}=3.4 \mathrm{Mpc}$
- In the filaments

Virgo centric inflow
$-\theta, \Delta \theta \sim 60$ degree
\rightarrow diffuse source along SGP

Conclusions

- M82: the nearest starburst galaxy
- M82 X-1: Intermediate Mass Blackholes (10²-104 Ms)
=possible origin of northern hot spot
- Bow Wake Acceleration
- Accreting BH+disk+jet
= Astronomical Linear accelerator
- Bursts of Intense Alfven waves \leftarrow Laser
- Jet \leftarrow wave guide
- Bending by magnetic field
- B~10nG in the cosmic filaments of local supercluster
- Study of supercluster magnetic field

Back up

Background Component: Numerous number of Distant Sources

Ebisuzaki and Tajima 2014

- Distant Blazers
- Local gamma-ray Luminosity of blazers:

$$
l_{\gamma}=10^{37}-10^{38} \mathrm{erg} \mathrm{~s}^{-1} \mathrm{Mpc}^{-3}
$$

$\rightarrow \Phi_{\text {UHECR }} \sim 0.1$ particles/(100 $\left.\mathrm{km}^{2} \mathrm{yr} \mathrm{sr}\right)$
GZK (if mainly protons)
$\rightarrow \Phi_{\mathrm{UHEv}} \sim 5$ particles/($100 \mathrm{~km}^{2} \mathrm{yr} \mathrm{sr}$)
for $E_{\text {UHEv }}>10^{20} \mathrm{eV}$

3-D relativistic MHD simulation

Neutrino and gamma ray flux

Taken from Anchordoqui et and Yacobi et al. 2016, Ap. J., 823, 89,7 modified by TE

Radio/X-ray nots in Cen X-1 Jets

Hardcastle et al. 2003, ApJ 903 160-183

Wolf-Rayet Stars in the Jets? effective CNO supply? ()

2MASS galaxy distribution

IPAC/Caltech, by Thomas Jarrett - "Large Scale Structure in the Local Universe:
The 2MASS Galaxy Catalog", Jarrett, T.H. 2004, PASA, 21, 396

An AGN-like Jet in M87? X-ray/Radio (flare in 1981)

Xu et al. 2015 ApJ Letters 799, L28

UHECR emission: Isotropic or Beaming?

- Radio galaxies: Angle to Line of sight $\theta>10-$ 20°
- M87 43°
- Cen A $50-80^{\circ}$
- Blazers: $\theta<10^{\circ}$
- No information for M82 X-1
- Single jet?
- UHECR beam may suffer from
the from the local magnetic field

Jet

R / R_{g}

Light Curves

Accretion Disk around a BH

Energy Spectra

International JEM-EUSO Meeting June 19,

Ground Based Observatories

Auger

1600 surface detectors

EUSO Mé 017

507 surface detectors 700 km²

Fermi mechanism requires bending \rightarrow synchrotron loss

Difficulties of Fermi acceleration in UHECR

1. Bending is inevitable
\rightarrow synchrotron loss
2. Confinement is difficult
\rightarrow no acceleration

Theoretical Upper limit of Fermi mech. $<10^{20} \mathrm{eV}$

A.G.N. | Gas Disk in Nucleus of |
| :---: |
| Active Galaxy M87 |

Radio Galaxy Lobe

Difficulties of Fermi acceleration in UHECR

1. Bending is inevitable
\rightarrow synchrotron loss
2. Confinement is difficult
\rightarrow no acceleration
3. Escape problem
\rightarrow magnetic field does not disappear without adiabatic loss

Wakefield acceleration

Wake of a ship

Laser Wakefield

Particle acceleration

T. Tajima and J. M. Dawson (1979)

FIG. 2. (Color) Plasma density perturbation excited by Gaussian laser pulse with $a_{0}=1.5$, $k_{0} / k_{p}=20, k_{p} L_{\text {rms }}=1$, and $k_{p} r_{0}=8$. Laser pulse is traveling to the left.

Electron bunch
 by a single shot of laser beam

Leemans et al. (2006) Nature Physics, 2, 696.
Nakamura et al. (2007) Phys. Plasma, 14, 056078

1D Particle-in-Cell simulation

with the code by Nagata2008

Figure 3 from Spectral Properties of Bright Fermi-Detected Blazars in the Gamma-Ray Band A. A. Abdo et al. 2010 ApJ 7101271 doi:10.1088/0004-637X/710/2/1271

Conditions for UHECRs

$$
L_{\text {tot }}=1.3 \times 10^{38} m \dot{m} \operatorname{erg~s}^{-1} \text { Euso meeting }
$$

How about neutrinos?

Greisen-Zatsepin-Kuz'min Process
Greisen1966; Zatsepin and Kuz'min1966

Relativistic coherence

- Extremely relativistic
\rightarrow freezing-out

Origin of Cosmic rays

