M82 starburst galaxy: possible origin of the northern hot spot

Toshikazu Ebisuzaki and Akira Mizuta (RIKEN) Toshiki Tajima (UC Irvine)

International JEM-EUSO Meeting June 19, 2017

contents

- 1. Star burst galaxy M82 and North hot spot
- 2. Bow wake acceleration
- 3. Bending by cosmological filaments
- 4. Conclusion

M82 galaxy

M82: Nearest Star Burst Galaxy

M82 X-1: 100-10000 Ms BH

Just after the collision with M81

Composite of X-ray, IR, and optical emissions

NASA / CXC / JHU / D. Strickland; optical: NASA / ESA / STSCI / AURA/ Hubble Heritage Team; IR: NASA / JPL-Caltech /Univ. of AZ / C. Engelbracht; inset – NASA / CXC / Tsinghua University / H. Feng et al.

International JEM-EUSO Meeting June 19, 2017

Arrival Direction Map (Auger/TA)

International JEM-EUSO Meeting June 19,

TA Hot Spot: UHECRs from M82?

He, Kusenko, Nagataki + PRD 2016.

contents

1. Star burst galaxy M82 and North hot spot

- 2. Bow wake acceleration
- 3. Bending by cosmological filaments
- 4. Conclusion

Eruption of magnetic field in an accretion disk

A Burst of Torsional Alfven Waves

Tajima and Gilden 1987, ApJ 320, 741-745 Haswell, Tajima, and Sakai, 1992, ApJ, 401,

Bow wake acceleration

International JEM-EUSO Meeting June 19,

Acceleration by pondermotive force at "bow wake"

comic ray acceleration and gamma-ray emission

Nine nearby Fermi AGNs

Counterpart name	LII	BII	Class	Redshift	Flux1GeV-100 GeV (erg cm ⁻² s ⁻¹)	Spectral index f	Radio lux(mJy)(6	X Flux erg cm ⁻² s ⁻¹)
NGC 0253	97.39	-87.97	Starburst galaxy	0.001	(6.2+/-1.2) e-10	2.313	2994	6.02E-12
NGC 1068	172.1	-51.94	Seyfert galaxy	0.00419	(5.1+/-1.1) e-10	2.146	4849	4.55E-11
For A	240.15	-56.7	, Radio Galaxy	0.005	(5.3+/-1.2) e-10	2.158	255	2.38E-12
M 82	141.41	40.56	Starburst galaxy	0.001236	(10.2+/-1.3) e-10	2.28	6205	2.29E-11
M 87	283.78	74.48	Radio Galaxy	0.0036	(17.3+/-1.8) e-10	2.174	138488	6.30E-11
Cen A Core	309.51	19.41	Radio Galaxy	0.00183	(30.3+/-2.4) e-10	2.763	42000	9.00E-12
NGC 4945	305.27	13.33	Seyfert galaxy	0.002	(7.5+/-1.7) e-10	2.103	5776	2.36E-12
Cen B	309.72	1.72	Radio Galaxy	0.012916	(18.6+/-3.5) e-10	2.325	8890	8.83E-12
NGC 6814 2017/11/3	29.35	-16.02	Seyfert galaxy	onal JEMPEUSC 2017	0(6&th1,6),e199	2.544	52	1.56E-11

Fermi gamma-ray galaxies (Nearby)

2017

M82 X-1 is promising

- $F_{\gamma M82} = 10.2 \times 10^{-10} \text{erg s}^{-1} \text{ cm}^{-2} \rightarrow$ $L_{\gamma M82} = 1.3 \times 10^{42} \text{ erg s}^{-1}$
- 1% of M82 total ← M82 X-1
 - $L_{\text{UHECR M82X-1}} = 1.3 \times 10^{39} \text{ erg s}^{-1}$ $\leftarrow \frac{L_{\text{UHECR}}}{L_{\gamma}} = 0.1$ $F_{\text{UHECR M82X-1}} \sim 3 \text{ UHECRs/100km}^2/\text{yr}$ $\sim F_{\text{HotSpot}}$

Astrophysical Implication

Hot spot component came from M82
– too near for GZK (D=3.4 Mpc)

- mainly proton

- How about magnetic deflection?
 - We need $B \sim 10$ nG for D = 3.2 Mpc

•
$$\theta = 0.5^{\circ} \left(\frac{D}{Mpc}\right) \left(\frac{B}{nG}\right) \sim 17.4^{\circ}$$

• $\Delta \theta = 0.36 \left(\frac{D}{Mpc}\right)^{1/2} \left(\frac{D_c}{Mpc}\right)^{1/2} \left(\frac{B_r}{nG}\right) \sim 9.4^{\circ}$

contents

- 1. Star burst galaxy M82 and North hot spot
- 2. Bow wake acceleration
- 3. Bending by cosmological filaments
- 4. Conclusion

UHECR propagation among the cosmological web (1)

Ryu et al. 2010 ApJ, 710, 1422

We are living on a filament of the cosmological web!

UHECR propagation among cosmological magnetic web (2)

- Huge variation \sim 1-100°
 - Strongly depends on the source location and the path
- Average ~10° at 3 Mpc

•
$$\epsilon_{\rm B} = \phi\left(\frac{t}{t_{\rm eddy}}\right)\epsilon_{\rm turb}$$

- t_{eddy} and ϵ_{turb} : simulation
- ϕ : different simulations with fine meshes

Ryu et al. 2010 ApJ, 710, 1422

How about Cen A and M87/Vir A ?

• Cen A

- $-D = 4.3 \text{Mpc} \ge D_{\text{M87}} = 3.4 \text{Mpc}$
- In the filaments
- $-\theta$, $\Delta\theta \sim 10 20$ degree
- CNO rich?
 - =WR stars in the jets

• M87/Vir A

- $D = 18 \text{ Mpc} \gg D_{M87} = 3.4 \text{ Mpc}$
- In the filaments

Virgo centric inflow

- $-\theta$, $\Delta\theta$ ~ 60 degree
- \rightarrow diffuse source along SGP

Galaxies in Supergalactic plane (|Z|<1 Mpc)

Conclusions

- M82: the nearest starburst galaxy
 - M82 X-1: Intermediate Mass Blackholes (10²-10⁴ Ms)
 =possible origin of northern hot spot
- Bow Wake Acceleration
 - Accreting BH+disk+jet
 - = Astronomical Linear accelerator
 - − Bursts of Intense Alfven waves ←Laser
 - Jet ←wave guide
- Bending by magnetic field
 - $-B{\sim}10nG$ in the cosmic filaments of local supercluster
 - Study of supercluster magnetic field

Back up

Background Component: Numerous number of Distant Sources Ebisuzaki and Tajima 2014

Distant Blazers

- Local gamma-ray Luminosity of blazers: $l_{\gamma} = 10^{37} \cdot 10^{38} \text{ erg s}^{-1} \text{ Mpc}^{-3}$ $\rightarrow \Phi_{\text{UHECR}} \sim 0.1 \text{ particles}/(100 \text{ km}^2 \text{ yr sr})$ GZK (if mainly protons) $\rightarrow \Phi_{\text{UHE}\nu} \sim 5 \text{ particles}/(100 \text{ km}^2 \text{ yr sr})$ for $E_{\text{UHE}\nu} > 10^{20} \text{ eV}$

3-D relativistic MHD simulation

International JEM-EUSO Meeting June 19,

A. Mizuta et al. 2016

Neutrino and gamma ray flux

Taken from Anchordoqui et al. 2014, Shystingen D., 89, 127304 and Yacobi et al. 2016, Ap. J., 823, 89, modified by TE

Radio/X-ray nots in Cen X-1 Jets

Hardcastle et al. 2003, ApJ 903 160-183

Wolf-Rayet Stars in the Jets? effective CNO supply? ()

2MASS galaxy distribution

IPAC/Caltech, by Thomas Jarrett - "Large Scale Structure in the Local Universe: The 2MASS Galaxy Catalog", Jarrett, T.H. 2004, PASA, 21, 396

An AGN-like Jet in M87? X-ray/Radio (flare in 1981)

Xu et al. 2015 ApJ Letters 799, L28

UHECR emission: Isotropic or Beaming?

- Radio galaxies: Angle to Line of sight θ>10-20°
 - -M87 43°
 - Cen A 50-80°
- Blazers: $\theta < 10^{\circ}$
- No information for M82 X-1
 Single jet?
- UHECR beam may suffer from

the from the local magnetic field

Jet

Light Curves

Accretion Disk around a BH

Energy Spectra

2017

Fermi mechanism requires bending→synchrotron loss

Difficulties of Fermi acceleration in UHECR

1. Bending is inevitable

 \rightarrow synchrotron loss

2. Confinement is difficult

 \rightarrow no acceleration

Theoretical Upper limit of Fermi mech.< 10²⁰ eV

Difficulties of Fermi acceleration in UHECR

1. Bending is inevitable

 \rightarrow synchrotron loss

2. Confinement is difficult

 \rightarrow no acceleration

3. Escape problem

→magnetic field does not disappear without adiabatic loss

Wakefield acceleration

Wake of a ship

Laser Wakefield

T. Tajima and J. M. Dawson (1979)

FIG. 2. (Color) Plasma density perturbation excited by Gaussian laser pulse with $a_0=1.5$, $k_0/k_p=20$, $k_pL_{rms}=1$, and $k_pr_0=8$. Laser pulse is traveling to the left.

2017/11/3

International JEM-EUSO Meeting June 19,

Electron bunch by a single shot of laser beam

International JEM-EUSO Meeting June 19,

1D Particle-in-Cell simulation

with the code by Nagata2008

Figure 3 from Spectral Properties of Bright Fermi-Detected Blazars in the Gamma-Ray Band A. A. Abdo et al. 2010 ApJ 710 1271 doi:10.1088/0004-637X/710/2/1271

2017/11/3

International JEM-EUSO Meeting June 19,

L L L L

$$L_{\text{tot}} = 1.3 \times 10^{38} m\dot{m} \text{ erg s}^{-1}$$
 EUSO meeting

How about neutrinos?

Greisen-Zatsepin-Kuz'min Process

Greisen1966; Zatsepin and Kuz'min1966

Relativistic coherence

Extremely relativistic
 →freezing-out

Origin of Cosmic rays

- 100 years enigma
 - Discovered in 1912

by Victor Hess

They loose original directions because of magnetic field

Isotropic distribution

201

2017/11/3