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1. Motivation 3. 1D Verification of lonization Model 4. 2D Simulation Results
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3 2 |Jlonization verification
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_ | factor of 50. Field Effects :
Parallel: Right-handed Alfven mode Perpendicular: Harmonics of beam The simulated mean free path agrees well -}, pyqi0n jon-Bernstein modes of beam excited, roughly consistent
dominates with peak at ion cyclotron 10n-Bernstein modes and excitation of with the calculated value above through : : : . : : :
o shear Alfven dominate XA = 5. with 1D dispersion, and leads to ion heating. 6. Summary and Continuing Work

* Low-frequency activity seen in B, which is consistent with shear
Alfven mode seen in 1D. Beam-driven modes from 1D PIC simulations with Maxwellian

- Growth rate of mode is much slower than in 1D case, where mode beams motivate moving to 2D PIC geometry. Currently, only

Implicit PIC code LSP Neutral Beam Density BEAM Jon Dersiy o saturates at t~2t;, because of velocity broadening. simulation of perpendicular plane is possible.
Ambient magnetic field B, |l 2 | I | Perpendicular modes seen in 1D are reproduced in 2D, but

2D simulation domain: x, y plane ionizati_on of neut.ral.bea_lm intr_o_duc_es a significant broadening (slow-
Conducting boundaries; impacting particles lost down) in beam distribution, mitigating these modes.

Uniform background: electrons, deuterium plasma = lonization also introduces population of beam ions with enhanced
parallel velocity, which could possibly account for observed n =1
mode through a parallel-propagating fast Alfven wave.

The next step: inject beam in similar manner into 2D C2U-like FRC.

5. Experimental Results!?
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Fluctuation amplitudes Iarge near cyclotron harmonics




