Medical Applications of Compact Laser-Compton Light Source

Y. Hwang¹, D. J. Gibson², R. A. Marsh², G. G. Anderson², T. Tajima¹, C. P. J. Barty²

¹University of California, Irvine
²Lawrence Livermore National Laboratory

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Travel to IPAC’17 supported by the Division of Physics of the United States National Science Foundation (Accelerator Science Program) and the Division of Beam Physics of the American Physical Society.
Medical X-ray and γ-ray Sources

- radioisotopes
 - monochromatic, MeV
 - intensity ~ source size
 - hazardous, radioactive waste

- bremsstrahlung sources
 - wide range of energies (keV-MeV)
 - broad spectrum

- synchrotron radiation
 - mostly <100 keV
 - high flux, monochromatic, tunable -> less dose, more contrast, K-edge subtraction imaging
 - small source size -> sharper image, phase contrast imaging
 - facility too large for clinical use

Laser-Compton photon generation

\[E_{\text{scattered}} \approx \frac{4\gamma^2}{1 + \gamma^2 \theta^2 + 4\gamma k_0 \lambda_c} E_{\text{laser}} \]

\[\theta = 1/\gamma \]

Electron beam

Electron and X-ray beam

Sun et. al, PRSTAB 14, 044701 (2011)
Laser-Compton X-ray Source at LLNL
LLNL X-band Electron Linear Accelerator

- LLNL/SLAC photoinjector[1]
 - 185 MV/m, ~7 MeV
- 1 T53 accelerating section
 - 45 MV/m, ~30 MeV
- 50 MW klystron, modulator
- up to 16 bunches per pulse (MOPIK111)
- energy upgrade: pulse compressor & 2nd section
 - >85 MeV electrons
 - >270 keV X-rays

measured e⁻ beam parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>energy</td>
<td>30 MeV</td>
</tr>
<tr>
<td>charge</td>
<td>10-200 pC</td>
</tr>
<tr>
<td>bunch length</td>
<td>2 ps*</td>
</tr>
<tr>
<td>spot size</td>
<td>14x11 μm</td>
</tr>
<tr>
<td>pos. jitter</td>
<td>5x2 μm</td>
</tr>
<tr>
<td>energy spread</td>
<td>0.03%</td>
</tr>
<tr>
<td>energy jitter</td>
<td>0.06%</td>
</tr>
<tr>
<td>emittance</td>
<td>0.3 mm-mrad</td>
</tr>
<tr>
<td>RF frequency</td>
<td>11.424 GHz</td>
</tr>
<tr>
<td>rep. rate</td>
<td>10 Hz</td>
</tr>
</tbody>
</table>

*PARMELA simulation value

Laser-Electron Interaction

laser & X-ray parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>laser energy</td>
<td>750 mJ</td>
</tr>
<tr>
<td>wavelength</td>
<td>532 nm</td>
</tr>
<tr>
<td>pulse length</td>
<td>6.5 ns</td>
</tr>
<tr>
<td>beam waist</td>
<td>50 μm</td>
</tr>
<tr>
<td>X-ray energy</td>
<td>30 keV</td>
</tr>
<tr>
<td>X-ray flux</td>
<td>3×10^5/shot</td>
</tr>
</tbody>
</table>

IPAC’16 TUPOW052 (X-ray characterization)
NAPAC’16 WEPOB35 (source size measurement)
IPAC’17 MOPAB146 (K-edge filter diagnostic)
Laser-Electron Interaction

Laser & X-ray parameters
- Laser energy: 750 mJ
- Wavelength: 532 nm
- Pulse length: 6.5 ns
- Beam waist: 50 μm
- X-ray energy: 30 keV
- X-ray flux: 3×10^5/shot

IPAC’16 TUPOW052 (X-ray characterization)
NAPAC’16 WEPOB35 (source size measurement)
IPAC’17 MOPAB146 (K-edge filter diagnostic)
K-edge subtraction imaging

- two images above and below contrast agent K-edge
 - I (33.2 keV), Gd (50.7), Au (80.7)
- requires narrowband dual-color X-ray beam
 - change in e- energy, viewing angle

K-edge subtraction imaging

- two images above and below contrast agent K-edge
 - I (33.2 keV), Gd (50.7), Au (80.7)
- requires narrowband dual-color X-ray beam
 - change in e⁻ energy, viewing angle
- applications in angiography, bronchography
- experiment with capillary tubes
 - Ag (25.5 keV) in current setup
Auger therapy

- Auger cascade from external X-rays causes dose enhancement
 - must be close to cancer cells
- Nanoparticle cancer targeting
 - nanoparticles naturally accumulate at tumor - enhanced permeability and retention (EPR) effect
 - cancer-seeking molecules can be attached to nanoparticles
 - AuNPs most widely studied
- Diagnostics + therapy -> ‘theranostics’

Phase contrast imaging

- phase change information to enhance contrast
- in-line PCI
 - simplest geometry
 - requires small source size
- diffraction-enhanced
 - crystal to detect small angle change
 - requires monochromatic beam
- interferometry, diffraction grating
- demonstrated by Lyncean, AIST, etc.

![conventional absorption radiography](image)

![in-line phase contrast imaging](image)

Kitchen et al., Br. J. Radiol., **78** 1018 (2005)
Phase contrast imaging

• phase change information to enhance contrast
• in-line PCI
 – simplest geometry
 – requires small source size
• diffraction-enhanced
 – crystal to detect small angle change
 – requires monochromatic beam
• interferometry, diffraction grating
• demonstrated by Lyncean, AIST, etc.

Bech et al., J. Synchrotron Rad. 16, 43 (2009)
Schleede et al., PNAS 109, 17885 (2012)
Kuroda et al., NIMA 637, S183 (2011)
Summary

• Laser-Compton light sources can produce tunable, narrow bandwidth, small source size X-ray beam for medical use in a much smaller footprint than those of synchrotron facilities

• A compact X-band linac has been built at LLNL and is producing 30 keV X-rays, upgradable to >250 keV

• e⁻ beam and X-ray characterization is nearly complete and matches the modeling very well

• K-edge subtraction imaging and Auger therapy experiments are being planned