EUSO (Extreme Universe Space Observatory) T. Ebisuzaki RIKEN and Deputy PI of JEM-EUSO collaboration

Plan of talk

- 1. Why UHECRs (10²⁰ eV)?
- 2. K-EUSO and beyond
- 3. Precatory activities
 - TA-EUSO (ground)
 - EUSO balloon (stratosphere h~40 km)
 - Mini-EUSO (ISS h~400 km)

Ultra High Energy Cosmic Rays

- The highest energy particles ever observed
 10²⁰ eV = 16 J
- What are they?
 - behave as protons and (possibly) heavier nuclei
- Where do they come from?
 - Origin UNKNOWN!
 - The most powerful cosmic accelerators
 - Models range from the formation of compact objects to accretion onto supermassive black-holes and the large-scale structures of the Universe

Hillas plot: Theoretical upper limit < 10²⁰ eV

Radio Galaxy Lobe

Why UHECRs?

- Particle Astronomy
 - Can discover sources by arrival directions
 - Lower energy CRs do not come directly

Why UHECRs?

Particle Astronomy

Can discover sources by arrival directions

Center of mass energy >> artificial accelerators

Super-LHC energy interactions (300 TeV CM)

Why UHECRs?

- Particle Astronomy
 - Can discover sources by arrival directions
- Center of mass energy >> artificial accelerator
 Super-LHC energy interactions (300 TeV CM)
- Verification of Lorentz Invariance

Why we need space ?

- Ground based detectors are already too huge!
- Need to go space to get statistics large enough

JEM-EUSO

Extreme Energy Space Observatory onboard Japanese Experiment Module

Science Data Center

Ground calibration facility Xe Flasher

Large effective area

Klypve-EUSO

Location on ISS

Deployment module: MRM-1

Рисунок 4.13 – Вариант размещения КНА КЛПВЭ на МИМ1

Focal surface: 52*MINI-EUSO Same size also for Schmidt

PDM 60 @ 100keuro each 6MEuro

Entrance aperture

K-EUSO and Schmidt exposure

Uniform response over both hemispheres

Some (5%) disuniformity due to clouds, continents and moon phase

K-EUSO Lens EM being manufactured, Japan

Science of K-EUSO

KLYPVE detector goes from technological demonstrator to instrument capable of:

1. Study of UHECR fux from space with uniform response

- 2. Are the North and South fluxes different or not?
- 4. Anysotropy, Hotspot

Unique physics of UHECR of Klypve: 1. N-S spectral difference

Auger and TA spectra

Need to rescale. Is it correct? Is it physics? At GZK are they different+ Composition?

Science of K-EUSO

Anysotropy, Hotspots

Earth observations

Unique physics of UHECR of Klypve: 1. N-S spectral difference

After three years (with Schmidt)

N_events E>5.7e19 eV 700

Used Auger and TA spectra 2015 in each hemisphere

Unique physics of UHECR of Klypve: 2. anisotropy and hotspots

17.3
04.0

Unique physics of UHECR of Klypve: 3. No dipole component?

Klypve and beyound

- Next step: JEM-EUSO class mission
 - Charged particle Astronomy:
 - Several independent sources
 - Comparisons among them: M82/M87/background
 - HE neutrinos \sim (10²⁰ eV)
- Super EUSOs

Geo-schinchronus orbit above pacific ocean

Y. Takahashi 1999

mmin

Great observatory made & deployed from the renewed ISS heading for its own orbit

Leading ZeV neutrino sensitivity

Preparatory activities

- TA EUSO (1m square)
- EUSO balloon (1m square)
 - 2014 flight by CNES
 - 2017 SPB flight by NASA (coming soon)
- Mini-EUSO (25 cm Φ)
 - Russian module at ISS
 - Launch in 2017

EUSO-TA

2013: Installation, building, lenses

2014: for Auger/Fast tests

2015:

February/March

- Detector installation
- •Focusing, initial calibration
- •Initial CLF and CSOM laser observations

May

- •Cosmic ray observations one UHECR detected
- •CLF and CSOM laser observations
- •Flat screen and LED calibration

September

Cosmic ray observations – analysis ongoing
CLF and CSOM laser observations

October

- •Cosmic ray observations analysis ongoing
- •Internal trigger tests on the balloon PDM board successful triggering laser
- •CLF and CSOM laser observations

November

- Cosmic ray observations
- •CLF laser observations

2016: refurbishment of focal surface, joint tests with super pressure balloon

Stars Imaging

May be used for calibration Hypparcos catalogue

Colorado school of mines movable laser

Total of 17 nights Distances of 24, 34, 40, 60, 100 km Power 0.5mJ up to 90mJ Several inclination

./../allpackets-TA-ACC

Cosmic ray event, 13/5/2015

Telescope Array reconstruction Zenith = 35° Azimuth = 7° (clockwise from N) E = 10^18 eV Rp = 2.5 km Core = (14.8 km, -10.9 km) respec

EUSO, 1 frame, 2.5micros

EUSO, 2*2

TA signal

2. EUSO-Balloon flights

1st flight, Aug 2014 Timmins (CA)

Payload built by JEM-EUSO collaboration CNES (French Space Agency) mission

Timmins Balloon payload

Xe flasher and Laser events from NASA helicopter

EUSO-Balloon 2nd flight, March 2017 Wanaka, New Zealand

NASA Mission. 2nd Payload built by JEM-EUSO collaboration New lenses, Focal Surface, Improved Electronics More than 30 days Goal: First UV UHECR shower observation from above Total Flight Time 32 days, 5 hours, 51 minutes

EUSO-SPB Extreme Universe Space Observatory on a Super Pressure Balloon

3. MINI-EUSO

- Approved & financed by Italian Space Agency
- Approved & financed by Russian Space Agency
- Inside the ISS
- 2 Fresnel lenses and one PDM
- 60W @ 27V
- 30kg not incl SSD

Conclusions

- EUSO: space observatory looking down
 - UHECR (~10²⁰ eV) observation
 - Beyond Fermi, LHC, and Lorentz
 - Super Wide Optics with Large Fresnel Lens
 - Debris detection and deorbit from space
 - Earth Observation
- Precatory activities are going on
 - TA-EUSO (TA site Utah: 2013-2017)
 - EUSO balloon
 - 2014 Flight
 - 2917 flight: First science mission with NASA SPB program
 - Mini-EUSO (ISS Russian module 2017)

backup

GZK effect implies Fewer Sources at higher Energies easier to identify

Unique physics of UHECR of Klypve: 1. N-S spectral difference

After 1 year We can answer question on the difference of the two hemispheres

With Schmidt 6months

N_events E>5.7e19 eV 120 Used Auger and TA spectra 2015 in each hemisphere

Lens Frame

Allocation within Progress

 Segmentation in 120*70 *70 blocks

- K-EUSO is a crucial detector for UHECR physics
- Crucial step to larger missions
- Only from space we can answer anisotropy questions.
- Conjuction with ground arrays
- Just 2 Auger equivalent is needed, more is better
- Technology and cost is the leading part

Landing and recovery

Super Pressure Ballon Integration in Colorado

New structure, solar panels, telemetry

New 1sp m lens system

New focal surface and electroncis

Conclusions

Roadmap to space Detector development 2017 Long term missions

K-Euso is a concrete mission of opportunity fraction of the cost of JEM-EUSO

In one year Address several fundamental physics issues, N/S spectra, hotspot.

