General Relativistic MHD simulation of a blackhole, accretion disk, and jets

Akira MIZUTA(RIKEN)

Toshikazu Ebisuzaki (RIKEN) Toshiki Tajima (UCI) Shigehiro Nagataki (RIKEN)

mini workshop on plasma astrophysics and extreme high energies@UC Irvine 17.02.06 Mizuta + in prep.

OUTLINE

- Introduction AGN jets ; observations and theory
- GRMHD simulations of black hole and accretion disks
- •Application :
 - Particle acceleration of ultra high energy cosmic rays
 - blazar flares
- Summary

AGN jet : M87 radio observations

M87 D=16.7Mpc
M_{BH}~3.2-6.6x 10⁹M_sun
Location of the central BH (Hada + 2011)
outer shape of the jet near the core ; parabola (Hada+2011)
Rim brightening @ 100Rs

Relativistic jet launched from BH+accretion disk

- Central Engine
 - -Black Hole(BH) + accretion disk
 - -B filed amplification
- disk transition between from

low plasma β state to high plasma β state.

- •Strong Alfven burst at the transition from low β to high β .
- (Tajima+1987, Shibata, Matsumoto, Tajima 1990 Haswell, Tajima, & Sakai 1992)
- Applied to cosmic-ray acceleration via wakefiled acc. Model Ebisuzaki & Tajima 2014

B-filed amplification inside the disk (1)

- differentially rotating disk : $d\Omega_{disk}$ /dr \neq 0, (<0 for MRI)

Magnetorotational instability (MRI)

MRI enhances angular momentum transfer

B-filed amplification inside the disk (2)

MRI growth rate depends on the wavelength. For Kepler rotation, i.e., $\Omega_{\kappa} \propto R^{-3/2}$,

$$\omega^{2} - k_{z}^{2}V_{Az}^{2} = \pm \sqrt{\Omega^{2}\omega^{2} + 3\Omega^{2}k_{z}^{2}V_{Az}^{2}}$$

ω~0.75Ω_κ

FIG. 3d

Disk state transition

Z

B-field lines of accretion flow onto dwarf nova disk (Tajima & Gilden (1987)) Haswell, Tajima, & Sakai (1992)

B-field is stretched, then released generating Alfven bursts.

Disk state transition between high β state to low β state repeats (Shibata Mastumoto & Tajima (1990))

GRMHD simulations of Black hole and accretion disks

Basic Equations : GRMHD Eqs. GM=c=1, a: dimensionless Kerr spin parameter $\frac{1}{\sqrt{-g}}\partial_{\mu}(\sqrt{-g}\rho u^{\mu}) = 0$ Mass conservation Eq. $\partial_{\mu}(\sqrt{-g}T^{\mu}_{\nu}) = \sqrt{-g}T^{\kappa}_{\lambda}\Gamma^{\lambda}_{\nu\kappa}$ Energy-momentum conservation Eq. $\partial_t(\sqrt{-q}B^i) + \partial_i(\sqrt{-q}(b^i u^j - b^j u^i)) = 0$ Induction Eq. $p = (\gamma - 1)\rho\epsilon$ EOS (y=4/3) Constraint equations. $u_{\mu}b^{\mu} = 0$ Ideal MHD condition $\frac{1}{\sqrt{-g}}\partial_i(\sqrt{-g}B^i) = 0$ No-monopoles constraint $u_{\mu}u^{\mu} = -1$ Normalization of 4-velocity Energy-momentum tensor $T^{\mu\nu} = (\rho h + b^2) u^{\mu} u^{\nu} + (p_{g} + p_{mag}) q^{\mu\nu} - b^{\mu} b^{\nu}$ $p_{\rm mag} = b^{\mu} b_{\mu} / 2 = b^2 / 2$ $b^{\mu} \equiv \epsilon^{\mu\nu\kappa\lambda} u_{\nu} F_{\lambda\kappa}/2 \quad B^{i} = F^{*it}$

GRMHD code (Nagataki 2009,2011)

Kerr-Schild metric (no singular at event horizon) HLL flux, 2nd order in space (van Leer), 2nd or 3rd order in time See also, Gammie +03, Noble + 2006 Flux-interpolated CT method for divergence free

Fisbone-Moncrief (1976) solution – hydrostatic solution of tori around rotating BH (a=0.9, rH~1.44), $l_* \equiv -u^t u_{\phi}$ =const =4.45, r_{in} =6. > r_{ISCO} With maximum 5% random perturbation in thermal pressure.

Units L : Rg=GM/c² (=Rs/2), T : Rg/c=GM/c³, mass : scale free $\sim 1.5 \times 10^{13} \text{cm}(M_{BH}/10^8 M_{sun}) \sim 500 \text{s} (M_{BH}/10^8 M_{sun})$

Magnetized jet launch

Low mass density and electromagnetic flux along the polar axis. Intermittent

Plasma β (P_{th} /P_{mag})

- transitions between low β starte and high beta state
 Shibata, Mastumoto, & Tajima (1990) and other MHD simulations).
- Highly non-axis symmetric
- Filamentaly structure ; thickness ~0.5 Rg

Plasma β (P_{th} /P_{mag})

B-field lines of accretion flow onto dwarf nova disk (Tajima &Gilden (1987))

- transitions between low β starte and high beta state Shibata, Mastumoto, & Tajima (1990) and MHD simulations).
- Highly non-axis symmetric
- Filamentaly structure ; thickness ~0.5 Rg

- transitions between low β starte and high beta state
 Shibata, Mastumoto, & Tajima (1990) and MHD simulations).
- Highly non-axis symmetric
- Filamentaly structure ; thickness ~0.5 Rg

- transitions between low β starte and high beta state Shibata, Mastumoto, & Tajima (1990) and MHD simulations).
- Highly non-axis symmetric
- Filamentaly structure ; thickness ~0.5 Rg

B-filed amplification & mass accretion

at equator

 B-field amplification via MRI λ ~0.5Rg ~8 grids size ~filamentaly structure ~ a few tens GM/c^3

– Transitions high β state \Leftrightarrow low β state

– Repeat cycle ~A few hundreds GM/c^3 (Stone et al. 1996, Suzuki & Inutsuka 2009, O'Neill et al. 2011)

 B- filed amplification works as a viscosity

→alpha viscosity in Shakura & Sunyaev 1973)

Large Alfven flares in the jet

- Short time variability
- Ele-Mag flux in the jet is comparable to Aflven flux in the disk when Ele-Mag jet is active.

Consistent with Ebisuzaki & Tajima model

Strength parameter a₀

strength parameter a_0 at maximum peak in Alfven flare;

$$a_0 = \frac{eE}{m_e \omega_{\rm A} c} = 1.7 \times 10^{12} \left(\frac{M}{10^8 M_{\odot}}\right)^{1/2} \left(\frac{\dot{M}_{\rm av} c^2}{6 \times 10^{-3} L_{\rm Ed}}\right)^{1/2}$$

Strength parameter highly exceeds unity as estimated in Ebisuzaki Tajima (2014);

 $a_0 = 2.3 \times 10^{10} (\dot{m}/0.1)^{3/2} (m/10^8)^{1/2}$

Comparison with Ebisuzaki Tajima model

Ebisuzaki Tajima (2014)

Our numerical simulation

Alfven flux conservation

 $\Phi_{\rm AJ}(=cE\times B/4\pi)=\Phi_{\rm AD}(=V_{\rm AD}B_{\rm D}^2/4\pi)$

Consistent @ high Poyting flux flare

Rising timescale of flares

 $\lambda_{AD} / V_{AD} = 480 \text{ GM/c}^3$ [~50 GM/c^3]

Recurrence rate

 $v_{\rm A} = \eta V_{\rm AD}/Z_D = 1.0 \times 10^2 \eta m^{-1} \text{ Hz}, \qquad [\sim 500 \text{ GM/c}^3]^{-1} \sim [2000 \text{ GM/c}^3]^{-1}$

Comparison with Ebisuzaki Tajima model

Ebisuzaki Tajima (2014)

Estimated @ 10 Rs = 20 Rg

Alfven flux conservation

 $\Phi_{\rm AJ}(=cE\times B/4\pi)=\Phi_{\rm AD}(=V_{\rm AD}B_{\rm D}^2/4\pi)$

Rising timescale of flares

 $\lambda_{AD} / V_{AD} = 480 \text{ GM/c}^3$

Our numerical simulation

B amplification is active @ 6 Rg

Consistent @ high Poyting flux flare

[~50 GM/c^3]

Recurrence rate

$$v_{\rm A} = \eta V_{\rm AD}/Z_D = 1.0 imes 10^2 \eta m^{-1} \, {
m Hz}_{
m e}$$
 [~500 GM/c^3]⁻¹ ~[2000 GM/c^3]⁻¹

Comparison with Ebisuzaki Tajima model

Ebisuzaki Tajima (2014)

Estimated @ 10 Rs = 20 Rg

Alfven flux conservation

 $\Phi_{\rm AJ}(=cE\times B/4\pi)=\Phi_{\rm AD}(=V_{\rm AD}B_{\rm D}^2/4\pi)$

Rising timescale of flares

 $\lambda_{AD} / V_{AD} = 480 \text{ GM/c}^3$ ==> 82 GM/c³

Recurrence rate

 $v_{\rm A} = \eta V_{\rm AD}/Z_D = 1.0 \times 10^2 \eta m^{-1} \, {\rm Hz}_{
m s}$ [~500 GM/c^3]⁻¹ ~[2000 GM/c^3]⁻¹ ==>[316 GM/c^3]⁻¹

Our numerical simulation

B amplification is active @ 6 Rg

Consistent @ high Poyting flux flare

[~50 GM/c^3]

Application to UHECR acceleration and blazar flare

Cosmic-ray up to ~10²⁰eV

Wakefield acceleration (Tajima & Dawson PRL 1979)

Acceleration mechnism by interaction between wave and plasma.

Laser plasma interaction \Rightarrow 8 shape motion. a) Relativistic electron propagation Short pulse laser grad \mathbf{E}^2 b) Ponderomotive force c) Wake field acceleration V_(plasma) Vg(laser) • · · Schwoere (2008

図1-1

$$\mathbf{F} = q\left(\mathbf{E} + \frac{\mathbf{v}}{c} \times \mathbf{B}\right)$$

Osillation by Electrifield \Rightarrow v (ossilation up, down) vxB force \Rightarrow ossilation forward and backward.

|v| ~ c => large amplification motion
by vxB. (8 shape motion).

If there is gradient in E^2 , charged particles feel the force towars lees E^2 side. = "Ponderamotive force"

Effective acceleration for I~10¹⁸W/cm² (relativistic intensity). Experimentally observed.

Relativistic Alfven wave can be applied to wakefield acceleration. (Takahashi+2000, Chen+2002, Lyubarusky 2006, Hoshino 2008)

AGN : UHECR accelarator ?

0

no

Ebisuzaki & Tajima 2014

Blazar : 3C454.3

Blazars;

- relativistic jets almost on axis to us
- very blight gamma-ray sources

Zamaninasab+2013 Radio map (VLBA)

Application to blazar gamma-ray flare by Fermi

Summary

3D GRMHD simulations of rotating BH+accretion disk and jet launch

- B filefd amplification via MRI
- low beta disk <==> high beta disk transition
- Alfven wave burst in the jet when transition from low beta disk to high beta disk occurs
- Timescales are consistent with Ebisuzaki & Tajima model
- $-a_0 \sim 10^{12} >>1$: strong acceleration
- Timescalses of blazar flares are consistent with our simulation

Future works

Higher resolution calculations to resolve the fastest MRI mode