Thin film compression & applications to high energies

Franklin Dollar Assistant Professor, Department of Physics & Astronomy

Rapid laser evolution

Increasing intensity

Energy Intensity= —— Time

Single cycle generation

 $n(\omega) \approx n+n_2 I$

Self-phase modulation

UCI

• Gaussian pulses undergo Kerr nonlinearity adding frequencies

Thin Film Compression High energy lasers have "flat top" profiles

UC

Laser system at UCI

TFC for Gaussian beams

Radiation pressure acceleration

- Circularly polarized light inhibits electron heating
- Radiation pressure directly accelerates electrons
- For thin foils, can displace all electrons, accelerating all ions
- Optimal thickness is (n_c/n_e) a_0 λ

F. Dollar, et al., Phys. Rev. Lett., 108 (17), 175005 (2012)

Computing Resources

- 592 cores available on GreenPlanet high performance computing center
- Epoch and OSIRIS Particle-in-cell simulations performed
- 3D3V Simulation capabilities

Instabilities for RPA

• 1D assumptions quickly decay

F. Dollar, et al., Phys. Rev. Lett., 108 (17), 175005 (2012)

Single cycle ion acceleration

High harmonic generation

F. Dollar, et al., Phys. Rev. Lett., 110 (17), 175002 (2013)

Single cycle advantages

- Nonlinearity cleans pulse
- Instabilities suppressed in single cycle
- Questions over absorption remain

G. Mourou, et al., Euro. Phys. J. Spec. Top. (2014)

Single cycle electron acceleration

Theory of wakefield toward extreme energy

High energy gain requires lower densities and longer lengths OR ... by scaling to shorter wavelengths much higher densities can be used

Critical density

Photon Energy [eV]

Nanowaveguides

Nanotubes

Porous nanomaterial

PIC Simulations

1 nm and 1000 nm laser confined in tubes of diameter $5\lambda_{L}$ and intensity $a_{0} = 10$

Maintaining laser wavelength to plasma wavelength ratio preserves wakefield structure

Since scaling is based over n_c/n_e , energy and momentum is maintained but transverse motion is drastically reduced, so emittance is much greater

M. L. Zhou, et al., PRAB, 19(10), 101004 (2016)

Photon factories

Photon emission scales with the real electric field while the energy gain scales with the normalized laser amplitude a₀

RPA redux

Short pulse interactions with solids don't generate high energy electrons, but they generate high currents

UC

Positron generation

Courtesy of K.-Y. Chu

UC

H. Chen, et al., HEDP, 7, 225-229 (2011)

Acknowledgements

- Collaborators
 - Toshi Tajima
 - Deano Farinella
 - Xiaomei Zhang
 - Jonathan Wheeler
 - Gerard Mourou
 - Karl Krushelnick
 - Alec Thomas
 - Louise Willingale

National Nuclear Security Administration

Thank you for listening!

