

Electron Beam Diagnosis Using K-edge Absorption of Laser-Compton Photons

Y. Hwang¹, D. J. Gibson², R. A. Marsh², T. Tajima¹, C. P. J. Barty¹

¹University of California, Irvine ²Lawrence Livermore National Laboratory

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

Laser-Compton photon generation

Effect of e⁻ beam divergence on Compton spectrum

Effect of e⁻ beam energy spread on Compton spectrum

K-edge absorption filtering

Edge blurring due to spectral bandwidth

Hole radius: cone angle θ_{κ}

$$\theta_K \approx \sqrt{\frac{4E_{laser}}{E_K} - \frac{1}{\gamma^2}}$$

- Electrons with different energy create K-edge holes of varying sizes
- Electrons moving in different directions create holes centered at different locations

Laser-Compton X-ray Source at LLNL

Electron Beam Dump

LLNL X-band Electron Linear Accelerator

• LLNL/SLAC photoinjector[1]

- 185 MV/m, ~7 MeV

• 1 T53 accelerating section

- 45 MV/m, ~30 MeV

• 50 MW klystron, modulator

• up to 16 bunches per pulse

measured e ⁻ beam parameters	
energy	< 30 MeV
charge	10-200 pC
bunch length	2 ps*
spot size	14 μm x 11 μm
pos. jitter	5 μm x 2 μm
energy spread	0.03%
energy jitter	0.06%
emittance	0.3 mm-mrad
RF frequency	11.424 GHz
rep. rate	10 Hz

*PARMELA simulation value

[1] R. A. Marsh et al., PRSTAB **15**, p. 102001

Laser-Electron Interaction

viewing angle (mrad)

Beam reconstruction by iterative matching

- 75 μm thick Sn foil, 30 min. integrated image plate
- 3 match parameters: E, σ_{E} , σ_{θ} (Gaussian jitter)

Analysis of the method

- Advantages
 - Simple setup, no special equipment necessary (other than the laser)
 - Mean energy can be measured to very high accuracy
 - Parameter limiting the beam quality can be measured with high accuracy
 - Coupled with a beam spot size measurement, can give emittance
- Disadvantages
 - Limited number of suitable K-edge materials
 - More parameters may be needed to accurately model spectrum/divergence
 - Non-limiting parameter cannot be measured accurately

Summary

- Compton scattered spectrum of laser with electron beam contains information about the beam's energy and divergence
- K-edge filtering and iterative matching can be a simple, useful technique in determining beam parameters
- The K-edge filter method was demonstrated with LLNL's 30 MeV linac electron beam producing 30 keV X-rays with Sn filter
- The method gives precise energy measurement and can give quick divergence and energy spread estimates
- Divergence can be combined with an independent spot size measurement for emittance calculation