Astrophysical Imprints of Wakefields: NS-NS Collision, γ-emissions from Blazars, Pinpointed High Energy Cosmic Rays

Colloquium UC Riverside April 30, 2020

> Toshi Tajima UC Irvine

Collaboration: B. Barish, H.B. Yu, S. Bird, T. Ebisuzaki, G. Mourou, K. Nakajima, S. Hakimi, K. Abazajian, S. Barwick, P. Taborek, S. Bulanov, X. Yan, A. Chao, X. M. Zhang, D. Farinella, F. Dollar, J. Wheeler, Y.M. Shin, V. Shiltsev, N. Naumova, W. J. Sha, J. C. Chanteloup, S. Nicks, D. Strickland, A. Sahai, A. Kelley, H. L. Wang, N. Canac, C. Lau, H. Sobel, J. Feng, S. Murgia, JEM-EUSO

Nature's wakefield accelerators in cosmos

1. Collision of neutron star - neutron star

2. Episodic eruption of γ -emissions from Blazars

3. Pinpointed high energy cosmic rays (and neutrinos)

Fig. 5. Gamma-ray emission detected by Fermi and Integral satellites from the neutron star merging event (GW178017) delayed by 1.7 seconds compared with gravitational wave burst [79]. This time difference may be explained by the time to build-up the system for the acceleration of charged particles, described in the present

Barry Barish: 2017 Nobel Observation of **Gravitational Waves**

at LIGO, Caltech Barish With Professor B.

Prophetic picture (2000)

NS-NS collision triggers→

QGP (Quark-Gluon plasma) Shocks /gravitational waves Accretion disk Jets Alfven waves and EM waves Wakefield acceleration GRB (gamma bursts)

Figure 8. A schematic illustration of the proposed concept.

Spacetime scales of NS-NS collision

Accretion disk

Jets/

Alfven waves and EM waves/ Wakefield acceleration / 3x 10⁵km GRB (gamma ray bursts) <u>t= 1s</u>

Unruh radiation 3000km **<u>t=10ms</u>**

Baryon fireball 300km

<u>t=1ms</u>

Shocks /gravitational waves QGP (Quark-Gluon plasma) 30km <u>t=0</u> **Relativistic Lasers and High Energy Astrophysics**

Wakefield generation in Jet

T. Ebisuzaki and T. Tajima, Astropart. Phys. (2014) [implied in Takahashi et al. (2000)]

Nature's wakefield accelerators in cosmos

2. Episodic eruption of γ -emissions from Blazars

Discovery of Blackhole and Prediction

M87 blackhole: by Event Horizon Telescope (2019)

Suggestion: Tajima and Shibata "Plasma Astrophysics"

> (textbook, 1997) 3D Structure of Disk and Jet

"Physiology" of various AGNs

Cen A

- Distance: 3.4Mpc
- Radio Galaxy
 - Nearest
 - Brightest radio source
- Elliptical Galaxy
- Black hole at the center w/ relativistic jets

M82: Nearest Starburst Galaxy

M82 X-1: 1000-10000 Ms BH

Just after the collision with M81

Composite of X-ray, IR, and optical emissions

NASA / CXC / JHU / D. Strickland; optical: NASA / ESA / STSCI / AURA/ Hubble Heritage Team; IR: NASA / JPL-Caltech /Univ. of AZ / C. Engelbracht; inset – NASA / CXC / Tsinghua University / H.Feng et al.

JISCRISS 2019

TA Hot Spot: UHECRs from M82?

An AGN-like Jet in **M82**? X-ray/Radio (flare in 1981)

Xu et al. 2015 ApJ Letters 799, L28

15

SS433 precession jets

A model of **Blazar**

Fermi's 'Stochastic Acceleration' (large synchrotron radiation loss)

Coherent wakefield acceleration (no limitation of the energy)

Nature's LWFA : Blazar jets

extreme high energy cosmic rays (~10²¹ eV) episodic γ-ray bursts observed consistent with LWFA theory

Ebisuzaki-Tajima (2014)

Magneto-Rotational Instability (MRI)

Accretion disk rotating plasma B-fields

Balbus-Hawley (1991)

(a) Magnetic field lines and equatorial density; (b) Projection of magnetic field lines (Matsumoto # Matsumoto Tajima (1995)

ting magnetized disks (magnetic Papaloizou-Pringle instability) is observed; (iii) a he

IRE 4.31

b).

Tajima, Shibata (1997)

Eruption of magnetic field in an accretion disk

A Burst of Electromagnetic Disturbance

Episodic eruption of accretion disk

General Relativistic MHD simulation of accretion disk + jets: episodic feature Outflow luminosity ($0 < \theta < 10^\circ$) $r\theta = \theta_1$ $E_{ m dot} = {f heta}_0 = {f 0}$ $\sqrt{-g}T_t^r dA$ outflow power 14Ra, 60Ra 0.05-Tox10 (matter) R=14Rg -To (Ele-Mag)x100 R=14Rg θ,=10 0.04 -T' (Ele-Mag)x100 R=60F 0.03 outflow power 0.02 0.01 0 -0.01 -0.02 29000 25000 26000 27000 28000 30000 time [GM/c³]

Short time variavilitry ($\Delta t \sim a$ few tensGM/c³) in electromagnetic components (green and pink) : Good agreement with Ebisuzaki & Tajima(2014) $t_{var} \sim M$ => possible origine for flares in blazars,

Strong Alfven wave mode => Application t wake field acc. for UHECRs A. Mizuta, T. Ebisuzaki (2018)

Intense Alfven Shock from root of jet

 \rightarrow Intense EM pulse

n_e decreases

- \rightarrow wakefield generation \rightarrow Electron acceleration
- γ burst ion UHECR

Blazar shows anti-correlation between γ burst <u>flux</u> and <u>spectral index</u>

 \rightarrow all quantitatively consistent with Wakefield theory

Again, Anti-correlation even in a bigger blazar

JISCRISS 2019

Nature's wakefield accelerators in cosmos

3. <u>Pinpointed high energy cosmic rays</u> (and neutrinos)

Ultrahigh Energy Cosmic Rays (UHECR)

 Fermi mechanism runs out of steam
 Image: Marketing of the synchrotron radiation

 beyond 10¹⁹ eV
 10

 due to synchrotron radiation
 10

 Wakefield acceleration
 10

 comes in rescue
 10

 prompt, intense, linear acceleration
 10

 small synchrotron radiation
 10

 radiation damping effects?
 10

Fermi mechanism incoherent requires bending→synchrotron loss

Plasma's Collective Force / Modes

<u>Collective</u> force $\sim N^2$ (nonlinear \leftarrow linear force $\sim N$) <u>Coherent and smooth</u> structure (not stochastic)

<u>enhancement</u> by $10^3 - 10^4$ (even by 10^{6-12}) >> interaction of one particle x one particle

Collective mode delivery (EM x plasma x B) $\leftarrow \rightarrow$ long-ranged force (gravity, EM) what difference?

e.g. jet

e.g. galaxy-galaxy interaction

Laser Wakefield (LWFA):

Wake phase velocity >> water movement speed maintains coherent and smooth structure

VS

Tsunami phase velocity becomes ~0, causes wavebreak and turbulence

Strong beam (of laser / particles) drives plasma waves to saturation amplitude: $E = m\omega v_{ph}/e$ Wave **breaks** at v < cNo wave breaks and wake peaks at v≈c

High phase velocity paradigm

unstable, chaotic

robust, coherent

Low phase velocity	High phase velocity	
Plasma tends to be unstable	Stable state exists (Landau-Ginzburg state)	
$v_{ph} \sim v_{th}$	$v_{ph} \gg v_{th}$	
Mode interacts with bulk plasma (Landau resonance)	Mode insulated from bulk plasma	
Mode-mode coupling → More modes	Mode maintains coherence	
➔ More turbulence		
Strongly nonlinear regime (large Reynolds' number) → strong turbulence	Strongly nonlinear regime → strongly coherent Relativistic effects further strengthen coherence	
Plasma fragile → anomalous transport, structure disintegration	Plasma cannot be destroyed, structures are formed. Violence tolerated	
Trapping: $v_{tr} \leq v_{th} \sim v_{ph}$ $x_{tr} = \sqrt{\frac{CE}{B} \frac{L_s}{k_y v_{\parallel}}}^{22}$	Trapping: $v_{tr} = \sqrt{qE/mk}^{13}$ If wave pumped, v_{tr} increases until $v_{tr} \sim v_{ph} \gg v_{th} \rightarrow$ acceleration or injection Tajima-Dawson saturation: $E_{TD} = \frac{m\omega_p c}{e}$	
Characteristic structure: Sheath	Characteristic structure: Wake	
Energy gain: by coherent accumulation of electron charges of the sheath (energy amplification of sheath charge accumulation $2\alpha + 1$ (coherence parameter α) ¹⁸	Energy gain: by energy amplification over the trapping width $v_{tr} \sim v_{ph}$ (Lorentz transform factor $2\gamma^2 = 2 n_{cr} / n_e$)	

Laser-driven Bow and Wake

The late Prof. Abdus Salam (1981)

At ICTP Summer School (Trieste,1981), Prof. Abdus Salam summoned me and discussed about laser wakefield acceleration.

Salam: 'Scientists like me began feeling that we had less means to test our theory. However, with your laser acceleration, I am encouraged'. (1981)

He organized the Oxford Workshop on laser wakefield accelerator in 1982.

Demonstration (1994), realization, and applications **nature** of laser wakefield accelerators

(2004)

Michigan)

4 GeV laser accelerator LBL

3GeV Synchrotron SOLEIL

Astrophysical wakefield acceleration: Superintense Alfven Shock in the Blackhole Accretion Disk

 $a_0 = eE_0 / mc\omega_0 >> 1$

toward ZeV Cosmic Rays ($a_0 \sim 10^6 - 10^{10}$, large spatial scale)

Ebisuzaki and Tajima, Astropart. Phys. (2014)

Wakefield Acceleration

Co-linear acceleration by electrostatic field

Stable acceleration structure

- Coherent and Strong Field
- Moving in $\cong c$
- Colinear acceleration
- across a long length
- Built in deep in the theory

All the messenger channels

- Electrons → photons (HE, radio)
- − Protons→CRs→neutrinos
- Gravitational waves (NS mergers)

Variabilities

- Caused by disk instability
- In all messenger channels
- Violent and simultaneous

Energy release by wakefield

JISCRISS 2019

cosmic ray acceleration and gamma-ray emission

BH Astronomy with Ultra High Energy CRs

Brightest cosmic rays by wakefields

(B)

Conclusions

- Wakefield: demonstrated <u>ultrafast</u> pulses, coherent collective (robust) (GeV/cm) excitable in labs (since 1994).
- Nature: more evidence of wakefields emerging
- NS-NS collision: GW followed by γ-emissions
- Blazars: episodic γ-emissions ← wakefield accelerated electrons ← accretion disk MRI triggered
- Nature's violent phenomena = brightest spots for large and coherent actions by wakefield
- → pinpointed UHECRs (and high energy neutrino) arrivals
- Gravity + plasma + B (under certain conditions) → plasma's theater to show <u>huge</u>, <u>robust</u>, <u>highest energy</u>, and <u>coherent</u> phenomenon of s.a. <u>wakefields</u>

Thank you for joining! Stay healthy!

Nature's wakefield accelerators in cosmos