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John A. Wheeler

“Toshi, do you know what a professor is about?
A professor is a person who learns from students.”

Sept., 1980,
Prof. Wheeler at Univ. of Texas at Austin




What part of astrophysics?

* Frontiers of astrophysics only (that are not yet well understood):

highest energy particles (e.g. of cosmic rays > 10720eV, high energy
neutrinos)

highest energy photons (e.g. y-rays up to TeV /PeV)

most violent processes (e.g. disruptive accretion; jets)

episodic and eruptive (e. g. y-ray bursts)

young objects (e. g. AGN, Blazars)

neutron-star x neutron-star collision—=> plasma plays essential role

* | have no time to cover:

objects (e.g. our galaxy, our Sun, our solar system), gravitational dominants

, steady-state objects
objects where such as the Moon (“the older, the less plasma”)
interacts with astronomical object (cf. collective interaction N?)

(our textbook covers some of both kinds)



What can/should we do by the end of
the Quarter? (if you are lucky)

What magnetic fields do in active Universe? Why are they there?
Why B-fields important? What do B-fields do?

What kind of structure formations?  Accretion disks, jets, collisions of stars
(and galaxies),.......

Survey nonlinear plasma evolution
What are the Universe’s long standing nonlinear structures?

Why wakefields are among them and there (does not disappear) and
robust?

Imagine where Mother Nature wishes to excite wakefields?

Predict (in addition to interpret) what happens if you make violent plasma
excitation?

Acceleration, emission of gammas, protons, neutrons
What can you predict from all these?



Distinction between gravity <=2 EM

* Both: range can be infinite < Gauss law
e Strong and weak interactions:
- range O( fermi = fm)
* Grav: no negative mass; EM: + and —, but can be combined;
no magnetic monopole =2 magnetic force range finite
e EM: if combined +/- = atoms: range O(A)
* EM: +/- > Debeye screening: range O(v,;/w,)
- collisionless skindepth: range O(c/w,)
- EM radiation infinite range
However,
* With B : fields screening removed < Alfven effect
mediated @ v,
: texture appears
* Collective/ violent proc. = ephemeral struct. or
—> robust struct = wake @ c
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Alfven’s legacy

Importance of filaments / texture
in plasmal
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Structure Formation of Universe
e Gravitational : Well known
* Plasma-mediated: Not yet well known

e.g. AGN (prior to becoming a Galaxy) with plasma as the
disk, or formation of cluster of AGNs.
even stellar formation out of plasma.

e.g. collaboration of gravity and plasma

(plasma €< amorphous, and thus anti-structure entity in
blood, as well as in ionized gas)

|
But! \1,

plasma + B : provides texture to weave the structure

of the Universe on (many examples in textbook)




Structures
In Universe

* Interplay of
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Mostly high B

Examples:

e Stellar dynamics
(see: NB)

* AGN disk dynamic

FIGURE 18 Tha structure of objects in quasi-hydrostatic equilbrium.
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NB:

current tube-current tube interaction

Tube coalescence (and reconnection) Flux twist and untwist

pp.220-221
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NB:

Solar flare eruption

(example of stellar dynamics)

Coalescence of current
tubes

Explosive coalescence
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Examples of base processes

Parker I.nst-ablll'-c-y MRI = twisted magnetic amplification;
(ballooning instability) = Flux buoyancy jet formation
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undular moge
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kB
. i - FIGURE 427 Magnetic field lines for model 7" in the eigenmode growth state [t = (8.4 — 15.% -
ZIGURE 3.18 Interchange mode and undular (Parker) mode of magnetic buoyancy instability. wsturston stage [¢ = (20.9 — 25.0/9) (Matsumeto and Tajims, 1995).
. e 14 .2.3. Jffects of t stability™*
3.2.1.2 Magnetic Buoyancy Instability and Parker Instability 4.2.3.6 Effects of the Parker Instability
) When the vertical gravity is included, magnetic field escapes from the ss W8
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Text p.158-196 Text p. 329-342



Parker Instability

centrifugal force
gravity .
/ effective gravity

AGN (BH) disk

FGURE 319 Balooning instabilty in a
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Nonlinear evolution of Parker Instability

Mass falls off'along the flux tube
— Stimulate further growth of balloon
.= "overshoot”
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Magnetic buoyancy (simple derivation)

Pressure equilibrium: p;=p.—B2/8t H, where the scale height H=T /Mg

Buoyancy force: Ap g =B?/8n H
The Parker instability: Apg > B2/4nr, where r the tube curvature

The unstable wavelength for Parker: A > 9H when>>1

(p. 166)



Ll

#tin Fig. 3.30. (a) The magnetic
(log p)- Ndomumm

tive-Parker mstabﬂlty Ne
interchange mode (Matsur
ind that the Alfvén s
mAf decreases vith
p. As magneti 1s. it t
forces becomec ‘,?.i'
(3.2.81). ,
shlbm et al, (198* i

Loop brightening

Further nonlinear manifestation of
Parker process

Feet of the flux loop emit EM signals
by bombardment of plasma to the
disk surface
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Magnetic buoyancy
and twist in jets
from accretion disk

A consequence of Parker process



Beginning of
structure formation

via Parker process

Consequences:

- 1. the escape of amplified B-field
in the disk

2. pinching of plasma radially
accentuated, forming streaks of dense

regions
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3. allow accentuated magneto-
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