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Wake acceleration

Bow wake and stern wake
Nature (or mother duck) shows us.

Yuan et al. JFM
 (2021)
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(when 1D theory applies
Tajima / Dawson, 1979)

Theory of wakefield toward extreme energy 

In order to avoid wavebreak,
a0 <  γph1/2 ,

where
γph = [ncr(ω) / ne ]1/2
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ncr =1021/cc (1eV photon)
1029 (10keV photon) 

ne  = 1016 (gas)         1021 /cc(porous solid)
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Demonstration (1994), realization, and applications         
of laser wakefield accelerators
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Relativistic vs Nonrelativistic LWFA

Wave breaks at v＜c at non-relativistic 
regime

No wave breaks and wake peaks at relativistuic regime 
v≈c

Relativistic coherence enhances beyond the Tajima-Dawson field:  E = mωpc a0 /e  (~ GeV/cm) 
Strong beam (of laser / particles) drives plasma waves to saturation amplitude:  E = mωp vph /e 

1. High phase velocity paradigm:  Tajima-Dawson (1979)    vph à large (close to c)

2. Relativistic amplitude of LWFA :                                           a0 > 1

Relativistic coherence (Tajima, 2010)         vs           Nonrelativistic cases (today: more to follow)

vs a0  < 1a0  > 1

3.   Relativistic coherence (Tajima, 2010)



Laser Wakefield (LWFA): 

Multiple of waves at v＜cNo wave breaks and wake peaks at v≈c

← relativity
regularizes

(relativistic coherence)

Wake phase velocity >> water movement speed                Tsunami phase velocity becomes ~0,  
maintains coherent and smooth structure causes easier trapping and acceleration of more #

Tajima-Dawson field E = mωpc /e  (~ GeV/cm) 

Strong beam (of laser / particles) drives plasma waves to saturation amplitude:  E = mωvph /e 

vs

a0 ~ 10 >> 1 (relativistic wave)
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Transition to a0  < 1 regime
Transition to near-critical density ne ~ ncr

à
à

à

ne ~ ncr

vg (group velocity of photon) = vp (phase velocity of  plasma wave)
<< c
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D ~ specific entropy
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Laser Wakefield Acceleration near critical density
Near critical density ~ ne = 1021 /cc

gaseous plasma   à solid nanotube

Excitation of electron acceleration possible with I ~ 1014 W / cm3

Coupling gets stronger near ne = 1021 /cc
ßoverlap of plasma waves with different vp
ß curved laser ⍵ (k), varied vg



Laser beat wave excitation of wakefield
Beat of two lasers (⍵0  k0 )  (⍵1 , k1 )  to match with the plasma eigenmode (⍵p , k0 – k1 ),

à wakefield

Nonrelativistic limit of energy gain



High-density Beatwave Τ݊௖ ݊௘ ൌ ͳͲ
� Two laser pulses, each @ ܽ଴ ൌ ͲǤͲ͵
� ܽ଴ ൌ ͲǤͲ͵Æ ͳǤʹ ൈ ͳͲଵହ Τ� ��ଶ

� Wavelength: ߣ଴ ൌ ͳ Ɋ�
� ߱ଵ ൌ ߱଴ ൅ Τ߱௣ ʹ, ߱ଶ ൌ ߱଴ െ Τ߱௣ ʹ
� Pulse length: ൎ300 fs
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Beat wave excitation of plasma wave 

When  ne ~ ncr , i..e    ⍵1 ~ ⍵p 

Raman forward scattering 

(E. Barraza)



Free-Space Laser vs. Fiber Laser
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Fiber laser technology

CAN fiber lasers

hollow fiber laser

ß
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Conventional electron accelerator (and X-ray)
for Therapy

(Varian)

Electron energies by accelerator: 6-20MeV

à X-rays

L e ~ 10 cm / 10MeV  à 10 micron / 10keV

Cancer cell size

à

Body penetration

<

ß 5-10m                                      (next room)  à

LWFA could provide high dose “FLASH” therapy

Furthermore,  much tinier with fiber



In situ / endoscopic fiber delivery of electron
radiotherapy of cancer

Fiber laser  drives in situ nanotube target 
in front of cancer cells

à Compactification,  accurate (no collateral damage),  and cheap

ß 10 micronà



Cost estimate comparison with Brachy therapies

Item LWFA – HDR Iridium-192–HDR Cobalt-60–HDR 

Purchase Estimate $100K - $300K $700K - $900K $700K - $900K

Room Shielding None $200K - $500K $200K - $500K

Source Replacement None ~$10K every 4-6 months ~130K every 60 months

Downtime due to Source Replacement None 1-2 days 1-2 days

(Prof. D. Roa, preliminary estimate)
à



Current treatment applications (from skin, vagina, uterine, breast, etc.)

(Prof. D. Roa)à Much smaller, endoscopic in ours



Vector nanomolecule with high-Z metal 
to target cancer cells for electron radiotherapy

Nanomolecular vector medicine, (after F. Tamanoi, 2022)

High-Z:   stop electrons
Nanomolecule vector:

attached to cancer cell
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1. Near critical density (e.g. nanotube material) à low phase velocity LWFA

2.  Low energy electrons (> 10keV, < MeV), large amount with modest laser    
power (using Raman forward process)

3.  Fiber laser technology (s.a. hollow fiber laser)

4.  Endoscopic (through fiber) delivery of electrons for radiotherapy                      
ß replacing Brachy therapy

5. With nanomolecule vector (with high-Z particle attached),      
further accuracy, focus of electrons

Summary
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Recent advancements in generation of intense 
X-ray laser ultrashort pulses open opportunities 
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Appendix to p. 15:
Conventional electron accelerator for radiotherapy


