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Transitional and turbulent boundary layer (BL) flows possess dramatically larger wall-shear stresses and surface

heat fluxes than their laminar counterparts. Locally, this can be explained by appealing to the presence of

spatiotemporally coherent velocity and temperature regions that enhance the momentum and thermal transport

across the BL. However, these coherent structures are seldom present alone, but usually influenced by other physical

phenomena, such as the streamwise growth of BLs or freestream pressure gradients. A moment of enthalpy integral

equation is introduced to quantify how turbulence and other flowphenomena enhance surface heat flux. Results from

a direct numerical simulation of a transitional and turbulent BL are used to demonstrate the proposed analysis

method and to form a quantitative assessment of the BL physics. The integral analysis demonstrated in this paper for

canonical turbulent flows provides an interpretable analysis tool for unlocking key BL physics, including future

extensions to compressible BLs, freestream pressure gradients, and the evaluation of flow control schemes.

Nomenclature

Cf = skin friction coefficient

l = distance from wall about which moments are taken
P∞ = freestream pressure
p = pressure
qw = surface heat flux
U∞ = freestream velocity
u = streamwise velocity
St = Stanton number
T = temperature
Tw = wall temperature
T∞ = freestream temperature
v = wall-normal velocity
x = streamwise coordinate
y = wall-normal coordinate
α = thermal diffusivity
δ99 = 99% boundary-layer thickness
δ� = displacement thickness
θ = momentum thickness
θl = angular momentum thickness
θv = wall-normal momentum thickness

δh = enthalpy thickness

δhl = moment of enthalpy thickness

δhv = wall-normal enthalpy thickness

ν = kinematic viscosity
ρ = density
τw = wall shear stress

�⋅� = Reynolds-averaged quantity

I. Introduction

T RANSITION to turbulence in boundary layers (BLs) is accom-
panied by a significant jump in the surface friction and heat

transfer [1]. In the late stage of the transition, before turbulence is
fully developed, BLs experience a peak surface friction and heat flux
[2–4]. Depending on the application, this may be beneficial or
deleterious (or both).
The qualitative understanding of the BL transition to turbulence on

the skin friction and heat transfer enhancement is very well estab-
lished forwall-bounded flows. During the transition to turbulence the
rate at which momentum and heat is transported across the BL
increases substantially compared with the molecular fluxes respon-
sible for such transport in laminar BLs. Because BLs develop with
downstream distance, other physical flow phenomena, including
fluctuations, may also alter momentum and heat fluxes at the wall.
For instance, the mean wall-normal velocity plays a role in transport
and the rate at which the BL thickens. Furthermore, externally
imposed pressure gradients can dramatically alter the skin friction
and surface heat flux, even leading to a BL separation in the case of
strong adverse pressure gradients [5].While such a qualitative under-
standing of these effects is quite intuitive, a quantitativemathematical
mapping between the flow phenomena involved during the transition
and to what extent they alter the surface friction and heat transfer is
desirable for engineering design analysis such as flow control opti-
mization [6,7] and the interpretation of wall measurements [8].
For fully developed internal flows such as channel or pipe flows, a

triple integration (or equivalently, a second moment integral) of the
mean momentum equation provides a simple method for quantifying
the effect of Reynolds stresses on the friction factor compared to an
equivalent laminar flow [9,10]. In a subsequent study, the generalized
form of the Fukagata-Iwamoto-Kasagi (FIK) equation for three-
dimensional complex wall shapes was introduced [11]. It is also of
a significant interest to study the heat transfer in transitional and
turbulent BLs. Therefore, the FIK approach has been extended to the
case of heat transfer in internal flows [12]. In terms of applications,
for instance, the FIK method provided an important guidance on the
limitation of flow control schemes in the context of internal flows
[13]. For incompressible BLs, several derivations of the FIKequation
were developed based on the triple integration [14,15]. Interestingly,
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the weighting of the Reynolds shear stress term in the resulting
integral equation shows that turbulent fluctuations near the wall are
more influential in the friction factor enhancement than those closer
to the centerline. Instead of triple integration, a twofold repeated
integrationwas proposed to remove thewall-normal distanceweight-
ing for incompressible turbulent BLs [16]. However, in FIK equation
forBLs and its variants based on twofold integration, theviscous term
does not represent the laminar skin friction, i.e., Blasius solution [17],
for incompressibleBLs. In otherwords,when applied toBLs, the FIK
relation loses the clean interpretation they enjoyed for internal flows,
and existing approaches do not entirely set the matter straight. For
instance, they do not yield the friction turbulent enhancement relative
to an equivalent laminar BL at a matching Reynolds number.
Another approach to decompose the skin friction of turbulent BLs

was introduced by Renard and Deck [18], who proposed an equation
established on the budget of the mean flow kinetic energy. This so-
called RD equation emphasizes the energetics of the BL, including the
prominent role of the logarithmic layer. The interpretation of the RD
equation for BLs is quite different from the original FIK relation for
internal flows, however, because the influence of turbulence on the
mean velocity profile (and its gradient) is included in the viscous term.
Thus, the resulting relation does not delineate between laminar and
turbulent skin friction, in the sense that the skin frictionof an equivalent
laminarBL is not represented (as in the original FIK for internal flows).
Thus, it does not form a unified conceptual framework with FIK.
Recently, Elnahhas and Johnson [19] developed the angular

momentum integral (AMI) equation by integrating the first moment
of momentum deficit equation for incompressible BLs. The AMI
equation accomplishes for BLs what the FIK equation does for
internal flows (pipes, channels). Specifically, it relates the skin-
friction coefficient of any (e.g., turbulent) BL to the sum of an
equivalent laminar skin-friction coefficient (as a function of a user-
defined Reynolds number) plus an (unweighted) integral of the
Reynolds shear stress, along with other terms (e.g., freestream pres-
sure gradients). In addition to the clearmathematical interpretation as
enhancement or attenuation relative to an equivalent laminar BL, the
AMI equation also has an intuitive physical explication in terms of
torques that reshape the mean velocity profile, changing its angular
momentum (moment of momentum) and affecting the slope at the
wall (i.e., the skin friction).
This paper builds on the moment-of-momentum (or angular

momentum) integral theory of Ref. [19], with extension to the heat
transfer (passive scalar transport) for low-Mach-number BL flows.
For high-speedBLs, the first-moment type integral equations for skin
friction and surface heat flux are derived and examined on fully
turbulent datasets [20]. A simultaneous accounting of how flow
phenomenawithin the BL combine to set the skin friction and surface
heat transfer provides a route for deeper understanding and potential
engineering gains for controlling friction losses and heat transfer. The
integral equations are herein concretely demonstrated as valuable
analysis tools for interpreting the role of various flow phenomena
influencing the skin friction and surface heat transfer, particularly
during the transition to turbulence where the mean skin friction and
surface heat flux reach to maximum. This paper is organized as
follows. Section II summarizes the AMI equation, and the approach
is logically extended to surface heat flux by introducing the moment

of enthalpy integral (MEI) equation in Sec. III. In Sec. IV we apply
the AMI andMEI equations to direct numerical simulation dataset of
an incompressible BLwith heat transfer undergoingbypass transition
to turbulence [21]. Finally, conclusions and potential ideas for future
work are reported in Sec. V.

II. Angular Momentum Integral Equation

The AMI equation quantifies how the flow phenomena influence
BL skin friction in terms of “torques” redistributing (the deficit of)
momentum in the wall-normal direction. In this context, the labeling
of torque and angular momentum is done within the BL approxima-
tion in which the streamwise direction is time-like. Thus, only the
wall-normal offset of forces and momentum is considered. Thus, the
rate of change (d∕dx) of net angular momentum is equal to the torque
of the wall shear stress summed together with other torques due to
inertial, viscous, pressure, and turbulent stresses. The AMI equation
provides a global accounting of the skin friction in terms of flow
torques that reshape the mean velocity profile as sketched in Fig. 1;
these other torques reshape the mean velocity profile in the BL by
transporting momentum (deficit) in the wall-normal direction,
increasing or decreasing the skin friction coefficient depending on
the sign of the torque. As depicted, a counterclockwise torque speeds
up the near-wall flow at the expense of the outer region of the BL,
leading to a higher skin friction coefficient. A good example of this
effect is the Reynolds shear stress in a turbulent BL. Alternatively, a
clockwise torque slows down the flow in the near-wall region and
speeds up the outer region, decreasing the skin friction. An example
of this is the torque of an adverse pressure gradient. These examples
will be made clear in a mathematical sense as the AMI equation is
developed in this section.
The derivation of the AMI equation proceeds similarly to von

Kármán’s momentum integral equation [22]. For the present work,
the statistically two-dimensional mean flow in a flat-plate BL is
described in Cartesian coordinates by the streamwise, u�x; y; t�,
and wall-normal, v�x; y; t�, velocities, respectively. The Reynolds-
averaged Navier–Stokes (RANS) equations for incompressible BLs
—in a conservative form—read

∂u
∂x

� ∂v
∂y

� 0 (1)

for the mass and

∂u
∂t

� ∂�u2�
∂x

� ∂�u v�
∂y

� −
1

ρ

∂p
∂x

� ν
∂2u
∂x2

� ν
∂2u
∂y2

−
∂u 0u 0

∂x
−
∂u 0v 0

∂y
(2)

for the streamwise momentum conservations, respectively. In Eq. (2)
the fluid’s density ρ and kinematic viscosity ν remain constant. Also,
p is the mean pressure. The effect of surface curvature on BLs can be
neglected in some cases. Generalization of this approach to include
BLs on surface with significant curvature effects is a topic for
future work.
The BL is subjected from above to a freestream flow with velocity

U∞�x; t� and pressureP∞�x; t�, where x is the streamwise coordinate

Fig. 1 On the left, a counterclockwise torque (e.g., Reynolds shear stress) transports momentum toward the wall, increasing the skin friction. On the
right, the opposite occurs (e.g., an adverse pressure gradient).
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along the surface. Within the freestream, the streamwise momentum

equation is

∂U∞

∂t
�U∞

∂U∞

∂x
� −

1

ρ

∂P∞

∂x
(3)

It is assumed here that wall-normal variation ofU∞ on the scale of the

BL thickness is insignificant compared to the wall-normal variation

of the velocity within the BL, though this assumption may need to be

relaxed in the future to apply this approach to strong adverse pressure

gradients and BL separation.
Now, subtracting Eq. (2) from Eq. (3) yields a transport equation

for the streamwise momentum deficit (U∞ − u) as

∂��U∞ − u�u�
∂x

� ∂��U∞ − u�v�
∂y

� �U∞ − u� ∂U∞

∂x

� −ν
∂2u
∂y2

� ∂u 0v 0

∂y
− IM (4)

where all the terms neglected in statistically stationary high-Reyn-

olds-number BL theory to the skin-friction coefficient are gathered in

a single term:

IM � ∂
∂t
�U∞ − u� � ∂

∂x
−�u 0u 0� � ν

∂u
∂x

−
1

ρ

dP∞

dx
−
dp

dx

(5)

Equation (4) expresses how the streamwisemomentum deficit in BLs

changes because of the streamwise and wall-normal fluxes, free-

stream acceleration, pressure gradient, viscous transport, and Reyn-

olds stresses. Integration of Eq. (4) across the BL from y � 0 to

y � ∞ and normalizing by U2
∞ yield the von Kármán momentum

integral equation [22] that reads

Cf

2
� dθ

dx
� 2θ� δ�

U∞

dU∞

dx
� IM (6)

where the momentum and displacement thicknesses are defined,

respectively, as

θ ≡
∞

0

1 −
u

U∞

u

U∞
dy; δ� ≡

∞

0

1 −
u

U∞
dy (7)

and IM represents the contribution of all the negligible terms [inside

IM, Eq. (5)] to Cf∕2. Also, the skin-friction coefficient for BLs is

Cf ≡ 2τw∕ρU2
∞, in which τw � μ�∂u∕∂y�y�0 is the shear stress at the

wall and μ � ρν is the fluid’s dynamic viscosity.
Note that Eq. (6) is valid for laminar, transitional, and fully

turbulent flows. In other words, the influence of fluctuations, e.g.,

Reynolds shear stress, momentum flux, and hence skin friction, is

implicit. Because turbulence only rearranges momentum in the wall-

normal direction, it does not directly provide a source or sink for the

integral of momentum (deficit). Instead, the impact of turbulence on

Eq. (6) is to change the relationship between Cf and θ. To see

the effect of turbulence explicitly, onemust consider howmomentum

is distributed in the wall-normal direction, e.g., by considering

moments of momentum.
The AMI equation is derived by multiplying Eq. (4) by

�y − l�x��—as the first moment—and integrating in thewall-normal

direction from y � 0 to y � ∞. This may then be stated in terms of

the skin-friction coefficient with a subsequent division by lU2
∞ that

yields

Cf

2
� 1

Rel
� 1

l

∞

0

−u 0v 0

U2
∞

dy� dθl
dx

−
θ − θl
l

dl
dx

� θv
l

� 2θl � δ�l
U∞

dU∞

dx
� Il;M (8)

where the left-hand side is the skin-friction coefficient and on the
right-hand side there are several terms related to several physical flow
phenomena. In Eq. (8), Rel � U∞l∕ν represents the Reynolds
number based on the length scale l�x�, and Il;M contains all terms

neglected in BL theory [in Eq. (5)]. The angular momentum and
displacement thicknesses are defined as

θl ≡
∞

0

1 −
y

l
1 −

u

U∞

u

U∞
dy;

δ�l ≡
∞

0

1 −
y

l
1 −

u

U∞
dy (9)

which collapse to θl � θ and δ�l � δ� in the limit of l → ∞. In fact,

the AMI equation returns the von Kármán momentum integral equa-
tion when l → ∞. The wall-normal momentum thickness is defined
as

θv ≡
∞

0

1 −
u

U∞

v

U∞
dy (10)

representing the integration of the mean wall-normal flux of the
streamwise momentum deficit. Equation (8) represents the integral
budget of mean angular momentum with respect to y � l, in the BL
approximation where x is a time-like variable. It may also be called a
first moment of momentum integral equation [23] (for historical
context, see also [24]).
According to Ref. [19], the choice of l�x� can be made to isolate

the zero pressure gradient (ZPG) laminar skin friction coefficient in a
single term of the AMI equation, 2∕Rel. This choice allows the other
terms in the equation to be straightforwardly interpreted as enhance-
ment or attenuation of the skin friction compared to a laminar BL at a
matching Reynolds number. The skin-friction coefficient of ZPG
laminar BLs from Blasius solution [17] yields

Cf

2
� 1

Rel
� 0.332

Rex
p � 0.221

Reθ
� 0.571

Reδ�
� 1.63

Reδ
(11)

which corresponds to

l�x� � 3.01
νx

U∞
� 4.54θ�x� � 1.75δ��x� (12)

Each of these relations represents a unique choice for the AMI

equation. For example, the choice of l ∼ x
p

makes the first term
equal to the skin friction of the Blasius BL at a givenRex. In that case,
the AMI equation expresses the BL skin friction relative to the
laminar case at the same Rex. Similarly, the choice l ∼ θ makes
the first term equal to the Blasius friction for a givenReθ, and thus the
AMI equation quantifies the skin friction relative to a laminar BL as
the same Reθ. Therefore, the ability to choose l�x� provides flexi-
bility for the analysis and clarity of interpretation. Due to the physical
basis of the momentum thickness stemming from the von Kármán
momentum integral equation (6), the results in this paper will use the
AMI equationwith the length scalel ∼ θ. Elnahhas and Johnson [19]
briefly considered different choices for the length scale, and further
insights from other choices are left for future work.
Once the choice of l is made, the other terms may now be

interpreted as changes to the skin friction relative to a Blasius BL
having the same Rel. The second term in Eq. (8) accounts for how
turbulent fluctuations (via the Reynolds stress) alter the skin friction
coefficient. Unsurprisingly, a negative correlation between stream-
wise and spanwise fluctuations increases skin friction (Fig. 1). In the
AMI equation, the contribution of the Reynolds shear stress to skin
friction is unweighted as a function of wall-normal distance, so that
the wake region of the BL contains most of this integral.
The third term on the right-hand side of Eq. (8) expresses the

streamwise growth of the angular momentum thickness θl relative to
how quicklyl increases. The increase inl is dictated by the choice of
length scale to use for Eq. (12), e.g., l ∼ x

p
or l ∼ θ, where the
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coefficient is set by the Blasius solution. Another way of thinking
about the AMI equation is that an increase in angular momentum
thickness must be equal to the sum of the skin friction torque along
with the other torques represented on the right-hand side of Eq. (8).
The mean wall-normal velocity also redistributes streamwise

momentum (deficit), reflected in the fourth term on the right-hand
side of Eq. (8). In the case of a positive mean wall-normal velocity,
momentumdeficit is carried away from thewall. Thismay be thought
of as a torque that decelerates the mean flow in the outer BL and
speeds up the near-wall flow, increasing the skin friction.
Any freestream pressure gradient also acts as a torque on the BL

velocity profile. As quantified by the fifth term on the right-hand
side of Eq. (8), an accelerating freestream (favorable pressure
gradient) acts to increase the skin friction coefficient while a decel-
erating freestream (adverse pressure gradient) does the opposite.
Finally, the contribution of the terms neglected by BL approxima-
tion is accumulated in the sixth term. A comprehensive interpreta-
tion of each flow phenomenon in the AMI equation is provided
in Ref. [19].

III. Moment of Enthalpy Integral Equation

The derivation and interpretation of the AMI equation for skin
friction was given previously by Elnahhas and Johnson [19]. An
analogy between skin friction and surface heat transfer has long been
a staple of BL theory. In this section, we build on the approach of the
AMI equation to introduce an analogous MEI equation for surface
heat transfer.

A. Derivation

For incompressible flows, the averaged conservation equation for
enthalpy provides an expression for how turbulence and other flow
phenomena alter the Stanton number, and hence the Reynolds’s
analogy. For statistically stationary, two-dimensional BLs, without
heating source/sink, andwith constant fluid properties, theReynolds-
averaged conservation equation for thermal energy—written in terms
of temperature, T—reads

∂T
∂t

� ∂�uT�
∂x

� ∂�v T�
∂y

� α
∂2T
∂x2

� α
∂2T
∂y2

−
∂�u 0T 0�

∂x
−
∂�v 0T 0�

∂y
(13)

where α is the fluid’s thermal diffusivity. Subtracting the adiabatic
freestream (T∞ is constant) enthalpy, equation

∂T∞

∂t
�U∞

∂T∞

∂x
� 0 (14)

from Eq. (13) yields a transport equation for the mean excess
enthalpy equation (often Tw ≥ T∞ in incompressible BLs) in terms
of temperature as

∂��T − T∞�u�
∂x

� ∂��T − T∞�v�
∂y

− �U∞ − u� ∂T∞

∂x

� α
∂2T
∂y2

−
∂�v 0T 0�

∂y
� IT (15)

where all the terms neglected in statistically stationary, two-
dimensional BL approximations are gathered in a single term:

IT � ∂
∂t
�T∞ − T� � ∂

∂x
−�v 0T 0� � α

∂T
∂x

(16)

Integrating Eq. (15) in the wall-normal direction from y � 0 to
y � ∞, then normalizing by U∞�Tw − T∞� results in a Kármán-
integral-type relation for the Stanton number [1]

St � dδh

dx
� δh

U∞

dU∞

dx
� δh

Tw − T∞

dTw

dx
� IT (17)

where δh is the enthalpy thickness,

δh ≡
∞

0

u

U∞

T − T∞

Tw − T∞
dy (18)

representing the wall-normal integral of the streamwise flux of the

enthalpy excess (or deficit) [25]. Moreover, IT corresponds to the

contributions of the negligible terms (IT) to the Stanton number.

The Stanton number for incompressible BLs is defined as

St ≡
qw

ρU∞cp�Tw − T∞�
(19)

representing the nondimensional form of surface heat flux qw �
−κ�∂T∕∂y�y�0, where κ � ρcpα and cp are the fluid’s thermal con-

ductivity and constant specific heat capacity, respectively.
Note that the influence of turbulence in Eq. (17) is implicit because

turbulence rearranges enthalpy (and momentum) in the wall-normal

direction; it does not directly provide a source or sink. Instead, the

impact of turbulence in Eq. (17) is to change the relationship between

St and δh. To explicitly quantify the impact of turbulence on the

surface heat transfer, onemust consider how enthalpy is distributed in

thewall-normal direction, e.g., by considering the firstmoment of the

enthalpy equation.
Similar to the AMI equation, the MEI equation is obtained by

multiplying Eq. (15) by (y − l)—the first moment—then integrating

across the BL, ∫ ∞
0 �y − l��⋅� dy. Normalizing the resulting by

lU∞�Tw − T∞� yields the MEI equation

St � 1

Pel
� 1

l

∞

0

T 0v 0

U∞�Tw − T∞�
dy� dδhl

dx
−
δh − δhl

l
dl
dx

� δhv
l

� δhl
U∞

dU∞

dx
� δhl

Tw − T∞

dTw

dx
� Il;T (20)

where Pel � 1∕�Pr ⋅ Rel� is the Péclet number, and Pr � ν∕α; δhl
and δhv are the first moment of enthalpy thickness and wall-normal

enthalpy thickness, respectively, defined as

δhl ≡
∞

0

1 −
y

l
u

U∞

T − T∞

Tw − T∞
dy;

δhv ≡
∞

0

v

U∞

T − T∞

Tw − T∞
dy (21)

Note that, in the limit of l → ∞, the first moment of enthalpy thick-

ness collapses to δh, and hence theMEI equation becomes the classic

integral Eq. (17). In Eq. (20), Il;T represents the contribution of the

neglected terms (IT) to the Stanton number based on the first moment

integral approach. Note that a meaningful interpretation of the MEI

equation depends on the choice of the length scale l; an appropriate
definition of l is precisely discussed in Sec. III.B.

B. Interpretation

The right-hand side of the MEI equation (20) consists of different

terms mapping different physical flow phenomena and quantifying

how they alter the Stanton number. A summary of the physical inter-

pretation of these terms is provided below and supplemented by a brief

discussion of each flow phenomenon in the following paragraphs.

(I) 1
Pel

→ surface heat flux of an equivalent laminar BL at

matched Pel,

(II) 1
l ∫

∞
0

T 0v 0
U∞�Tw−T∞� dy → turbulent flux integral, turbulent trans-

port of enthalpy,

(III) dδhl
dx − δh−δhl

l
dl
dx → streamwise growth of the first moment of

enthalpy thickness,

(IV) δhv
l → flux by mean wall-normal transport,

(V)
δhl
U∞

dU∞
dx → freestream pressure gradient flux,
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(VI)
δhl

Tw−T∞

dTw

dx → flux by wall temperature variation, and

(VII) Il;T → heat flux due to negligible terms.

1. Diffusion Flux and the Laminar Stanton Number (I)

In the MEI equation, the Stanton number and the laminar surface
heat flux are obtained from the wall-normal integration of the first
moment of the diffusion flux in Eq. (15)

∞

0

�y − l� α
∂2T
∂y2

dy � −l�Tw − T∞�U∞ St −
1

Pr ⋅ Rel
(22)

From Eq. (22), if l is chosen such that St � 1∕Pr ⋅ Rel for a ZPG
incompressible laminar BL, then the integral of total diffusion flux
about y � l�x� vanishes. Therefore, the length scale l�x� math-
ematically connects two BLs, the BL to be analyzed (in this paper,
transition to turbulent) and the baseline (ZPG) incompressible lam-
inar BL. In other words, the laminar Stanton number in the MEI
equation is isolated in 1∕Pr ⋅ Rel with such a choice for l�x�.
Because of the physical basis of Eq. (17), we tie the definition of

the length scale l�x� to the enthalpy thickness, l�x� ∼ δh�x�; hence
for an (a ZPG) incompressible laminar BL

St � 1

Pr ⋅ Rel
� α

U∞�cTδh�x��
(23)

where cT is a constant determined by solving the self-similar laminar
incompressible BL equations, e.g., Blasius solution. For incompress-
ible flows, there is a Prandtl number dependency between proposed
length scales in the AMI and MEI equations (approximated ratio of

the thermal and momentum BL thickness δT∕δ ≈ Pr−0.4, where δT
and δ are the thermal and momentum BL thicknesses, respectively
[25]). In particular, when Pr � 1, the length scale of the MEI
equation is equal to the AMI equation’s length scale (obtained from

Blasius solution) l�x� � 4.54δh � 4.54θ (δh � θ in laminar
regime), i.e., cT � 4.54. Thus, the Reynolds number used for sim-

ilarity with the baseline laminar BL is Reδh � U∞δ
h∕ν � Reθ. Note

that this equality is not perfectly valid for the transitional and turbu-
lent flows. In other words, the turbulent transport mechanism is not
exactly the same for enthalpy (scalar quantity) and momentum
(vector quantity) fluxes.

2. Turbulent Enthalpy Flux (II)

The second term on the right-hand side of the MEI equation is the
turbulent flux by wall-normal velocity temperature covariance, v 0T 0.
The turbulent heat flux does not appear directly in the Kármán-
integral-type equation (17), since it vanishes at boundaries (wall
and freestream). However, by integrating the first moment of the
velocity–temperature covariance in the enthalpy excess equation

−
∞

0

�y − l� ∂�v
0T 0�
∂y

dy �
∞

0

v 0T 0 dy (24)

the turbulent flux is preserved. The turbulent flux represents how
turbulence carries enthalpy excess away from the wall, generating
further heat flux relative to the base laminar heat flux.

3. Streamwise Growth of Moment-of-Enthalpy Thickness (III)

Integrating the first moment of the streamwise enthalpy excess
yields

−
∞

0

�y − l� ∂
∂x

u

U∞

T − T∞

Tw − T∞
dy � l

dδhl
dx

− δh − δhl
dl
dx

(25)

The enthalpy thickness δh from the Kármán integral type equa-
tion (17) represents the net streamwise flux of enthalpy deficit/
excess. Equation (25) represents the rate at which the first moment

of enthalpy thickness grows relative to the growth rate of l�x�. The
first moment of enthalpy thickness, δhl, is a signed quantity, and so it
can be negative or positive depending on the choice of l�x�. A
physical interpretation of Eq. (25) is considering it as the resultant
term fromall of the fluxes impacting theBL aswell as the surface heat
flux itself in the left-hand side of the MEI equation. In other words,
the first moment of enthalpy thickness absorbs any imbalance of
enthalpy fluxes at a given streamwise location. For example, it will be
shown that this term is often negative (attenuation of surface heat
flux). In this case, this streamwise growth termmay be interpreted as
absorbing the turbulent heat flux, which would otherwise necessitate
a larger surface heat flux, into a growth of the moment of enthalpy.

4. Mean Wall-Normal Flux (IV)

The mean wall-normal flux in the MEI equation originates from
the flux of enthalpy excess carried by the mean wall-normal velocity:

−
∞

0

�y − l� ∂
∂y

�v

U∞

T − T∞

Tw − T∞
dy � δhv (26)

This term represents the wall-normal flux of enthalpy. When v is
positive, as is typically inBLs, this term increases the Stanton number
by assisting the wall-normal transport of enthalpy away from the
wall. Conversely, if v < 0, the mean wall-normal velocity transports
enthalpy excess toward the wall, attenuating the Stanton number.
This reversal behavior is observed for transitional BLs in the AMI
equation for the skin friction coefficient [19].

5. Flux by freestream Pressure Gradient (IV)

A nonzero freestream pressure gradient due to variable U∞ with
the streamwise direction impacts the surface heat flux. For instance, a
favorable freestream pressure gradient accelerates U∞, damping the
velocity defect in the BL and contributing to the Stanton number,
whereas an adverse freestream pressure gradient decreases the sur-
face heat flux. In this paper, only zero freestream pressure gradient
incompressible BLwill be considered, and so this term is expected to
be negligible. MEI-based analysis of pressure gradient effects on
surface heat transfer is reserved for future work.

6. Flux by Non-Isothermal Wall (VI)

According to the MEI equation, wall temperature variation
impacts the surface heat flux. Increasing wall temperature in the
streamwise direction enhances the surface heat flux, yet diminishing
wall temperature causes a negative contribution to the Stanton num-
ber. In this paper, the focus will be on isothermal BL; hence this term
is going to be negligible. Analysis of BLs with wall temperature
variation is left to future work.

7. Departure from the BL Approximations (VII)

All terms in the enthalpy excess transport equation that are typi-
cally small in statistically stationary and two-dimensional BLs are
accumulated in a single term, the Il;T . While not the case in this
paper, these terms could become considerable in the vicinity of flow
separation.

IV. Numerical Results

The AMI equation and its extension to heat transfer, the MEI
equation, are generally applicable analysis tools for BL flows; note
that for incompressible flows with constant flow properties, like in
this paper, enthalpy and temperature can be used interchangeably.
They are demonstrated in this section for a transitional and turbulent
flat plate BL with zero pressure gradient using data from a direct
numerical simulation (DNS) byWu et al. [21]. The simulation inlet is
a laminar (Blasius) BL atReθ ≈ 80, with turbulence from a precursor
simulation of homogeneous isotropic turbulence added to the free-
stream to trigger bypass transition. The inlet turbulent intensity in the
freestream is 3%. The simulation domain is long enough in the
streamwise direction, allowing the turbulent BL to grow to Reθ ≈
3000 andReτ ≈ 1000 at the outlet. A total of 16384 × 500 × 512 grid
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points are used. The temperature field (passive scalar) is simulated

with Pr � 1 with isothermal boundary conditions at the wall. Stan-

dardDNSgrid resolutions are used.More details about the simulation

and grid resolution are given in Ref. [21].

A. AMI Equation for the Skin Friction

Preliminary results for the skin friction and the right-hand side of

Eq. (8) are shown in Fig. 2. The right-hand side of the AMI equation

balances the skin-friction coefficient with approximately 1.4% aver-

age error. The major cause of the deviation is the amplification of

statistical convergence errors generated by calculating the derivatives

in the streamwise direction in the streamwise growth. Also plotted are

the skin friction formulae from theBlasius solution, 0.442∕Reθ , and a
power-law approximation for turbulent BLs, 0.026∕Re0.25θ . Accord-

ing to these results, the skin friction deviates from the laminar

solution at approximately Reθ � 200, and the flow becomes fully

turbulent at roughly Reθ � 900.
In Figs. 3a and 3b, the contributions of the four major terms on the

right-hand side of the AMI equation to the skin-friction coefficient

are shown with respect to Reθ. The AMI equation’s length scale

l�x� � 4.54θ�x� based on the Blasius solution. Note that the DNS

simulation has a nominal zero freestream pressure gradient and is far

from BL separation. Therefore, the contribution of these two AMI

terms to the skin-friction coefficient is orders of magnitude smaller

than the other four terms. Figure 3a exhibits the direct impact of the

first four terms on Cf∕2, and Fig. 3b provides their normalized

contribution by Cf∕2.
For Reθ < 200, where the flow is mostly laminar, the dominant

flow phenomenon in the AMI equation generating friction is the

laminar term. The laminar friction, however, decreases downstream

with ∼1∕ x
p

in the streamwise direction. During the initial stages of

transition, the fluctuations (or perturbations) are significantly weak;

hence, the enhancement of turbulent torque to Cf∕2 is negligible. In

contrast, for the fully turbulent regime (Reθ > 900), the contribution
of turbulent torque to Cf∕2 is dominant because most of the wall-

normal momentum transport is done by Reynolds shear stress that
brings high-speed flow toward the wall. According to Fig. 3b, the
normalized contribution of turbulent torque is about one, confirming
roughly that all of the wall-normal transport mechanism is done by
Reynolds shear stress.
The streamwise growth in angular momentum thickness is an

overall negative contribution to the skin friction because this repre-
sents that the mean velocity profile of the BL absorbs angular
momentum as it becomes thicker, offsetting the torques and decreas-
ing the required skin friction needed to balance the integral equation.
Themeanwall-normal velocity is usually positive as the BL grows so
that θv is positive in the laminar and fully turbulent regimes. Thus, the
mean transport of momentum deficit away from the wall provides
torque in the direction requiring a larger skin friction coefficient.
However, the contribution of mean-wall normal is generally weaker
than the aforementioned dominant terms in the laminar and turbulent
regimes.
Within the laminar regime (Reθ < 200) themean-wall normal and

streamwise growth balance each other so that their sum is zero by
design. That is, the choice of l ensures that streamwise growth
precisely offsets thewall-normal velocity of the Blasius BL. For fully
turbulent BL (Reθ > 900), also, the normalized contribution of these
two flow phenomena to Cf∕2 in Fig. 3b is small and relatively

constant. In fact, beyond Reθ ≈ 1200, none of the terms in the AMI
equationvary significantly in relativemagnitude. Therefore, from the
perspective of the AMI equation, the basic physics of skin friction
enhancement by turbulence can be understood at relatively modest
Reynolds numbers. For the remainder of this paper, the focus will be
on the behavior of the four major flow phenomena in the AMI and
MEI equations during the transition to turbulence and early turbulent
regime (Reθ ≤ 1200).

B. MEI Equation for Surface Heat Flux

In this section, the MEI equation is applied to analyze the mean
surface heat flux in theBLdatabase fromRef. [21]. The balance of the
right-hand side of the MEI equation is compared with the left-hand
side (the Stanton number) in Fig. 4 within the transitional and early
turbulent regime (Reθ ≤ 1200). The average error is approximately
1.3%, approximately the same as observed for the AMI equation
in Fig. 2.
The DNS simulation has an adiabatic freestream condition with

zero pressure gradient, and isothermal wall boundary condition is
imposed. Hence, the contributions of edge pressure gradient flux,
andwall temperature variation to the Stanton number are found to be
negligible, as expected. In addition, the BL is away from any flow
separations, so the BL approximations are valid, resulting in a sub-
stantially small effect from the negligible terms on surface heat flux.
In Figs. 5a and 5b the four major flow phenomena in the right-hand
side of the MEI equation with respect to Rehδ � U∞δ

h∕ν are shown.
The MEI equation’s length scale, l�x� � 4.54δh�x�, is the same as
theAMI equation forPr � 1. Figure 5a shows the direct contribution
of each term to St, and Fig. 5b provides their relative contribution
(each term normalized by St). Given the DNS data for Pr � 1 (and

Fig. 2 Thebalance of the right-hand side of theAMIequation compared
with Cf . The labeled dashed curves are laminar (Blasius) friction and
turbulent correlation of skin-friction coefficient [25].

a) b)
Fig. 3 The AMI budget for the four significant flow phenomena with respect toReθ: a) the contribution of each term toCf∕2, and b) the contribution of
each term normalized by Cf∕2.
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Reθ ≈ Rehδ ) the Reynolds analogy is expected and, qualitatively

observed by comparing Figs. 5a and 5b and Figs. 3a and 3b for the
MEI and AMI equations, respectively. Quantitatively, however, we
spot a deviation in Reynolds analogy, especially within the fully
turbulent regime; downstream of Reθ � 900, the explicit turbulence
enhancement to the Stanton number is greater than its counterpart
contribution to the skin friction coefficient. This deviation is more
clear comparing the value of the normalized contribution of turbulent
flux to St and turbulent flux to Cf∕2 (Figs. 3b and 5b); for the

turbulent torque it yields one, whereas for the turbulent flux it is
about 10% higher. The main explanation for this deviation is the
slight difference between the turbulent transport mechanism for a
scalar quantity (enthalpy/temperature) and a divergence-free vector
quantity (momentum/velocity).
Within the laminar region (early transition), Reθ < 200, the frac-

tional contribution of the laminar heat flux is about one—verifying
that this term properly represents the laminar heat flux—while the
streamwise growth and mean wall-normal flux precisely offset each
other by design. For fully turbulent flow, the laminar Stanton number

is insignificant, and the surface heat flux generated directly by
turbulence is slightly higher than the net Stanton number. Therefore,
there must be (at least) one term resisting the turbulent heat flux.
Similar to the AMI analysis, the streamwise growth negatively
contributes to St. That is, it absorbs the impact of turbulence into a
growth in the moment of enthalpy. According to Fig. 5b since the
normalized enhancement of turbulent flux is somehow converged,
the normalized negative contribution of streamwise growth does not
vary significantly downstream. Moreover, the relatively small pos-
itive mean wall-normal velocity assists the wall-normal transport of
enthalpy; hence mean wall-normal flux weakly contributes to the
enhancement of the mean Stanton number.
Whereas for the laminar and fully turbulent BLs (away from

separation) the balance of the MEI and AMI equations follow
the fundamental physical expectations, during the transition and
early turbulent we observe an unexpected trend by the major flow
phenomena resulting in the maximum surface heat flux and skin
friction. The transitional BL is explored in more detail in Sec. IV.C
by considering the MEI and AMI equations together.

C. Peak Surface Friction and Heat Flux During the Transition to
Turbulence

In this section, the peak surface heat flux and friction during the
transition are examined by applying the physical understanding of
the MEI and AMI equations. As the transition initiates (Reθ > 200),
the turbulent flux boosts up and outpacesSt beyondReθ ≈ 380 (Fig. 5).
A similar trend isobserved for the turbulent torque in theAMIequation,
but the outpacing is temporal, confined betweenReθ ≈ 380 andReθ ≈
1000 (Fig. 3). The integral of −u 0v 0 reaches its peak value roughly at
Reθ ≈ 530. With a slight spatial delay, the maximum St and Cf∕2
occur roughly at Reθ ≈ 650. Surprisingly, in contrast to the laminar
regime, during the transition, the streamwise growth and mean wall-

normal cooperate, resisting the severe turbulent enhancement of surface
heat flux and friction. To examine the (stronger) negative contribution
of these two flow phenomena, we examine the contours of the inte-
grands of turbulent flux (and turbulent torque),meanwall-normal, and
streamwise growth in the x–y plane in the following paragraphs.
The direct impact of turbulence on St (and Cf∕2) relative to the

laminar effect is through the wall-normal integral of the turbulent
covariance. Figures 6a and 6b exhibit the contour plots of the

Fig. 4 The balance of the right-hand side of theMEI equation compared
with St. The labeled dashed curves are laminar Stanton number and
turbulent power-law prediction of the Stanton number [25].

a) b)
Fig. 5 TheMEIbudget for the four significant flow phenomenawith respect toReθ: a) the contribution of each term toSt, and b) the contribution of each
term normalized by St.

a) b)
Fig. 6 Integrands of the explicit turbulence enhancement on the a) Stanton number by T 0v 0∕lU∞�Tw − T∞�, and b) skin-friction coefficient by

−u 0v 0∕lU2
∞.
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turbulent heat flux, v 0T 0, and Reynolds shear stress, −u 0v 0, normal-

ized by U∞�Tw − T∞� and U2
∞, respectively. These two are the

integrands of the associated terms in the AMI and MEI equations.
TheReynolds stress and heat flux reach amaximum during transition
in a region close to thewall, y < l, approximately fromReθ � 380 to
Reθ � 550, where the turbulent covariance is substantially high and
reaches the maximumwithin a localized region (yellow). This region
coincides with the maximum contribution of turbulent heat flux

(and turbulent torque) to St and Cf∕2, and is slightly higher for the

former than the latter, explaining the higher contribution of turbulent
flux to St compared with the contribution of turbulent torque toCf∕2
in Figs. 3 and 5.
For laminar or fully turbulent regimes, the mean wall-normal

velocity is positive and thus increases St (and Cf∕2) by assisting in
the transport of temperature excess (or velocity deficit) away from the
wall. During transition to turbulence (230 ≤ Reθ ≤ 680), however,
the wall-normal velocity v switches sign to negative in a region near
the wall, as shown in Fig. 7b. When v < 0, the contribution of the
mean wall-normal flux to St (and Cf∕2) is negative. This effect can
be observed in Fig. 7c within the range of 300 ≤ Reθ ≤ 500.
The authors are not aware of previous research exploring the

observed negative wall-normal velocity during transition, so a short
explanation is pursued here. The conservation of mass in an incom-
pressible flow constrains the mean velocity field to be divergence free
[Eq. (1)]. As a laminar or fully turbulent BL grows, the near-wall flow
typically decelerates in a gradualmanner,∂u∕∂x < 0.During transition
to turbulence, however, the introduction of coherent transitional struc-
tures rapidlymixes higher speed fluid toward thewall. This accelerates
the near-wall flow in the streamwise direction, i.e., ∂u∕∂x ≥ 0, as
shown in Fig. 8a. To satisfy the continuity constraint, ∂v∕∂y ≤ 0 in
this near-wall region (Fig. 8b). Given the no-penetration boundary
condition that v � 0 at the wall, the wall-normal velocity must there-
fore be toward the wall to accommodate the localized streamwise
acceleration. Thus, the mean wall-normal transport of momentum
and heat (temporarily) reverses direction. The impact of this reversal
on skin-friction and surface heat transfer is quantified in Fig. 7c. In
Figs. 5 (andFig. 3), the contribution of the turbulent flux (and turbulent
torque) demonstrates an inflection point (a curvature change)—at
about Reθ � 380—during the transition. This curvature change cor-
responding to the streamwise location where the turbulent enhance-
ment growth weakens that coincides with the negative contribution of
mean wall-normal during the transition as well as the stronger stream-
wise growth of the BL thickness.
The other flow phenomena influencing the turbulence enhance-

ment of surface heat transfer (and skin-friction) is the streamwise
growth of the first moment of enthalpy thickness (or angular
momentum thickness). This flow phenomenon has a negative con-
tribution in incompressible BLs away from flow separation to skin
friction [19] and surface heat flux (see Figs. 3 and 5). For laminar
flows, the streamwise growth term in AMI andMEI is negativewith

decayingmagnitude. During transition, the negative contribution of
the streamwise growth to St (and Cf∕2) grows in magnitude from
Reθ � 230 to Reθ � 500 (at the peak turbulent flux), partially
offsetting the sharp increase in the turbulent heat flux. Downstream
of Reθ � 500, when the near-wall streamwise velocity gradually
decelerates in the streamwise direction, the effect of streamwise
growth slowly drops. In Figs. 9a and 9b, contours of the integrands
of the streamwise growth for the MEI and AMI equations are
shown, corresponding to a quantitative mapping based on its effect
on the surface flux quantities. During the transition (from Reθ ≈
230 to Reθ ≈ 680), a reversed behavior in the integrand of the
streamwise growth is observable near the wall, corresponding to
the region where the near-wall flow accelerates in the streamwise
direction (Fig. 8). Note that ∂u∕∂x is a crucial term in the integrands.
Therefore, the higher the streamwise acceleration, the greater the
negative contribution of streamwise growth to St (and Cf∕2).
To summarize, in the transitional region there are several flow

aspects involved in a rapid process to increase the Stanton number
(and skin-friction coefficient). The dominant effect is simply the
significant increase in momentum and enthalpy transport by rapidly
growing instabilities.Other phenomena of the flow above thewall tend
to partially offset the impact of the enhanced transport on surface flux
quantities. Specifically, the mean wall-normal flux and streamwise
growth of BL thickness act in a manner to attenuate skin friction and
surface heat flux, mitigating the turbulence’s impact. For the fully
turbulent flow, thedominant flowphenomenongenerating skin friction
and heat transfer at the wall is the turbulent heat flux, while the other
terms involved in Eq. (20) have a relatively small effect, without
significant streamwise variation, merely balancing each other.

V. Conclusions

The turbulent enhancement of the surface friction and heat transfer
is implicit in the classicKármán-type integral equations for BL flows.
This paper introduced a new MEI equation to quantify the impact
of various flow phenomena on the Stanton number of incompressible
BL flows. Analogous to the AMI equation of Elnahhas and Johnson
[19], the MEI equation is developed using the first moment of
the excess enthalpy (or temperature) equation and explicitly quanti-
fies the impact of turbulent transport on surface heat transfer as an
integral of the turbulent heat flux. More generally, the MEI equation
provides a quantifying mapping of BL flow phenomenon based on
how they alter the surface heat flux. The MEI equation represents a
comparison of a turbulent BL with an equivalent laminar one, which
is represented by the first term on the right-hand side. As such, other

a)

b)
Fig. 7 Impact of the mean wall-normal flux to the AMI and MEI
analysis. a) Contour plot of wall-normal velocity in the x–y plane, and
b) the direct contribution of the mean wall-normal flux to St and Cf∕2.

a)

b)
Fig. 8 a) Contour plot of the mean wall-normal velocity acceleration in
y, and b) profiles of the streamwise velocity and (spatial) streamwise
acceleration (∂u∕∂x) within transitional BL.
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terms affecting the surface heat flux are cleanly interpreted as
changes relative to the surface heat flux of the equivalent laminar
BL case.
The use of the AMI and MEI equations as incisive analysis tools

was demonstrated on a DNS database of a transitional and turbulent
BL. Through the transition to turbulence, the rapid growth of the
turbulent heat flux is quantitativelymapped to its influence on surface
heat flux, while theMEI equation reveals howmeanwall-normal and
streamwise growth terms are both resisting the turbulence enhance-
ment of the Stanton number. A closer look at the mean flow reveals
how the Reynolds shear stress accelerates the near-wall flow. This
phenomenon results in two effects. First, the streamwise positive
acceleration near thewall causes themoment of enthalpy thickness to
grow faster, absorbingmore of the turbulent heat flux into a reshaping
of the mean enthalpy (or temperature) profile. Second, the near-wall
flow acceleration induces a negative mean wall-normal velocity to
satisfy continuity. This negative wall-normal flux due to the mean
velocity temporarily opposes the action of the turbulent heat flux in
re-arranging the distribution of the thermal energy in the BL. In a
fully turbulent flow, the dominant enhancement of Stanton number
(and skin-friction coefficient) is quantified as the integral of the
turbulent heat (and momentum) flux, while the contribution of other
flow phenomena in theMEI (andAMI) equation is relatively smaller,
and asymptote (to our knowledge). In conclusion, the MEI and AMI
equations provide a flexible, intuitive framework for quantitatively
connecting flow phenomena throughout the BL to their effect on the
surface heat flux and skin friction, respectively. While this analysis
tool is demonstrated only for a relatively simple flow in this paper, it
opens up the possibility of using this approach for many other
applications and purposes in future work. For example, the AMI
and MEI equations are suitable for analysis of BLs subjected to
freestream pressure gradients, and they may be adapted to account
for surface curvature effects. The design and optimization of flow
control schemes aiming to decrease skin friction, delay transition, or
alter surface heat transfer may benefit from the quantitative nature of
the insight provided by the AMI and MEI equations. For future
studies, this concept can be extended to incorporate how different
turbulent length scales are responsible for the turbulent enhancement,
connecting turbulence structure with engineering quantities of
interest.
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