
Transcriptional control of epidermal specification and
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Recent experiments reveal the role of transcription factors in

integrating upstream signals to execute specification and

differentiation of epidermal cells. Based on the skin phenotype

observed with misregulation of transcription factors such as

p63, c-Myc, RelA, pRb, Klf4 and others, their function in

controlling proliferation and differentiation is dissected.

Understanding the pathways regulated by these factors and

their coordinate interactions remains a challenge for the future.
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Introduction
Recent experiments have provided extensive new in-

sight into the regulation of proliferation, differentiation,

cell-fate determination, and pattern formation of mam-

malian epidermis. The epidermis is established in utero
and replenished from a pool of adult stem cells (SCs),

which give rise to interfollicular epidermis (IFE), hair

follicles, and sebaceous and sweat glands. Perturbations

to the normal balance of differentiation and proliferation

can result in skin disorders including cancer. Therefore,

understanding the molecular and genetic control of

this process is of immense medical and pharmaceutical

relevance.

Regulation of gene expression is at the heart of all

development and differentiation processes. Transcription

factors (TFs) integrate and interpret signals from
sciencedirect.com
upstream developmental/growth factor signaling path-

ways in a coordinate and complex fashion to execute

downstream differentiation/morphogenetic events. Here,

we review recent progress made on understanding the

role of TFs in regulating epidermal SC maintenance

and the orderly progression of interfollicular terminal

differentiation.

Stem cell maintenance and proliferation
An emerging topic of intense focus has been defining and

characterizing the epidermal SCs (for reviews, see [1,2]).

Recent transcriptional profiling studies provide fodder for

years of future experimentation and insights into how

gene expression might be regulated during SC renewal

and differentiation [3��,4��]. Key regulators of SC main-

tenance and epidermal proliferation include p63, c-Myc,

Gli and Id TFs (Figure 1).

The essential role of p63, a homolog of the p53 tumor

suppressor, in skin development was revealed by two

independent studies of p63-deficient mice. These mice

lack stratified epidermis, producing a disorganized single-

layered surface epithelium that is negative for epidermal

markers such as keratin (K) 5 and 14 [5,6]. Although the

mutant phenotypes in these two studies are similar, the

interpretation of p63’s mechanism remains controversial.

McKeon’s group [5] proposed that p63 is involved in SC

maintenance but not epidermal maturation, as sporadic

spots of cells positive for late-epidermal differentiation

markers were observed. Roop’s group [6,7��] suggested

that p63 is a determining factor of stratification, as they

did not detect the expression of any early or late epider-

mal differentiation markers in the p63 mutants. Although

these two mechanisms are not mutually exclusive, that

p63 is an epidermal master regulator maintains strong

experimental support. Complicating the dissection of the

specific role of p63 are the splicing variants that exist and

antagonize each other’s functions (reviewed in [8]). Over-

expressing DNp63 in cells already committed to terminal

differentiation does not affect the overall proliferation

of the transgenic epidermis [9], suggesting that DNp63

maintains the proliferative state rather than promoting it.

Complementary experiments show that overexpressing

DNp63 in cultured keratinocytes blocks Ca2+-induced

growth arrest and terminal differentiation [10]. Conver-

sely, ectopic expression of TAp63, but not DNp63, con-

verts a normal K18-positive simple epithelium into a K5/

K14-expressing stratified epithelium, suggesting that

TAp63 is sufficient to drive epidermal specification

[7��]. Based on the embryonic expression pattern and
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Figure 1
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these functional data, Roop hypothesizes that TAp63

specifies an epidermal epithelia with the subsequent

balance between the levels of DNp63 and TAp63 deter-

mining the proliferative state of the keratinocyte.

The protooncogene c-Myc has traditionally been viewed

as inducing proliferation by controlling the G1–S cell

cycle transition. Consistent with this, c-Myc epidermal

expression is confined to the proliferating basal cells [11].

However, increasing expression of c-Myc in cultured

keratinocytes promotes terminal differentiation and
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causes a progressive reduction in growth [12]. This

seemingly counter-intuitive finding was reconciled with

the model of a selective action of c-Myc to drive SCs into

transit-amplifying (TA) cells, thereby initiating the dif-

ferentiation pathway. K14 promoter driving c-Myc trans-

genics, with elevated expression in the SCs, have severe

skin defects including hyperproliferation, hair loss, and

defective wound healing, indicative of an excessive cel-

lular expansion at the cost of an SC reservoir [13,14].

Misexpression of c-Myc in the postmitotic suprabasal

cells leads to ectopic proliferation, further underscoring
www.sciencedirect.com
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c-Myc as a key positive regulator of epidermal prolifera-

tion [15,16]. Possible mechanisms to explain the physiol-

ogical role of c-Myc in the conversion of SC to TA cell

include a direct involvement in cell–substratum adhesive-

ness because c-Myc activation decreases integrin levels

[13,17��]. Ectopic c-Myc expression stimulates IFE and

sebaceous gland fate at the expense of hair fate, raising

the possibility that c-Myc regulates lineage specification

of the epidermal SCs. Watt’s group [17��] presents an

intriguing idea that epidermal lineage specification is

subject to niche regulation and that hair fate is compro-

mised in the K14–c-Myc transgenic skin because pre-

cursor cells fail to migrate to their designated location and

receive the proper stimuli to differentiate further.

The Shh signaling pathway also plays a positive role in

epidermal proliferation by opposing growth arrest [18].

Gli2, a member of the Gli family of zinc finger TFs, is the

main mediator of Shh signaling in skin, while Gli1 appears

to play only a potentiating role. Overexpression of Gli2 in

the proliferating cells of the epidermis leads to basal

cell carcinomas in transgenic mice [19]. Conversely,

Gli2�/� mice phenocopy the Shh�/� mice in their

reduced proliferation in the hair follicles [20]. No appar-

ent proliferation defect was noted in the IFE of Gli2�/�

mice, although further in vitro experiments may still

reveal a role.

The Id family of proteins are positive regulators of pro-

liferation and negative regulators of differentiation in

multiple tissue/cell lineages. Three (Id1–3) of the four

Id genes are expressed in proliferating epidermal cells

[21]. Overexpression of Id1 in keratinocytes leads to

increased proliferative potential and compromised term-

inal differentiation [22,23]. A quarter of the Id2 knockout

mice die neonatally, a key feature of mice with a dysfunc-

tional epidermal permeability barrier, but these mice

were not characterized for possible epidermal phenotypes

[24]. Id proteins function in a dominant negative fashion

to interfere with lineage-specific basic helix-loop-helix

(bHLH) TFs (e.g. MyoD in muscle), but curiously no

epidermal-restricted bHLH protein has yet been identi-

fied. Given the recent identification of Id as epidermal

SC-enriched markers [3��,4��], the function of Id genes

and their associated bHLH factors in epidermal differ-

entiation should be revisited.

Initiation and progression of terminal
differentiation
Terminal differentiation of the IFE can be divided arbi-

trarily into three steps: growth arrest, initiation of differ-

entiation, and terminal differentiation. Not all studies

offer this resolution because strong homeotic control of

skin often leads to concomitant defects in growth and

differentiation. Where a step-specific function is sug-

gested, clues have often come from other systems or

analysis of putative downstream targets. Here we discuss
www.sciencedirect.com
TFs that are involved in driving the differentiation pro-

cess (Figure 1).

The well-demonstrated role of the pRb family of tran-

scriptional regulators, pRb, p107 and p130, in growth

suppression inspired an investigation of these proteins

in skin. To circumvent the gastrulation defect of pRb null

embryos, pRb was specifically ablated in the epidermis

[25��,26��]. These mice exhibit increased proliferation in

both basal and suprabasal layers along with a loss in the

label-retaining SC population. The differentiation pro-

gram is altered with aberrant co-expression of K5 and

K10. In vitro, pRb-deficient keratinocytes re-enter the

cell cycle after undergoing differentiation. The two stu-

dies separately show that the phenotypes are augmented

either with the loss of p107 or the expression of HPV E7

oncogene. Reporter assays indicate that pRb may be

acting through E2F whose role in promoting epidermal

proliferation and differentiation in the epidermis has

been studied independently. Although a single deletion

of either p107 or 130 had no apparent effect on skin

development, p107/p130 double knockout mice dis-

played histological and biochemical skin alterations only

in the late stage of terminal differentiation [27]. Increased

proliferation was observed in grafted skin but not ana-

lyzed in embryonic skin, precluding any conclusion about

whether this is either a direct or secondary effect.

Initial molecular studies demonstrated that inhibiting

NF-kB signaling either by pharmacologic agents or IkBa

overexpression led to epidermal hyperplasia [28]. Block-

ing NF-kB signaling while activating Ras leads to a

bypass of the cell-cycle arrest, generating malignant epi-

dermal tissue resembling squamous cell carcinoma [29].

With all of this tantalizing functional evidence, the

mechanism by which NF-kB regulates the balance of

epidermal differentiation, proliferation, and apoptosis

appears more complex with every experiment. All five

members of the NF-kB family (c-rel, RelA, RelB, p50 and

p52) are expressed in epidermis, and since they function

as hetero- and homodimers, this leaves multiple possibi-

lities for functional redundancy and regulation. Mice

deficient in four of the five NF-kB subunits develop

immune deficiencies but lack epidermal abnormalities.

RelA/p65 null mice die in utero too early to examine the

epidermal homeostatic defects. Finally Khavari’s group

has done the careful analysis of the intrinsic epidermal

defect by grafting E15.5 RelA�/�skin. They were

rewarded for their efforts by the discovery that RelA�/�

epidermis displays hyperproliferation with normal differ-

entiation, independent of immune response [30�]. Anal-

yses of the epidermal phenotype of mice deficient in IkB

kinase a, a key regulator of NF-kB activation, has brought

investigators into a new realm. These mice die shortly

after birth because of a severe cell-autonomous defect in

epidermal terminal differentiation, which is independent

of IkB kinase-a’s protein kinase activity and NF-kB
Current Opinion in Genetics & Development 2004, 14:485–491
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signaling [31–33]. Grafting and culturing with condi-

tioned media led Karin’s group to speculate that IkB

kinase-a is necessary for keratinocytes to produce a

differentiation-inducing protein, that has yet to be pur-

ified biochemically or identified genetically [34]. Intrigu-

ingly, IkB kinase-a contains a nuclear localization domain

that is independent of kinase activity and essential to

induce differentiation of keratinocytes [35].

The zinc finger protein mOvo1 is expressed in differen-

tiating epidermal cells and its expression is regulated by

the b-catenin/LEF1 transcriptional complexes [36,37].

Recent studies uncovered a strain-specific requirement

for mOvo1 in epidermal development and differentia-

tion (A Teng, M Nair, X Dai, in preparation). Develop-

ing mutant epidermis displays increased proliferation

during late embyrogenesis, accompanied by up-regula-

tion of c-Myc and Id2, as well as morphological and

biochemical changes in the late-terminal differentiation.

In reporter assays, mOvo1 represses the activity of c-

Myc, Id2, and loricrin promoters, suggesting a cell-

autonomous coordinate regulation of growth arrest and

terminal differentiation.

Three genes encoding the Oct class of POU domain TFs

are expressed in the epidermis: Oct-1, Tst-1 (Oct-6/

SCIP), and Skn-1a/i (Epoc/Oct-11). Overexpression of

the epidermis-restricted Skn-1a/i in keratinocytes facil-

itates differentiation, and ablation of both Skn-1a/i and

Tst-1 in mice leads to ectopic expression of K14 in

suprabasal cells [38]. Possible mechanisms of action

include cell-autonomous repression of basal-specific ker-

atins, and activation of early and late stage differentiation

genes.

Functional AP-2 and AP-1 binding sites have been

defined in the promoters of many epidermal structural

proteins. Multiple members of these TF families are

expressed in the skin with unique and overlapping

patterns of expression. Bioinformatic analysis has iden-

tified a fifth (and probably final) member of the AP-2

family with skin-specific expression [39]. Targeted abla-

tions of individual AP-2 and AP-1 family members have

failed to elucidate any specific role for a factor in skin

development and differentiation, either because of an

earlier embryonic lethality or potential functional

redundancy. Mice with epidermal specific targeted abla-

tion of AP-1 family member c-Jun show defects in EGF

signaling [40,41]. The c-Jun null epidermis was unre-

markable but insights came from culturing primary

keratinocytes, which showed reduced proliferation

and altered differentiation caused by the loss of para-

crine factors provided by adjacent dermal cells of skin

[40]. Analysis of epidermal-specific ablation and domi-

nant negative transgenic models may help to define the

role of additional AP-1 and AP-2 family members in

epidermal homeostasis.
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Three TFs — Klf4, Dlx3 and Foxn1/nude — are

expressed predominantly in the suprabasal layers of the

epidermis and direct distinct aspects of terminal differ-

entiation. Klf4 is both necessary and sufficient (given a

field of competence) to establish a functional permeabil-

ity barrier because targeted ablation results in a loss of

barrier and ectopic expression earlier in development

accelerates normal barrier acquisition in a dose-depen-

dent fashion [42��,43]. Structural protein components

of the cornified envelope are misexpressed in the

Klf4�/�mutants [43]. A more extensive search for genes

differentially expressed in both the Klf4 transgenic and

deficient mice may yield more direct targets. Ectopic

expression of Dlx3 in the basal proliferating cells results

in improper transcription of terminal differentiation mar-

kers in this layer and a greatly reduced level of prolifera-

tion. Analysis of the necessary function of Dlx3 in the

epidermis has been hampered by an earlier essential role

in placental development and needs to be revisited with

an epidermal-specific deletion [44]. Although the most

prominent feature of a deletion of Foxn1/nude is the lack

of hair (and thymus), deficient keratinocytes have an

increased propensity to differentiate even under prolif-

erative conditions [45]. Over-expression of Foxn1 in

differentiated keratinocytes stimulates the transcription

of early differentiation markers and suppresses the

expression of later-stage markers [46]. Although Klf4,

Dlx3 and Foxn1 are all involved in the terminal differ-

entiation process, modulating their expression gives rise

to distinct alterations in gene expression.

All-trans retinoic acid, acting through retinoic acid recep-

tors and retinoid X receptors, has a dramatic effect on the

regulation of epidermal proliferation and differentiation.

Again, dissection of the function of these nuclear receptor

TFs in skin was challenged by embryonic lethalities

and functional redundancies between family members.

Compound epidermal specific knockouts have revealed

defects in hair cycling and wound healing, but only subtle

defects in IFE proliferation and expression of differentia-

tion markers [47–49]. Deficiencies of either glucocorti-

coid or peroxisome proliferator-activated receptor a

signaling result in delays of the late stages of epidermal

maturation but compensatory mechanisms are evoked

[50,51].

Conclusions and perspectives
A comprehensive picture of the genetic pathways govern-

ing epidermal differentiation remains in infant form. Two

major advantages of this system are the ability to move

between in vitro and in vivo and to modulate gene

expression with promoters specific to the different layers

of the epidermis. Looking into the future, sophisticated

genetic approaches such as crossing mutants of different

components of a particular pathway, analysis of tissue-

specific, isoform-specific, and double even triple knock-

outs, will be necessary to illustrate the function of various
www.sciencedirect.com
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TFs. One wide-open issue is whether as yet unidentified

lineage-specific factors act together with common TFs to

govern gene expression or whether simple modular com-

binatorial expression of common TFs imbues specificity.

Ultimately, we must recognize that we have not identified

and characterized all (or perhaps even many) of the TFs

that regulate fate specification and terminal differentia-

tion of keratinocytes. However, we are in a period of

tremendous gene discovery that has very recently yielded

many new targets of study.

Two complementary strategies are emerging to identify

and prioritize the study of new keratinocyte transcrip-

tional regulators: transcriptional profiling and genome-

wide approaches to identify putative regulatory elements.

Independently, Cotsarelis’s and Fuchs’s groups pub-

lished tour de force purification of hair follicle and epider-

mal SCs and queried their transcriptional profile [3��,4��].
As microarray technology improves, both with specificity

and number of targets, these types of experiments will

define candidate regulators of epidermal specification and

terminal differentiation. Relative expression levels or

knowledge of the TF’s function in other systems can

be used to prioritize the genes for future experimental

study. Alternatively, gene selection can be based on the

prevalence of the TF’s cognate binding sites upstream of

keratinocyte specific structural or regulatory proteins.

Computational methods to identify conserved TF bind-

ing sites between evolutionarily diverged vertebrates

may aid in predicting functional sites [52]. One would

predict that TF binding sites would lie within DNaseI

hypersensitive sites. Although identifying hypersensi-

tive sites is a laborious method when applied to each

individual gene, novel approaches have been reported

recently on how to clone hypersensitive sites from

specific cell types, greatly increasing efficiency [53,54].

Conserved non-coding sequences that contain epider-

mal-specific DNaseI hypersensitive sites may predict

key regulatory elements. Major advances have also been

made to predict direct targets of a TF by immunopreci-

pitating and querying the chromatin pulled down with

antibodies directed against the specific TF. This tech-

nique has the potential to identify individual targets and

to construct transcriptional regulatory networks by exam-

ining the genome-wide profile of sequences immuno-

precipitated by multiple TFs [55].

An intriguing unexplored feature of keratinocyte biology

is that many of the structural proteins are arranged in

clusters — for example, the acidic keratins, basic keratins

and epidermal differentiation complex on human chro-

mosome 17,12,1 respectively. Not only is it important to

understand how individual genes within these clusters

are regulated, but it is fascinating to speculate whether

the genes are tandemly arrayed to enable coordinate

regulation.
www.sciencedirect.com
In summary, experiments have demonstrated that TFs

can regulate epidermal specification and differentiation.

Beyond discovering additional TFs involved in these

processes, the future lies in elucidating the pathways

regulated by key factors.

Update
Gerondakis’s group [56�] circumvents the embryonic

lethality of RelA and c-rel deficient mice by placing them

on a tumor necrosis factor alpha deficient background.

The compound c-rel�/� RelA�/� epidermis is thinner with

more proliferative basal cells, which fail to form colonies

in vitro. The c-rel�/� RelA�/� neonates do not survive, and

the grafted skin is relatively normal although immune

responsive hyperproliferation is observed.
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