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  Abstract 

 Transcriptional regulation is fundamentally important for the progression 
of tissue stem cells through different stages of development and differen-
tiation. Mammalian skin epidermis is an excellent model system to study 
such regulatory mechanisms due to its easy accessibility, stereotypic spa-
tial arrangement, and availability of well-established cell type/lineage 
differentiation markers. Moreover, epidermis is one of the few mammalian 
tissues the stem cells of which can be maintained and propagated in cul-
ture to generate mature cell types and a functional tissue (reviewed in [1]), 
offering in vitro and ex vivo platforms to probe deep into the underlying 
cell and molecular mechanisms of biological functions.  
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        9.1   Introduction    

 Mammalian skin is a complex organ with a multi-
tude of epithelial and stromal cell types, and har-
bors various appendages such as hair follicles 
which themselves are “miniorgans”. Skin epidermis 
and its associated appendages are established dur-
ing embryogenesis. In postnatal life these structures 
are regenerated by several distinct pools of stem 
cells which have the ability to self-renew as well as 
to give rise to the different lineages that form the 
mature tissues of the skin  [  2,   3  ]  (Fig.  9.1 ).  

 At least some of the cellular and molecular blue-
print for homeostasis in adult skin is speci fi ed dur-
ing mid-late embryogenesis (e.g.,  [  4–  6  ] ; reviewed 
in  [  7,   8  ] ). Thus, the study of embryonic epidermal 
stem/progenitor cells will likely shed light on how 
the behaviors of adult skin epithelial stem cells, 
such as their proliferative potential and lineage dif-
ferentiation, are regulated. Experimental analysis of 
epidermal morphogenesis enjoys the additional 
bene fi t of having relatively synchronous develop-
ment, and that stem/progenitor/differentiating cells 
are not only spatially but also temporally laid out. 

 In this chapter, we review recent literature 
on the understanding of skin epithelial stem 
cells, and knowledge of transcriptional and 

chromatin regulation of the development and 
differentiation of these cells. There have been a 
number of excellent recent reviews that discuss 
adult stem cells in the mammalian skin, partic-
ularly those that reside in the hair follicle as 
well as on developing follicular stem/progeni-
tor cells  [  7–  12  ] . We therefore focus our discus-
sion primarily on stem cells that produce and 
replenish the interfollicular epidermis (IFE) 
and provide an update on transcription and 
chromatin factors that regulate the activity of 
these cells during development.  

    9.2   Overview of Adult Skin 
Epithelial Stem Cells 

 Adult skin stem cells have been identi fi ed based 
on their slow cycling nature or unique surface 
marker expression. The well-known DNA label-
retention assay is based on the assumption that 
stem cells are generally quiescent and retain triti-
ated thymidine or bromodeoxyuridine (BrdU) 
label of genomic DNA much longer than their 
rapidly cycling progenies  [  13,   14  ] . An elegant 
variant of this strategy is the use of histone 
H2B-Green Fluorescent Protein (GFP) to label 
the chromatin  [  15  ] . Approximately 95 % of the 

  Fig. 9.1    Schematic diagram of anagen and telogen hair follicles and their cellular compositions. Each cellular 
compartment is color coded and those relevant in this review are labeled accordingly       
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slow-cycling, label-retaining cells (LRCs) in skin 
reside within the bulge, the lower permanent part 
of the hair follicle close to the site of attachment 
of the arrector pili muscle  [  16,   17  ]  (Fig.  9.1 ). 
Using a double label technique to monitor the 
fate of the LRCs, Taylor et al. demonstrated that 
they are multipotent and can give rise to both the 
upper and lower portions of the follicle; however, 
their repopulation of the upper follicle only 
occurs during times of need such as wounding or 
during neonatal expansion of the skin  [  18  ] . 
Further supporting the presence of multipotent 
stem cells in the bulge, dissected human hair fol-
licle bulge regions possess the ability to generate 
all skin epithelial lineages upon transplantation 
onto immunode fi cient mice  [  19,   20  ] . 

 LRCs can also be detected within the mouse 
IFE and previously have been shown to comprise 
about 0.2–10 % of the basal population, depending 
on the duration of the chase period in nucleotide 
pulse-chase experiments  [  21–  23  ] . Using organo-
typic culture, LRCs have also been observed in 
the basal layer of human epidermis  [  24  ] . Whether 
or not the basal LRCs are true stem cells is 

debatable. Transplantation studies using limiting 
dilution of GFP-positive neonatal murine kerati-
nocytes to recreate an epidermis in vivo suggest 
that the basal layer contains only a few functional 
long-term repopulating cells (~0.01 %)  [  25  ] . In 
addition, stem cell frequency in the IFE may vary 
depending on the tissue area (e.g. back, tail, ear) 
and age of the mouse (neonatal versus adult)  [  16  ] . 

 In recent years, Fluorescence Activated Cell 
Sorting FACS based on stem cell-enriched sur-
face and/or  fl uorescent markers has emerged as a 
powerful strategy to identify and isolate several 
distinct populations of skin epithelial stem cells. 
This advancement has led to the accumulation of 
tremendous amount of knowledge about adult 
skin stem cells, which reside within discrete 
physical locations called niches, where their pro-
liferation and differentiation can be regulated by 
myriad intracellular and extracellular signals from 
the surrounding microenvironment (reviewed 
in  [  3,   7,   26  ] ) (Fig.  9.1 , Table  9.1 ). For example, 
the bulge contains CD34/alpha6-integrin/K15-
positive cells that are relatively quiescent and 
contribute to hair follicle regeneration under 
physiological conditions but give rise to all skin 
epithelial lineages upon transplantation  [  20,   27, 
  30,   31  ] . The secondary hair germ (HG), a tran-
sient follicular structure that is responsible for 
the formation of the new hair follicle during post-
natal cycling, also contains multipotent stem 
cells, which are Lgr5-positive and more prolifer-
ative than the bulge stem cells  [  33  ] . Recently, two 
different populations of cells that express Gli1, a 
target of the Shh pathway, have been reported: 
one resides in the HG/lower bulge and the other 
in the upper bulge of the telogen follicle  [  38  ] . 
This  fi nding further illustrates the cellular/molec-
ular heterogeneity within the stem cell-rich bulge/
HG region. Another stem cell-rich zone in the 
hair follicle is the isthmus and infundibular region 
in the upper permanent part of the follicle. 
Residing in this region are MTS24-positive, 
Lrig1-positive, or Lgr6-positive cells that have 
the capability to reconstitute all skin epithelial 
components in transplantation assays, as well as 
Blimp1-positive cells that seed the sebaceous 
gland (SG), and Sca-1-positive cells that can 
regenerate IFE but not hair follicle upon trans-
plantation  [  29,   34–  37  ] .   

   Table 9.1    Summary of markers of adult mouse skin 
epithelial stem/progenitor cells   

 Marker  Location  References 

  a 6 Integrin  ORS, bulge, IFE, SG   [  27,   28  ]  

 Sca1  Infundibulum, IFE   [  29  ]  
 K15 a   Bulge, ORS   [  27,   30,   31  ]  

  D Np63  ORS, bulge, HG, matrix, 
IFE 

 Reviewed in 
 [  28,   32  ]  

 CD34  Bulge   [  31  ]  
 Lgr5  ORS, bulge, HG   [  33  ]  
 Lgr6  Isthmus   [  34  ]  
 Lrig1  Isthmus, ORS   [  35  ]  
 MTS24  Isthmus, infundibulum 

occasionally 
  [  36  ]  

 Blimp1  Isthmus, SG opening   [  37  ]  
 Gli1  Bulge, HG   [  38  ]  
 Lhx2  ORS, bulge, HG   [  39  ]  
 Sox9  Bulge, ORS   [  6,   40  ]  
 Nfatc1  Bulge   [  41  ]  
 Tcf3  Bulge, ORS   [  5,   42  ]  
 Tcf4  Bulge, ORS   [  5  ]  
 Runx1  ORS, bulge, HG   [  43,   44  ]  

   a While K15 protein is detected in basal layer of IFE and 
ORS/bulge of hair follicle, a fragment of the K15 pro-
moter has been found to be selectively active in the bulge  
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    9.3   Stem/Progenitor Cells 
That Feul IFE Homeostasis 
and Repair 

    9.3.1   Stem Cells Within the IFE 

 In early studies, the observation of epidermal pro-
liferative unit within the IFE led to the suggestion 
that there is one stem cell that supplies basal and 
suprabasal progeny in a hexagonal column of dif-
ferentiated cells  [  23  ] . A popular hypothesis had 
been that one single self-renewing stem cell exists 
within each unit, whereas the other basal cells are 
the so-called transit-amplifying (TA) progeny that 
only divide a given number of times before with-
drawing from the cell cycle and undergoing termi-
nal differentiation [ 45–  47 ]. While this exact unit of 
organization does not seem to hold true in subse-
quent analysis, support for heterogeneity in prolif-
erative potential within the epidermis came from 
in vitro/ex vivo cell culture studies, where primary 
human keratinocytes can be distinguished in clono-
genecity assays with regard to the size and lifespan 
of the colonies they produce  [  48,   49  ] . 

 Although the lineage relationship between 
basal and suprabasal cells has been con fi rmed 
using in vivo experiments to clonally mark IFE 
cells (e.g.,  [  50  ] ), the notion of the existence of a 
TA cell compartment has been challenged by 
Clayton et al., in their lineage tracing experiments 
 [  51–    53  ] . A combination of lineage tracing experi-
ments and mathematic modeling have led the 
Jones’s group  to suggest a simple model where a 
single population of progenitor cells, which make 
stochastic choices between proliferation and dif-
ferentiation is suf fi cient to maintain homeostasis 
of adult mouse tail epidermis. Whether this 
model is generally applicable to all regions of the 
epidermis remains to be tested.  

    9.3.2   Stem Cells in Non-IFE Locations 

 There is strong evidence supporting the contribution 
of hair follicle stem cells to IFE homeostasis and 
repair (reviewed in  [  26  ] ). Earlier transplantation 
studies suggest that bulge cells give rise to the 

IFE  [  15,   18  ] . However, later lineage tracing 
experiments indicate that these bulge cells do not 
contribute to the IFE under physiological condi-
tions, but do so upon injury  [  4,   13,   54, 55  ] . Lrig1, 
an EGF receptor antagonist that was  fi rst shown 
to mark human IFE stem cells  [  56  ] , was identi fi ed 
as a marker of a population of stem cells, located 
in the junctional zone between the IFE and bulge 
in mouse skin, with potential to generate all epi-
thelial lineages of the adult skin in transplanta-
tion assays  [  35  ] . During normal homeostasis, 
however, Lrig1-expressing cells only support the 
renewal of the IFE and SG  [  35  ] . More recently, it 
has been shown via lineage tracing that the non-
label-retaining, Lgr6-positive cells located in the 
central isthmus of the hair follicle directly above 
the bulge are able to contribute to the IFE and SG 
under normal homeotic conditions at all ages, 
whereas their contribution to the hair follicle 
decreases with age  [  34  ] . In vivo lineage analysis 
of Shh-expressing cells originating from within 
the hair follicle has suggested that cells from the 
upper isthmus or infundibulum contribute to 
 epidermal wound repair  [  55  ] .   

    9.4   Lineage Progression 
of Epidermal Stem/Progenitor 
Cells During Morphogenesis 

 The epidermis originates from the surface ecto-
derm during embryonic development. In the 
mouse, commitment of the single-layered surface 
ectoderm to becoming epidermal precursor cells 
occurs at around embryonic (E) day 9.5 (reviewed 
in  [  57  ] ) (Fig.  9.2 ). The biochemical hallmark of 
this is the switching-off of keratin (K) 8/18 (K8/
K18) expression, and turning-on of K5 and K14, 
markers of the future basal layer of mature epi-
dermis. Around E10.5, cells of the embryonic 
basal layer give rise to a transient layer called 
periderm, which covers the developing epidermis 
until strati fi cation is complete. The early-stage 
K5/K14-positive cells are presumably multipo-
tent, being capable of contributing to multiple 
subsequent lineages, including the IFE, hair fol-
licle, and SG. Starting at E14.5, lineage distinc-
tion is evident as a subset of cells in the hair 
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follicle placode that arises around this time retain 
multipotency, whereas the surrounding K5/K14-
positive basal cells symmetrically or asymmetri-
cally divide to expand the basal layer or to leave 
the underlying basement membrane and migrate 
upward to produce suprabasal cells of the IFE  [  4, 
  6,   26,   55  ] . The latter results in the formation of a 
transient suprabasal cell layer, namely the inter-
mediate cell layer, between the basal layer and 
the periderm. These intermediate cells express 
K1 and K10, terminal differentiation markers of 
the mature epidermis, but are still proliferative 
 [  58  ] . Once these cells withdraw from the cell 
cycle (E15.5), they mature into spinous cells, 
which undergo further differentiation to produce 
granular keratinocytes that express yet another 
set of terminal differentiation markers such as 
loricrin. The epidermal maturation program is 
 fi nalized by the formation of the corni fi ed lay-
ers, which provide an outer front that acts as a 
permeability barrier essential for the organism’s 
ex utero survival. How embryonic epidermal 

morphogenesis is orchestrated at a molecular 
level has been an active area of research. Below 
we review recent literature on the involvement of 
transcription and chromatin regulators that con-
trol the self-renewal, proliferation, and initiation 
of differentiation during epidermal development 
(Table  9.2 ).    

    9.5   Transcription Factors 
That Regulate Developing 
Epidermal Stem/Progenitor 
Cells 

    9.5.1   p63 

 p63 is a transcription factor homologous to the 
p53 tumor suppressor. p63 encodes two classes 
of protein isoforms, TAp63 and  D Np63, with the 
latter being the predominant isoform expressed 
in epidermis (reviewed in  [  28,   82  ] ). p63 −/−  mice 
cannot form a strati fi ed epidermis or epidermal 

  Fig. 9.2    Critical morphological/molecular events and 
transcriptional/chromatin regulators of epidermal devel-
opment. Each lineage stage is color coded, and the roles of 

key transcription factors (TFs) and chromatin factors (CFs) 
are  highlighted  to indicate positive or negative in fl uence on 
their cognate (matching color) lineage stage(s)       
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   Table 9.2    Summary of selected publications on the involvement of transcription and chromatin factors in regulating 
mouse epidermal stem/progenitor cells   

 Mutation  Targeted tissue  Phenotype  References 

  p63  
 p63 knockout  Germline  Single-layered epidermis at birth, lack of limbs 

and epidermal appendages 
  [  59,   60  ]  

  D Np63 knock-in  Germline  Single-layered epidermis in some and patches of 
prematurely differentiating keratinocytes in other areas, 
lack of epidermal appendages, no or defective limbs 

  [  61  ]  

  D Np63 transgenic  Basal (K5)  Expansion of basal and spinous layers   [  32  ]  

 TAp63 knockout  Germline  Develop blisters, ulcerated wounds and exhibit 
premature aging 

  [  62  ]  

 TAp63 knockout  Basal (K14-Cre)  No defects   [  62  ]  
  Notch  
 RBP/J knockout  Basal (K14-Cre)  Thinner epidermis, reduced keratin network in 

suprabasal cells and decreased granular layer 
  [  63  ]  

 NICD constitutive 
activation 

 Basal (K14)  Repressed basal gene expression, blistering between 
epidermis and dermis, expanded spinous layers, 
reduced granular layer and defective barrier 

  [  63  ]  

 Hes1 transgenic  Basal (K14)  No defects   [  64  ]  
 NICD1 transgenic  Spinous (K1)  Expanded granular layer   [  64  ]  
 Hes1 transgenic  Spinous (K1)  Expanded spinous layer   [  64  ]  
 Hes1 knockout  Germline  Premature differentiation of spinous cells into granular 

cells 
  [  64  ]  

 Ascl2 transgenic  Spinous (K1)  Thinner epidermis, similar to Hes1 KO   [  64  ]  
  AP-2  

 AP-2 a  knockout  Basal (K14-Cre)  Epidermal hyperproliferation   [  65  ]  

 AP-2 g  knockout  Epiblast 
(Sox2-Cre) 

 Delayed basal gene expression, differentiation 
and barrier formation 

  [  66  ]  

 AP-2 a / g  double 
knockout 

 Basal (K14-Cre)  Thinner epidermis, defective differentiation and delayed 
barrier formation 

  [  67  ]  

  Ovol  
 Ovol1 knockout  Germline  Expanded spinous layer, failure of cell cycle exit, 

defective granular differentiation 
  [  68  ]  

 Ovol2 knockout  Germline  Embryonic lethality, increased surface ectoderm   [  69  ]  
 Ovol2 knockout  Basal (K14-Cre)  No defects, Ovol1 expression upregulated  Unpublished 
  TCF  
 Tcf3 transgenic  Basal (K14)  Repression of terminal differentiation   [  42  ]  
 Tcf4 transgenic  Basal (K14)  Repression of terminal differentiation   [  5  ]  
 Tcf3/4 double 
knockout 

 3-Basal (K14), 
4 -germline 

 Thinner epidermis,  fl attened basal cells   [  5  ]  

  Srf  
 Srf knockout  Basal (K5-Cre)  Edema and embryonic skin blistering   [  70  ]  
 Srf knockout  Basal (K14-Cre)  Disorganized skin epithelium, loss of proper cell 

adhesion, increased proliferation in suprabasal cells, 
defective differentiation, random spindle orientation, 
increased apoptosis 

  [  71,   72  ]  

  IRF6  
 IRF6 mutant/
knockout 

 Missense 
mutation; 
germline 

 Hyperproliferation and failure to undergo terminal 
differentiation 

  [  73,   74  ]  

  Satb1  
 Satb1 knockout  Germline  Thinner epidermis, decreased granular layer, 

and decreased proliferation 
  [  75  ]  

(continued)
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Table 9.2 (continued)

 Mutation  Targeted tissue  Phenotype  References 

  EMT  
 Slug knockout  Germline  Reduced epidermal thickness, delay in hair follicle 

morphogenesis 
  [  76,   77  ]  

 Snail transgenic  Basal (K14)  Hyperproliferation and expansion of basal compartment   [  78  ]  
 Snail knockout  Germline  No defects   [  79  ]  
  Chromatin factors  
 EZH2 knockout  Basal (K14-Cre)  Hyperthickened stratum corneum, reduced basal 

proliferation, pronounced granular layer, accelerated 
epidermal maturation 

  [  80  ]  

 HDAC1/2 double 
knockout 

 Basal (K14-Cre)  Single-layered epidermis throughout embryogenesis, 
failure of eyelid fusion, and failure of limb-digit 
separation 

  [  81  ]  

appendages  [  59,   60  ] . Instead, a single-layered 
epithelium that expresses K8 but not K5 and K14 
persists at birth.  D Np63 knock-in mice, in which 
the  D Np63-speci fi c exon is replaced by GFP, 
phenocopies p63 −/−  mice by exhibiting similar 
developmental abnormalities including a poorly 
strati fi ed epidermis  [  61  ] . Unlike p63 −/−  mice, 
however, patches of keratinocytes that are able to 
stratify exhibit signs of premature terminal dif-
ferentiation, possibly due to alterations in the 
Notch signaling pathway. On the other hand, 
TAp63 knockout mice develop blisters as young 
adults and ulcerated wounds and premature 
aging later in life, but display no apparent defect 
in epidermal morphogenesis  [  62,   83  ] . Ectopic 
expression of either TAp63 or  D Np63 in simple 
lung epithelium converts it into a K5/K14-
expressing strati fi ed epithelium, whereas over-
expression of  D Np63 in epidermal basal layer 
causes hyperproliferation and partially rescues 
the skin phenotypes of p63 −/−  mice  [  32,   84,   85  ] . 
Together, these studies highlight p63, particu-
larly  D Np63, as a master regulator of epidermal 
morphogenesis. 

 The cellular mechanism of p63 function has 
been an issue of controversy, with evidence sup-
porting its roles in initiating epidermal strati fi cation, 
maintaining stem/progenitor cell proliferation 
potential, as well as tuning the process of terminal 
differentiation (reviewed in  [  26,   28,   57,   61,   86, 
  87  ] ) (Fig.  9.2 ). Consistent with such diverse func-
tions, p63 regulates a wide array of genes involved 

in cell cycle, cell motility and adhesion, chromatin 
regulation, as well as skin tissue-speci fi c markers 
such as K14, involucrin and loricrin  [  75,   88,   89  ] . 

 Of note, p63/ D Np63 is expressed in the nuclei 
of proliferating cells in the IFE basal layer and 
hair follicle, but shows reduced expression in 
the suprabasal layers  [  82,   84,   85  ] . This expres-
sion pattern is compatible with a key role for 
p63 in maintaining the proliferation of epider-
mal stem/progenitor cells. Additional support 
for this notion came from studies of human epi-
dermal keratinocytes, where p63 functions to 
antagonize p53 in proliferation control  [  90,   91  ] . 
Interestingly, depletion of p53 rescues the p63 
knockdown phenotype in cell growth but not 
terminal differentiation, suggesting that p63 
plays a p53-independent role in controlling dif-
ferentiation potential of epidermal stem/progen-
itor cells  [  90  ] .  

    9.5.2   TCF3 and TCF4: Transcription 
Factors of the Wnt/ b -Catenin 
Signaling Pathway 

 Wnt/ b -catenin signaling plays important roles in 
the hair follicle lineage by promoting placode 
formation during embryogenesis, maintaining 
adult follicle bulge stem cell identity, activating 
quiescent stem cells during transition of postnatal 
follicle from a resting to a growing phase, and 
promoting terminal differentiation within the 
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follicle (reviewed in  [  6  ] ). Members of the LEF/
TCF family of transcription factors are down-
stream effectors of the Wnt/ b -catenin pathway, 
by forming bipartite transcriptional complexes 
with  b -catenin to regulate gene expression  [  92  ] . 
Recent studies reveal novel involvement of TCF3 
and TCF4 in the developing epidermis, where 
both are expressed in embryonic basal cells  [  5, 
  42,   93  ] . K14 promoter-mediated overexpression 
of TCF3 or TCF4 in transgenic mice leads to 
repression of terminal differentiation in the IFE, 
which is likely due to the Wnt-independent tran-
scriptional repressor function of these TCF 
factors  [  5,   42  ] . Neither TCF3-de fi cient skin nor 
TCF4-de fi cient skin grafts show any overt pheno-
type  [  5  ] . Loss of both TCF3 and TCF4 results in 
a thinner epidermis at birth with  fl attened basal 
cells and increased cell death, defective hair 
follicle downgrowth, and failure of epidermal 
cells to populate skin grafts  [  5  ] . Interestingly, the 
IFE defects displayed by TCF3/TCF4 double 
knockout mice are not shared by  b -catenin loss-
of-function mutant, suggesting that this aspect of 
the TCF3/4 function may be independent of Wnt/ b -
catenin signaling  [  5  ] . Together, these  fi ndings 
implicate TCF3 and TCF4 as gatekeepers of an 
epidermal stem/progenitor cell state (Fig.  9.2 ).  

    9.5.3   RBP-J and Hes1: Transcription 
Factors of the Notch Pathway 

 Notch signaling plays complex, context-depen-
dent roles in skin epithelial differentiation and 
has recently been implicated as an effector link-
ing asymmetric division to differentiation of 
embryonic epidermal stem cells (reviewed in  [  64, 
  94,   95  ] ). Signaling is initiated by ligand binding 
to the Notch receptor followed by cleavage and 
nuclear translocation of Notch intracellular 
domain (NICD) that in turn binds to transcription 
factor RBP-J and regulates gene expression  [  96  ] . 
In the developing epidermis, Notch signaling 
activation occurs at the basal-suprabasal juncture 
 [  63,   97  ] . Consistently, K14-Cre-mediated dele-
tion of RBP-J results in a thinner epidermis with 
reduced keratin network in suprabasal cells and 
fewer granular layers  [  63  ] . Conversely, preco-

cious activation of Notch signaling by way of 
overexpressing NICD in basal cells leads to 
repressed basal gene expression and expanded 
spinous layers  [  63  ] . Together, these studies are 
consistent with an in vivo role for RBP-J in medi-
ating canonical Notch signaling to promote a 
basal to spinous switch of epidermal stem cells 
(Fig.  9.2 ). 

 Hes1 transcriptional repressor is a downstream 
target of Notch signaling. Loss of Hes1 causes 
premature differentiation of suprabasal keratino-
cytes and is important for maintaining prolifera-
tion in both basal and spinous compartments  [  64  ] . 
Interestingly, overexpression of Hes1 in basal 
cells does not suppress basal fate and induce 
spinous fate as NICD does, suggesting that the 
spinous fate-promoting function of Notch signal-
ing may be Hes1-independent; instead Hes1 is 
required for maintenance of the immature state of 
spinous cells  [  64  ]  (Fig.  9.2 ). Hes1 directly 
represses the expression of transcription activator 
Ascl2, the overexpression of which in epidermal 
basal layer causes a similar skin phenotype as 
Hes1 knockout mice including reduced basal and 
spinous cell proliferation  [  64  ] . How suprabasally 
expressed Hes1 affects the proliferation potential 
of basal cells remains unclear.  

    9.5.4   AP-2 a  and AP-2 g  

 AP-2 transcription factors have long been impli-
cated in regulating epidermal gene expression 
 [  98,   99  ] , but their functional importance has only 
been recently demonstrated. Loss of AP-2 a  in 
the epidermis results in persistent EGFR activity 
in differentiating cells and localized epidermal 
hyperproliferation  [  65  ] . AP-2 g  is induced by 
p63 to activate K14 expression  [  100  ] , and its 
de fi  ciency results in a transient developmental 
delay in epidermal strati fi cation  [  66  ] . K14-Cre-
mediated deletion of both AP-2 a  and AP-2 g  leads 
to suppression of terminal differentiation in vivo 
and in vitro  [  67  ] , uncovering redundant roles for 
these AP-2 proteins in skin. 

 Given that the AP-2 a / g  mutant skin phenotype 
is reminiscent of that of RBP-J mice, Wang et al. 
examined in detail the relationship between the 
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AP-2 and Notch regulatory pathways  [  67  ] . This 
led to the discovery that AP-2 factors and RBP-J-
mediated Notch signaling act in concert to regu-
late the expression of C/EBP transcription factors, 
which may in turn contribute to the basal-spinous 
transition  [  67  ]  (Fig.  9.2 ). Cross-talk between 
Notch signaling and p63 has also be reported: 
Notch activation suppresses p63, and the two 
regulate common direct transcriptional targets 
such as Hes1  [  101  ] . Moreover, sustained p63 
function inhibits Notch-induced epidermal cell 
differentiation. Collectively, these  fi ndings high-
light the importance for epidermal stem/progeni-
tor cells to integrate multiple transcriptional 
inputs in order to intricately regulate the balance 
between self-renewal/proliferation and differen-
tiation at the basal-suprabasal juncture.  

    9.5.5   Serum Response Factor (Srf) 

 Recent studies on the involvement of transcrip-
tion factor Srf in epidermal development solidify 
the interesting in vivo link between the actin 
cytoskeleton and the control of epidermal stem/
progenitor cell proliferation and differentiation. 
K5-Cre-mediated ablation of Srf results in embry-
onic skin blistering, whereas K14-Cre-mediated 
Srf loss leads to persistent suprabasal prolifera-
tion and a disorganized skin epithelium at birth 
suggestive of defective differentiation  [  70,   71  ] . 
A  fi ner developmental analysis of the K14-Cre/
Srf-de fi cient skin reveals faulty cellular organization 
at the basal-spinous juncture, which seems to be 
the root cause of later defects in proliferation and 
differentiation  [  72  ] . The earliest molecular alterations 
reside in the expression of genes encoding actins and 
their regulators, and genes involved in intercellular 
adhesion/signaling and cell–substratum adhesion. 
Probing further with elegant cell biological 
experiments, Luxenburg et al. suggest an intrigu-
ing model where the reduced expression of actin/
actin regulators are responsible for changes in 
cortical framework and cell shape, which may in 
turn cause mitotic defects in spindle orientation, 
ultimately leading to skewed asymmetric cell 
division and defective strati fi cation in Srf-
de fi cient epidermis  [  72  ] .  

    9.5.6   Ovol Transcription Factors 

 The  Ovo  gene family encodes evolutionarily 
conserved zinc- fi nger transcription factors with 
its prototype in  Drosophila  being critical for epi-
dermal denticle formation  [  102  ] . Three mamma-
lian Ovol homologs (Ovol1, Ovol2, and Ovol3) 
exist  [  103,   104  ] . Both  fl y Ovo and mammalian 
Ovol1 reside downstream of key developmental 
signaling pathways such as Wg/Wnt, BMP/
TGF- b  and FOXO  [  68,   102,   105,   106  ] , constitut-
ing a central hub of signaling cross-talk. In the 
developing epidermis, Ovol1 expression coin-
cides with the appearance of intermediate cells 
and persists in the more mature suprabasal layers 
 [  103  ] , whereas Ovol2 is expressed predominantly 
in the basal layer  [  107  ] . Interestingly, Ovol1 and 
Ovol2 seem to repress the expression of each 
other, and Ovol1 auto-represses  [  107,   108  ] . 
Collectively, these data suggest the likely impor-
tance to intricately control Ovol expression lev-
els, and are compatible with both distinct and 
redundant/compensating functions of Ovol1 and 
Ovol2 in epidermal morphogenesis. 

 Ovol involvement in epidermal development 
has been studied using knockout approaches. 
Germline ablation of Ovol1 results in a thickened 
epidermis at birth with expanded spinous layers 
 [  68  ] . The spinous cells in Ovol1-de fi cient 
embryos fail to down-regulate c-Myc expression 
and undergo proliferation arrest, and Ovol1-
de fi cient keratinocytes do not exit cell cycle in 
response to calcium or TGF- b  signaling  [  68  ] . 
Overall these studies underscore a function for Ovol1 
in the growth arrest of late epidermal progenitor 
cells at least in part via direct repression of c-Myc 
transcription. Germline ablation of Ovol2 results 
in mid-gestation lethality, and mutant embryos 
display an overemphasized surface ectoderm 
 [  69  ] . siRNA-mediated knockdown to deplete 
Ovol2 in HaCaT cells, a human keratinocyte line, 
results in populational expansion but a loss of 
colony forming-cells upon clonal passaging 
 [  109  ] . Results of mathematical modeling suggest 
that both faster cycling and precocious with-
drawal from the cell cycle may underlie this phe-
notype. Moreover, Ovol2 depletion accelerates 
extracellular signal-induced K1 expression in 
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2-D and 3-D culture models. Ovol2 directly 
represses the expression of c-Myc and Notch1 by 
binding to their promoters. Inhibiting c-Myc 
function rescues the transient increase in prolif-
eration, whereas inhibiting Notch signaling 
rescues the precocious K1 expression of Ovol2-
de fi cient cells. Thus, in vitro, Ovol2 functions to 
suppress HaCaT cell proliferation and K1 expres-
sion, but seems to promote long-term colony for-
mation. The in vivo function of Ovol2 as well as 
the full scope of Ovol function in developing epi-
dermis is under active investigation in the Dai 
laboratory.  

    9.5.7   IRF6 

 IRF6, a member of the interferon regulatory factor 
(IRF) family of transcription factors, has been 
shown to be involved in controlling the balance 
between epidermal stem/progenitor cell prolifer-
ation and differentiation. IRF6 null embryos dis-
play a hyperproliferative epidermis with expanded 
spinous layers that fail to silence p63 expression, 
exit the cell cycle, and undergo terminal differen-
tiation  [  73  ] . Embryos carrying homozygous mis-
sense mutations in IRF6 show a similar skin 
phenotype  [  74  ] . Additionally, IRF6 −/−  primary 
mouse keratinocytes and IRF6-overexpressing 
primary human keratinocytes display increased 
and decreased, respectively, colony-formation in 
culture, suggesting a cell-autonomous role for 
IRF6 in repressing long-term proliferation of 
epidermal keratinocytes  [  110,   111  ] . IRF6 is 
expressed at low levels in proliferating keratino-
cytes but becomes signi fi cantly up-regulated 
upon calcium-induced differentiation  [  110  ] , lead-
ing one to speculate that it may primarily func-
tion by causing growth arrest of late epidermal 
progenitor cells (Fig.  9.2 ), a role reminiscent of 
that of Ovol1. Interestingly, Ovol1 has been 
identi fi ed as a direct transcriptional target of IRF6 
in squamous carcinoma cells  [  112  ] . Moreover, 
IRF6 is a direct transcriptional target of  D Np63, 
and induces degradation of  D Np63, presenting a 
negative feedback mechanism that regulates the 
switch between keratinocyte proliferation and 
differentiation  [  111  ] .  

    9.5.8   Transcription Factors 
That Regulate Epithelial-
Mesenchymal Transition (EMT) 

 An underexplored area in skin epithelial biology 
is how epithelial remodeling contributes to stem 
cell biology. This is an intriguing issue especially 
given the recent discovery of the association 
between passing through EMT and acquisition of 
self-renewal capability, and that normal multipo-
tent mammary epithelial stem cells express EMT 
markers  [  113  ] . In light of this, it is interesting to 
note that  D Np63 a  overexpression-induced EMT 
endows human keratinocytes with stem cell traits, 
namely multipotency to differentiate into non-
keratinocyte cell types  [  114  ] . 

 Limited evidence implicates the importance 
of known transcriptional regulators of EMT, Snail 
and Slug, in embryonic skin. Snail is expressed, 
in a transient manner, in hair placodal cells but 
not detectable in the IFE  [  79  ] . Slug (Snai2 or 
Snail2) is expressed in all epidermal layers at 
mid-gestation but becomes gradually restricted to 
the basal layer that harbors epidermal precursor 
cells and hair placode that harbors hair follicle 
precursor cells, and progressively disappears after 
birth  [  76,   78,   115  ] . These expression patterns cor-
relate temporally with the increasingly restricted 
lineage and morphogenic potential of embryonic 
epidermal progenitor cells. Inter estingly, over-
expression of Snail in skin basal cells leads to loss 
of E-cadherin, epidermal hyperproliferation and 
expansion of the basal compartment  [  78  ] . Further-
more, Slug knockout mice show a thinner epider-
mis and delayed hair follicle development  [  76,   77  ] . 
Future work is needed to explore the  potential 
functional importance of these EMT transcription 
factors in controlling the “stemness” of epidermal 
stem cells (Fig.  9.2 ).   

    9.6   Chromatin Factors That 
Regulate Epidermal Stem/
Progenitor Cells 

 Chromatin regulation is intimately related to 
transcriptional control. Fiona Watt’s group exam-
ined the global patterns of histone modi fi cations 
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in mammalian skin using immunostaining, pro-
viding a  fi rst glimpse at the “histone code” that 
associates with quiescent cells present in human 
IFE as well as mouse hair follicle bulge  [  116  ] . 
This “histone code” appears to be characterized 
by high levels of histone H3 lysine 9 and histone 
H4 lysine 20 (H4K20) trimethylation and low 
levels of histone H4 acetylation and H4K20 
mono-methylation. Interestingly, tampering with 
the “code” by application of inhibitors of histone 
deacetylases (HDAC) or overexpression of 
c-Myc, a proto-oncogene that has been suggested 
to regulate the conversion of epidermal stem cells 
to committed TA cells (reviewed in  [  87,   117  ] ), 
results in altered proliferation/differentiation 
characteristics of epidermal stem cells. Investigation 
of stem cell epigenetics promises to be an excit-
ing direction in epidermal biology. 

    9.6.1   Enhancer of Zeste Homolog 2 
(EZH2) 

 Polycomb group (PcG) proteins are evolutionally 
conserved chromatin remodeling proteins involved 
in gene silencing  [  118  ] . EZH2 is a PcG member, 
and a methyltransferase component of the Polycomb 
repressive complex 2 (PRC2) that trimethylates 
primarily histone H3 at lysine 27 (H3K27) to initi-
ate gene repression. EZH2 is expressed in embry-
onic stem/progenitor cells of the epidermis, and its 
ablation leads to reduced basal cell proliferation, 
premature induction of late-differentiation genes, 
and accelerated epidermal maturation  [  80  ] . EZH2 
has also been shown to control the proliferative 
potential of basal stem/progenitors by repressing 
the Ink4B-Arf-Ink4A tumor suppressor locus 
and preventing premature recruitment of the AP1 
transcriptional activator to genes involved in dif-
ferentiation of the epidermis  [  80  ] . This differentia-
tion-preventing function is opposite to that of 
H3K27me3 demethylase JMJD3 in human epider-
mal keratinocytes  [  119  ] . These studies collectively 
underscore the importance of epigenetic repres-
sion vs. derepression in controlling the balance 
between epidermal stem/progenitor cell prolifera-
tion and differentiation. 

 The PRC2 complex has been shown to recruit 
DNA methyltransferases (DNMTs) to cognate 

target genes, providing a direct link between 
H3K27 trimethylation and DNA methylation 
 [  120  ] . Consistent with this, DNMT1 is enriched 
in undifferentiated human keratinocytes, and is 
required cell-intrinsically for maintaining epi-
dermal stem/progenitor cell proliferation and for 
preventing premature terminal differentiation 
 [  121  ] . Whether DNA methylation plays a similar 
role in mouse epidermal stem/progenitor cells 
has not yet been reported.  

    9.6.2   HDAC1 and HDAC2 

 HDAC1 and HDAC2, two histone deacetylases 
that remove histone acetylation marks to cause 
chromatin compaction and gene repression, are 
dynamically expressed in the developing epidermis 
 [  81  ] . While K14-Cre-mediated deletion of either 
one produces no overt skin defects, deletion of 
both results in the generation of a single-layered 
epidermis and lack of hair follicles at birth, phe-
notypes reminiscent of those in p63 knockout 
mice  [  81  ] . Moreover, the double mutant embryos 
display reduced basal cell proliferation and 
increased cell apoptosis that become increasingly 
severe with age, suggestive of failure in maintain-
ing embryonic epidermal progenitor cells. At 
least one mechanism of HDAC1/2 action in these 
cells seems to be directly mediating the repres-
sive aspect of p63 function on downstream tar-
gets such as Ink4A. A budding scenario from the 
HDAC/EZH2/JMJD3/DNMT1 studies is that all 
three modes of chromatin/transcriptional repres-
sion (histone deacetylation, H3K27me3, and 
DNA methylation) operate in epidermal progeni-
tor cells to maintain a self-renewing and/or undif-
ferentiating state, albeit with distinct underlying 
molecular mechanisms. The involvement of the 
epigenetic activating machinery in epidermal 
development and differentiation awaits future 
investigation.  

    9.6.3   Satb1 

 Satb1, a genome organizer that regulates high-
order chromatin structure, is expressed in basal 
progenitor cells as a direct target of p63  [  75  ] . 
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Newborn skin de fi cient in Satb1 show reduced 
thickness and epidermal proliferation, as well as 
altered chromatin con fi guration at, and gene 
expression from, the epidermal differentiation 
complex (EDC) locus  [  75  ] . The similarity in Satb1 
and p63’s effect on epidermal development, chro-
matin architecture and gene expression has 
prompted further experiments by Fessing et al., 
which demonstrate that restoration of Satb1 
expression in p63-de fi cient embryonic skin 
explants partially rescues the epidermal pheno-
types of the latter. This study opens the door to 
future exploration of how high-order chromatin 
organization contributes to the regulation of epi-
dermal gene expression and lineage development.   

    9.7   Transcriptional and Chromatin 
Regulation of Adult Hair 
Follicle Stem Cells 

 An understanding of the transcriptional control of 
adult skin stem cells is also emerging. Transcription 
factors expressed in hair follicle bulge stem cells 
include Nfatc1, Lhx2, Sox9, Runx1, Tcf3, Tcf4, 
and Gli1, which themselves are functionally 
important players in stem cell biology  [  5,   6,   9,   38, 
  39,   41,   43  ] . For example, loss of NFATc1 causes 
loss of stem cell quiescence  [  41  ] , whereas abla-
tion of Lhx2 results in increased proliferation 
of CD34 -positive  stem cells but reduced CD34 
expression within the follicle  [  39  ] . Sox9, Runx1, 
c-Myc, and Blimp1 have also been reported to 
regulate the emergence, maintenance, and/or 
proliferation of adult skin epithelial stem and pro-
genitor cells  [  6,   37,   40,   43,   44,   122,   123  ] . 

 Particularly worth noting are TCF3 and TCF4 
that, as discussed above, play a role in epidermal 
morphogenesis. In adult skin, TCF3 and TCF4 
become restricted to the bulge and outer root 
sheath (ORS), and are barely detected in the IFE 
 [  5,   42,   93  ] . Although a role for TCF3 and TCF4 
in bulge stem cells has not yet been directly 
assessed, the  fi nding that TCF3/4-de fi cient 
epidermal cells fail to populate skin grafts is 
suggestive of a TCF3/4 function in maintaining 
long-term epidermal homeostasis  [  5  ] . The simi-
larity in the TCF3-responsive gene signature and 

the bulge/ORS gene signature  [  42  ]  further 
supports this notion. As such, molecular parallels 
exist between the transcriptional regulation of 
embryonic epidermal stem/progenitor cells 
(including but not exclusive to those in the devel-
oping hair follicle) and that of adult bulge stem 
cells. Along the same vein, double ablation of 
EZH2, a regulator of epidermal maturation, and 
its homolog EZH1 adversely affects hair follicle 
homeostasis and wound repair  [  124  ] .  

    9.8   Summary and Perspectives 

 This chapter reviews the recent progress on the 
transcriptional and chromatin control of epider-
mal stem cells. The self-renewal/proliferation/
survival of embryonic epidermal stem/progenitor 
cells, their decision to initiate the terminal dif-
ferentiation program and become spinous cells, 
and their lineage stay as committed progenitor 
cells are all under regulation by multiple tran-
scription factors (Fig.  9.2 ). Interfacing with this 
layer of regulation is the active remodeling of the 
local as well as high-order con fi guration of chro-
matin by histone/DNA modifying enzymes and 
genome organizer. At least some components of 
the transcriptional/chromatin control strategies 
are reused to govern the behaviors of adult hair 
follicle stem cells. 

 Looking forward, we anticipate future research 
to address the following questions. First, what 
additional transcription factors are important in 
epidermal stem cells and how do they interact 
with each other to constitute regulatory networks 
that produce a normal epidermis with intricately 
balanced proliferation and differentiation? 
Second, exactly how do transcription factors 
communicate with chromatin factors and what 
additional epigenetic factors are functionally 
required for epidermal morphogenesis? While 
existing studies on the identi fi cation of down-
stream targets of, and functional interactions 
between, various transcription/chromatin factors 
have already offered tantalizing clues (e.g.,  [  125  ] ; 
also see above), a systems biology approach may 
be necessary to provide an integrated, compre-
hensive picture. 
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 Third, what are the roles of non-coding RNAs 
and how do they interface with transcriptional/
chromatin regulation? Leading this direction are 
recent studies on the identi fi cation of microRNAs 
in skin and the demonstration of functional 
requirements for the microRNA biogenic machin-
ery as well as for speci fi c microRNAs ( [  126  ] ; 
reviewed in  [  127  ] ). Continued identi fi cation of 
critical targets of important miRNAs, such as 
 D Np63 for microRNA-203  [  128,   129  ]  will add a 
new dimension to the regulatory networks con-
trolling gene expression in epidermal stem/
progenitor cells. Finally, how do transcription 
and chromatin factors regulate the epigenomic 
landscape of epidermal stem/progenitor cells? 
Studies to address such issues rely on the ability 
to isolate suf fi cient quantities of relatively homo-
geneous stem/progenitor cell populations for 
genome-wide interrogations, as recently accom-
plished by the Fuchs group  [  130  ] . 

 The ability of epidermal stem cells to be cul-
tured over long periods of time without losing 
their stemness has been vastly bene fi cial in treat-
ing burn victims  [  131  ] . Multipotent skin stem 
cells hold the promise to treat human disorders 
such as alopecia, and their alterations are impli-
cated in the ageing process  [  132  ] . Therefore, 
understanding the transcriptional/chromatin 
mechanisms that regulate epidermal stem cell lin-
eage progression and homeostasis may facilitate 
the development of stem cell-based regenerative 
medicine and other therapeutic agents.      
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