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Germ cells
s, a process where haploid male germ cells differentiate to become mature
spermatozoa, entails dramatic morphological and biochemical changes including remodeling of the germ cell
chromatin. Proteins that contain one or more plant homeodomain (PHD) fingers have been implicated in the
regulation of chromatin structure and function. Pygopus 2 (Pygo2) belongs to a family of evolutionarily
conserved PHD finger proteins thought to act as co-activators of Wnt signaling effector complexes composed
of β-catenin and LEF/TCF transcription factor. Here we analyze mice containing hypomorphic alleles of
pygopus 2 (Pygo2 or mpygo2) and uncover a β-catenin-independent involvement of the Pygo2 protein in
spermiogenesis. Pygo2 is expressed in elongating spermatids at stages when chromatin remodeling occurs,
and block of Pygo2 function leads to spermiogenesis arrest and consequent infertility. Analysis of
spermiogenesis in Pygo2 mutants reveals reduced expression of select post-meiotic genes including
protamines, transition protein 2, and H1fnt, all of which are required for germ cell chromatin condensation,
and drastically altered pattern of histone H3 hyperacetylation. These findings suggest that Pygo2 is involved
in the chromatin remodeling events that lead to nuclear compaction of male germ cells.

© 2008 Elsevier Inc. All rights reserved.
Introduction

The canonicalWnt signalingcascade is required fordevelopment and
homeostasis of a large array of tissues, and its mis-regulation causes a
number of diseases including cancer (Clevers, 2006; Logan and Nusse,
2004). A key event in this signaling pathway is the stabilization and
accumulation of β-catenin (Logan and Nusse, 2004). β-catenin translo-
cates into the nucleus, where it forms a complex with the LEF/TCF
transcription factor as well as other co-activators such as the Pygopus
family of proteins to regulate gene expression (Jessen et al., in press).
Drosophila Pygopus was originally identified as a highly specific and
obligatory component of canonicalWg signaling (Belenkaya et al., 2002;
Kramps et al., 2002; Parker et al., 2002; Thompson et al., 2002). Recent
gene knockout studies of mammalian pygopus homologs support an
involvement of Pygo2 in Wnt signaling in select mammalian tissues,
although its function in eye development is Wnt-independent (Li et al.,
2007; Schwab et al., 2007; Song et al., 2007). Pygopus proteins contain a
PHDfinger at their C-termini, a domain throughwhich theprotein is able
to interact with β-catenin via the adaptor protein Legless/BCL9. Several
hemistry, College of Medicine,
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studies suggest that by virtue of this ability to bind β-catenin, Pygopus
proteins act as devoted co-activators and/or facilitate nuclear retention
of the β-catenin/LEF/TCF complex (Kramps et al., 2002; Krieghoff et al.,
2006; Stadeli and Basler, 2005; Thompson, 2004; Townsley et al., 2004).
Importantly, β-catenin-independent association ofDrosophila Pygowith
LEF/TCF target genes has also been reported (de la Roche and Bienz,
2007).

Mammalian spermiogenesis is a post-meiotic process duringwhich
haploid male germ cells differentiate and undergo remarkable
structural and biochemical transformations to become mature
spermatozoa. During mid-late spermiogenesis, spermatids elongate
their nuclei, cease transcription, and dramatically remodel their
chromatin (Kimmins and Sassone-Corsi, 2005). Somatic histones are
displaced from the chromatin by germ cell-specific DNA packaging
proteins protamine 1 (Prm1) and 2 (Prm2), resulting in a highly
condensed chromatin configuration. The importance of protamines are
underscored by the findings that disturbances in histone–protamine
displacement associate with infertility in a large number of male
patients (Balhorn et al., 1988; Chevaillier et al., 1987; de Yebra et al.,
1993), and that genetic manipulations to reduce overall protamine
levels cause defective spermatid nuclear shaping and condensation
(Cho et al., 2001). Transition proteins (Tnp) are intermediates in the
histone–protamine transition, and recent gene knockout studies
suggest overlapping functions for the two Tnp proteins, Tnp1 and
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Tnp2, in chromatin condensation and sperm development (Meistrich
et al., 2003; Shirley et al., 2004; Zhao et al., 2004).

The chromatin incorporation of histone variants and the hyper-
acetylation of histones have been proposed to underlie the process of
histone replacement during spermiogenesis (Govin et al., 2004). The
histone variant H1FNT is expressed in developing spermatids and is
important for proper DNA condensation during spermatid elongation
(Martianov et al., 2005; Tanaka et al., 2005). H1fnt mutant male mice
are characterized by delayed germ cell nuclear condensation, aberrant
elongation of spermatids, and greatly reduced fertility. It is generally
believed that histone hyperacetylation weakens the histone–DNA
interaction, thereby creating a more open chromatin structure. The
observation that histone H4 becomes hyperacetylated immediately
before the histone-to-protamine transition has led to the proposal that
H4 hyperacetylation facilitates histone displacement (Grimes and
Henderson, 1984b; Meistrich et al., 1992). Although hyperacetylation
of additional histones such as H3 has been found to co-exist with H4
hyperacetylation (Grimes and Henderson, 1984a; Hazzouri et al.,
2000), less attention has been given to the potential involvement of
these histone modifications in germ cell chromatin remodeling.

Herewe showthat Pygo2 is expressed in elongating spermatids and
that mice containing hypomorphic alleles of Pygo2 are infertile with
drastic spermiogenic defects and reduced expression of Prm1, Prm2,
Tnp2 and H1fnt. Furthermore, we provide evidence that Pygo2 in the
testis associates with a histone acetyltransferase (HAT) activity, and a
reduction in Pygo2 expression levels leads to a specific decrease in
lysine (K) 9/14 acetylation of histone H3. Finally, we show that
although Wnt/β-catenin signaling is active in differentiating germ
cells, the function of Pygo2 in spermiogenesis is not linked to nuclear
β-catenin.
Materials and methods

Mouse breeding

Mice used for analysis were maintained in a 129Sv (129)×C57BL/6 (B6) mixed
(50:50) genetic background. Genotyping was performed as previously described, with
Southern blot analysis of DNAs isolated from f/f Pygo2 mice showing no evidence of
gene duplication or deletion (Li et al., 2007).

Histology, immunofluorescence and immunohistochemistry

Whole testes, epididymis, and vas deference from male mice were fixed overnight
in Bouin's fixative or 4% paraformaldehyde, processed and embedded in paraffinwax or
OCT. Sections (6–8 μm)were stained with periodic acid/Schiff sulfite leucofuchsin (PAS)
or hematoxylin/esosin, DAPI, or the appropriate antibodies. Immunofluorescence was
performed as described (Nair et al., 2006). The following antibodies were used: rabbit
polyclonal α-Pygo2 antibody (Li et al., 2007), rabbit α-LDHC4 antibody (Hintz and
Goldberg, 1977), mouse monoclonal α-β-catenin antibody (Sigma, Cat # C7207), α-
acetyl-K9/14-histone H3 antibody (Upstate, Cat # 06-599), α-acetyl-K9-histone H3
antibody (Genetex, Cat # GTX12179), α-acetyl-K9/K14 histone H3 antibody (Upstate,
Cat # 06-599), α-acetyl-K8-histone H4 and α-acetyl-K12-histone H4 antibodies
(generous gifts from Michael Grunstein, UCLA), monoclonal α-trimethyl-K4-histone
H3 antibody (Upstate, Cat # 05-745), and α-β-galactosidase antibody (MP Biomedicals,
Cat # 55976). Immunohistochemistry was performed using a rat monoclonal IgM α-
GCNA1 antibody (Enders and May, 1994) and the VECTASTAIN elite ABC kit (Vector)
according to the manufacturer's suggestions.

Northern and RT-PCR

Total RNA was extracted from testis of 40-days old mice using Trizol (Invitrogen),
and northern blot analysis performed using 35 μg of total RNA as described previously
(Dai et al.,1998). A 374 bp fragment, generated bydigesting the 3′ untranslated sequence
of Pygo2 (position 1927–2820 of the Pygo2 cDNA; (Li et al., 2004)) with Pst I and Ear I,
was used as a probe. For RT-PCR experiments, 5 μg of total RNAwas reverse transcribed
into cDNA using the Superscript III reverse transcriptase (Invitrogen). Sequences of
primers used for PCR reactions are available upon request.

Seminiferous tubule squash preparation, germ cell and chromatin fractionation, and
Western blot analysis

Whole testes from 40-day old mice was decapsulated in PBS. Stage-specific
segments of seminiferous tubules were isolated using the transillumination-assisted
microdissection technique (Kotaja et al., 2004). Squash preparations were performed as
previously described (Kotaja et al., 2004). For germ cell fractionation, freshly dissected
epididymis (including caput, corpus and cauda epididymis) from 3- to 4 testes of 40-day
old mice were minced in 10ml of ice-cold PBS, and kept at 4 °C for 15minwith constant
agitation. The supernatant was filtered through a 74-mm mesh and centrifuged at
5000 ×g for 20 min. Pellets were washed once in 1 ml of ice-cold PBS and twice in
10 mM Tris–HCl, pH 8.0, 1 mM EDTA, which led to the lysis of contaminating blood and
epithelial cells. Subsequently, centrifugal elutriation (Meistrich, 1977) was carried out
to obtain enriched fractions of pachytene spermatocytes, round spermatids, and
elongating/elongated spermatids. Purity was monitored and the number of resulting
spermatozoa evaluated using a Nikon Diaphot TMD inverted microscope. Protein
extraction and Western blotting were performed using standard procedures, and blots
were probed with α-β-actin (Abcam, Cat # ab6276), α-Pygo2 (Li et al., 2007), and α-
H1FNT (Martianov et al., 2005) antibodies. Chromatin fractionation was performed as
previously described (Martianov et al., 2005). Briefly, whole testes were decapsulated in
PBS and agitated on ice for 15 min after mincing. The cell mixture was transfer to 15 ml
tubes and kept for 15 min, after which the supernatant was collected and centrifuged at
1000 ×g to remove tubular and Sertoli cells. The pellet, composed of mainly germ cells,
was resuspended in N250 buffer (15 mM Tris, pH 7.5, 10 mMMgCl2, 60 mM KCl, 15 mM
NaCl, 1 mM CaCl2, and 250mM Sucrose) containing 0.3% NP40. After rocking for 15 min,
the mixture was centrifuged at 2000 ×g, and the supernatant collected as the
cytoplasmic fraction. The pellet was washed by N250 buffer three times and
resuspended in PIPES (10 mM PIPES and 10 mM EDTA, pH 8.0) buffer. The resulting
mixture was centrifuged at 6000 ×g, and the supernatant collected as the
nuculeoplasmic fraction and the pellet as the chromatin fraction. Throughout the
procedure, the f/f samples were resuspended in smaller volumes than the wild-type to
ensure comparable cell/volume ratios.

Co-immunoprecipitation (Co-IP) and histone acetyltransferase (HAT) activity assay

Co-IP of whole testis extracts prepared from 40-day old mice was carried out in
20 mM HEPES pH 7.9, 1 mM EDTA, 1 mM EGTA, 150 mM NaCl, 10% glycerol, 1 mM DTT,
1 mM Na3VO4, plus protease inhibitors, using rabbit polyclonal α-Pygo2 antibody (Li et
al., 2007) or control normal rabbit IgG (Santa Cruz Biotechnology, Santa Cruz, CA).
Following overnight incubation at 4 °C, immuno-complexes were collected with Protein
A/G beads, washed 4 times, eluted by boiling in 2× sample buffer, and subjected to SDS-
PAGE and Western blotting with biotinylated α-Pygo2 (R&D systems, Minneapolis,
MN), or α-β-catenin (Sigma, St. Louis, MO). HAT assay was performed according to
manufacturer's instructions (Upstate, Cat # 17-289). Briefly, streptavidin-coated strip
plates were incubated with biotinylated histone H3 or H4 peptides. Immunoprecipi-
tates were then added in appropriate buffers, and strip plates washed and probed for
acetylation of the histone peptides using an α-acetyl-lysine antibody. Acetylated
histone H3 or H4 peptides were used as positive controls for antibody reaction and
colorimetric analysis.
Results

Pygo2 is expressed in elongating/condensing spermatids and associates
with the chromatin

In order to study the expression profile of Pygo2 inmale germ cells,
an α-Pygo2 antibody (Li et al., 2007) that specifically recognizes an
expected 50 kDa protein in testicular extracts (Supplemental Figs. 1
and 2) was used to immunostain frozen testis sections and squash
preparations of stage-specific segments of seminiferous tubules. A
systematic analysis of seminiferous stage-specific germcells revealed a
strong presence of Pygo2 protein in spermatids from step 8 to step 12,
encompassing those that undergo elongation and subsequently
nuclear condensation (Fig. 1). The Pygo2 protein was found to be
nuclear in step 8–9 spermatids (Figs. 1B, E, H), but as elongation
proceeds it became localized to what appears to be acrosome at the
anterior dorsal aspect of step 10 spermatids (Fig. 1K). In step 12
spermatids, the protein is predominantly present at the nuclear
periphery of the sperm head (Fig. 1N). Biochemical fractionation
experiments revealed the presence of Pygo2 protein in both nuclear
and cytoplasmic fractions of purified elongating/elongated sperma-
tids, and demonstrated that in the nucleus, the protein is predomi-
nantly chromatin-associated (Fig. 1O).

Nuclear Pygo2 was also detected in A-type spermatogonia, Sertoli
cells, Leydig cells, and peritubular myoid cells (Fig. 1A, Supplemental
Fig. 2). Consistently, the Pygo2 transcripts were detected in testis of 1
week-old males, where only spermatogonia and somatic cell types
were present (Supplemental Fig. 2G). Weak to no signal was



Fig. 2. Reduced Pygo2 expression in f/f testis. (A) Results of northern blot analysis of
RNAs isolated from wild-type and f/f testes. A single Pygo2 transcript of 3.2 kb was
detected in both wild-type and mutant samples. (B) Results of Western blot analysis of
testicular extracts prepared fromwild-type and f/f testes. Note reduced levels of the 50-
kDa Pygo2 protein in mutant samples. GAPDH transcripts and β-actin proteins were
used as loading controls. The Pygo2/Pygo2 band intensities were quantified by
densitometer tracing and fold reduction was determined from multiple experiments
after normalization against band intensities of loading controls. (C) The f/f mutation
preferentially impacts nuclear Pygo2 levels.

Fig. 1. Pygo2 protein is detected in elongating spermatids between steps 8–12. (A) Results of immunostaining of a testis section containing seminiferous tubules of different stages.
Note Pygo2 expression in spermatids of step 9 (stage IX), step 10/11 (stage X/XI), but not in round spermatids or step 14 maturing spermatozoa (stage II/III). Panel B is a merged
image of Pygo2 (green) and DAPI (artificially colored red) staining. (C–N) Squash preparations containing step 8 (C–E), 9 (F–H), 10 (I–K), and 12 (L–N) spermatids immunostained
with anti-Pygo2 antibody. Arrowheads point to spermatids of step 8 (ES8), 9 (ES9), 10 (ES10), and 12 (ES12). Panels D, G, J, M are corresponding DAPI images of panels C, F, I, L,
respectively. Panels E, H, K, and N are merged images with DAPI artificially colored red. (O) Nuclear Pygo2 associates with the chromatin. Nt, total nuclear fraction; Cy, cytoplasmic
fraction; Nu, nucleoplasmic fraction; Ch, chromatin fraction. Histone H3 and H1FNT proteins serve as positive controls for chromatin fractionation. Scale bar: 60 μm in panels A, B;
6 μm in panels C–N.
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detected in spermatocytes and round spermatids (Fig. 1 and data not
shown). These results raised the possibility that Pygo2 plays a role in
male germ cell differentiation, especially during spermiogenesis.

Reduced levels of Pygo2 results in male infertility

We previously generated both null and conditional floxed (f)
alleles of Pygo2 and showed that germline deletion of Pygo2 results
in death shortly after birth (Li et al., 2007). Analysis of testes from
E18.5 wild-type and null embryos revealed no apparent difference
(data not shown), suggesting that embryonic germ cell development
is normal in the absence of Pygo2. Interestingly, mice homozygous
for the f allele of Pygo2 (Li et al., 2007) survived to adulthood but
showed male-specific sterility, offering a potential model to explore
Pygo2 function in postnatal testis. f/f males displayed normal mating
behavior but multiple breedings yielded no offspring. Results of
northern and Western blot analyses showed reduced levels of the
3.2-kb Pygo2 transcript (2.2±0.3-fold) and 50-kD Pygo2 protein (2.4
±0.5-fold) in f/f testis (Figs. 2A, B), suggesting that the presence of
loxP sites in introns flanking exon 3 of Pygo2 (Li et al., 2007) results
in a hypomorphic allele. The reduction of Pygo2 levels in spermatids
was confirmed by immunofluorescence of frozen testis sections
(data not shown). Interestingly, the nuclear/cytoplasmic distribution
of Pygo2 was abnormal in f/f testis, as there was a disproportional
decrease in Pygo2 levels in the nucleus (Fig. 2C). Although f/f mice
displayed no visible morphological defects in somatic tissues (data
not shown), a reduction in Pygo2 transcript levels was also observed
for several somatic tissues in f/f mice when compared with wild-
type controls (Supplemental Fig. 3), further supporting the notion
that the floxed allele of Pygo2 is hypomorphic. In contrast to f/f
males, +/f and +/null heterozygous males are fertile. Together, these
data suggest that reduced Pygo2 levels in f/f mice associate with
male infertility.



Fig. 3. Defective spermiogenesis in f/f mice. (A–C) Histological analysis of testis sections from adult wild-type (WT) (A), f/f (B) and +/− (C) males. Arrows indicate the elongated
spermatids or spermatozoa that are present in the seminiferous tubules of wild-type and +/− testes but absent in f/f littermates. (D–F) Morphology of stage VII–VIII seminiferous
tubules from wild-type (D), f/f (E), and +/− (F) males. Arrowheads indicate the normal elongated spermatids in wild-type and +/− mice; such cells are completely absent in f/f
littermates. (G–I) Morphology of stage X seminiferous tubules from wild-type (G), f/f (H), and +/− males. Note that the normal nuclear elongation of wild-type and +/− step 10
spermatids (arrowheads) is not observed in the f/f counterparts. (J–L) Morphology of stage XI seminiferous tubules from wild-type (J), f/f (K), and +/− (L) males. Note the improper
nuclear condensation of step 11 spermatids (arrowheads) in the f/f mutant. (M–P) Morphology of wild-type (M, O) and f/f (N, P) epididymis (M, N) and vas deferens (O, P). Insets in
panels M and N show enlarged images of the boxes areas. Scale bar: 60 μm in panels A–C,M–P; 30 μm in panels D–F; 10 μm in panels G–L.
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Fig. 5. Select reduction of haploid gene expression in f/f spermatids. Shown are results
of semi-quantitative (A) and real-time (B) PCR analysis revealing decreasedmRNA levels
of Prm1, Prm2, Tnp2, and H1fnt but not other genes. Real-time PCR data represent
average of four different mice, each assayed in triplicates.
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Defective spermiogenesis in f/f Pygo2 males

At a histological level, themost striking defect in adultmutant testis
was the lack of elongated spermatids (Fig. 3B). Analysis of stage-
matched seminiferous tubules from juvenile wild-type and f/f mice
demonstrated that in the mutant the cellular associations normally
observed in wild-type testis were disrupted, that round, elongating,
and elongated spermatids sometimes co-exist in a single tubule
indicative of asynchronous spermatid development, and that step 16
spermatids were completely absent (Fig. 3E). The earliest morpholo-
gical defects were detected in step 9–10 spermatids, coinciding with
the stages when Pygo2 expression in haploid germ cells became
prominent and is primarily nuclear. However, the total number of
elongating spermatids was maintained in the f/f tubules (53% of total
germ cells in stage X/XI f/f tubules are step 10 and 11 spermatids, as
compared to 54% in the wild-type). Comparing to their wild-type
counterparts, step 10 spermatids in the mutant did not properly
elongate their nuclei (Fig. 3H), and the nuclei of step 11 mutant
spermatids were not properly condensed (Fig. 3K). These results
highlight defective nuclear elongation and condensation as the
primary defects in f/f testis. In contrast to f/f mice, heterozygous (+/−)
males showed no detectable spermiogenic defects (Figs. 3C, F, I, L).
Examination of the histology of epidydimis and vas deferens revealed
that while wild-type and +/− epidydimis and vas deferens contained
abundant mature spermatozoa (Figs. 3M, O and data not shown), few
spermatozoa were observed in the f/f mutant littermates (Figs. 3N, P).
The occasionally seen spermatozoa displayed round heads with no
tails (Fig. 3N inset), confirming a failure in nuclear shaping.

At a biochemical level, expression of LDHC4, a marker for germ
cells from mid/late-pachytene stage onward (Hintz and Goldberg,
1977), was not affected (Figs. 4A, B). Furthermore, expression of
GCNA1 (germ cell nuclear antigen), a marker for spermatogonia and
spermatocytes prior to mid-pachytene (Enders and May, 1994), was
largely normal, and there is no reduction in the number of GCNA1-
positive cells in the mutant (Figs. 4C, D). These results suggest that the
Fig. 4. Biochemistry of wild-type and f/f testes. Shown are results of immunofluorescence st
GCNA1 antibody (C, D) on wild-type (A, C) and f/f (B, D) testes. Scale bar: 80 μm.
f/f mutation does not significantly impact the early steps of
spermatogenesis.

Decreased expression of select post-meiotic genes in f/f testis

To explore the molecular defects of Pygo2-reduced germ cells, we
performed RT-PCR analysis to examine the expression of regulatory
aining using anti-LDHC4 antibody (A, B) and immunohistochemical analysis using anti-



Fig. 6. H1FNT protein levels are reduced in elongating/elongated f/f spermatids. (A)
Western blot analysis showing reduced H1FNT protein levels in total testis lysates (TL)
and elongating/elongated spermatids (ES), but not in spermatocytes (SC) and round
spermatids (RS). Actinwas used as a loading control. (B, C) The polarized H1FNT protein
localization (red) in wild-type spermatids (B) is greatly diminished in the f/f (C)
counterparts. Blue, DAPI staining to visualize nuclei. Scale bar: 6 μm.
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and structural genes that have been implicated in spermatogenesis.
Genes that are normally expressed in Sertoli cells, including GATA1,
RARα, and FSHR (Heckert and Griswold, 1991; Kliesch et al., 1992;
Vernet et al., 2006; Yomogida et al., 1994), showed unaltered ex-
pression in f/f testis (Fig. 5A). Similarly, genes the expression of which
is Leydig cell-specific or -enriched, including LHR and RXRβ (Gaemers
et al., 1998; Zhang et al., 1994), were not affected. AR has been
Fig. 7.Hyperacetylation at K9/K14 of histone H3 is specifically reduced in elongating f/f sperm
using anti-acetyl-K9 H3 (A, B) and anti-acetyl-K12 H4 (E, F) antibodies. Shown are stage IX se
G−J) Results of immunostaining of wild-type (C, G, I) and f/f (D, H, J) testes using anti-acetyl-
Western blot analysis of lysates prepared from fractionated elongating/elongated spermatid
signals of chromatin or total nuclear fractions were quantified from two independent exper
reported to be expressed in both somatic (Sertoli, Leydig, peritubular
myoid cells) and germ cells (Vornberger et al., 1994), and no change
was seen in f/f testis. These results suggest that the f/f mutation of
Pygo2 may not impact the somatic Sertoli and Leydig cells.

Germ cell-expressing genes were differentially affected. Those
with a reported expression in round spermatids and earlier, such as
CREM (Delmas et al., 1993), ACT (Fimia et al., 1999), Pgk2 (Gold et al.,
1983), Tpap (Kashiwabara et al., 2000), produced normal levels of
mRNAs in f/f testis. In contrast, there was a dramatic reduction of
mRNA levels of several genes with expression normally activated in
late round spermatids and high in elongating spermatids (Mali et al.,
1989; Saunders et al., 1992), including Prm1 (decreased by 2.6-fold),
Prm2 (decreased by 3.4-fold), Tnp2 (decreased by 2.1-fold), and H1fnt
(decreased by 4.3-fold), in f/f testis (Figs. 5A, B). However, this
reduction is not universal for all late-spermatid-expressing genes, as
MCS (Nam et al., 1997), TRF2/TLF (Martianov et al., 2001), CaMKIV (Wu
and Means, 2000), HSC70t (Tsunekawa et al., 1999), and RT7/ODF
(Morales et al., 1994; van der Hoorn et al., 1990) were all expressed at
apparently normal levels. Importantly, Tnp1 is normally expressed in a
pattern reminiscent of those of Prm1, Prm2, and Tnp2 (Mali et al.,
1989), yet its expression level was only minimally affected in f/f testis.

We next performed proof-of-principle experiments to see if the
altered mRNA levels observed above indeed translate into altered
protein levels. A significant reduction in H1FNT protein levels was
atids. (A, B, E, F) Results of double-immunostaining of wild-type (A, E) and f/f (B, F) testes
miniferous tubules. Note reduced histone H3 K9 acetylation in stage 9 spermatids. (C, D,
K9/K14 H3 (C, D), anti-acetyl-K8 H4 (G, H) or anti-trimethyl-K4 H3 (I, J) antibodies. (K)
s. (L) Plot of chromatin/nuclear (Ch/Nt) ratios for histone H3 and Pygo2. Western blot
iments and average values are shown. Scale bar: 30 μm.



Fig. 8. Pygo2 associates with HAT in testis. (A) Western blotting analysis showing
absence of β-catenin in anti-Pygo2 immunoprecipitates. (B) HAT activity is detected in
anti-Pygo2 immunoprecipitates. Values obtained without the presence of any substrate
(negative control) were arbitrarily set as 1.
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observed in f/f testis lysates, as well as in lysates prepared from
isolated preparations of f/f elongating/elongated spermatids (Fig. 6A).
In contrast, no decrease occurred in f/f spermatocytes or round
spermatids. Immunofluorescence analysis of squash preparations
demonstrated the characteristic H1FNT localization to the dorsal
anterior aspect of nuclei of wild-type elongating spermatids, whereas
mutant spermatids almost lacked this expression (Figs. 6B, C). H1FNT
is known to tightly associate with the chromatin (Martianov et al.,
2005), but this chromatin association was not affected in f/f testis
(data not shown). Collectively, the results in this section suggest a
specific role for Pygo2 in controlling the expression of select late-
spermatid genes including protamines, Tnp2, and H1fnt.
Fig. 9. Spermatids from f/f mice show largely normal LEF/TCF-responsive promoter activit
activity of testes from BAT-gal transgenic (Tg) (A) and non-transgenic (non-Tg) littermates
galactosidase antibody of testis sections from wild-type (D) and f/f (E) mice that carry the B
catenin antibody. DAPI staining of the sections was artificially colored red and superimposed
round spermatids (white arrows). Scale bar: 18 μm in panel C; 15 μm in panels D–G.
Pygo2 is required for histone H3 hyperacetylation in elongating
spermatids and associates with a HAT activity

PHD finger proteins have been implicated in the recognition of K4-
trimethylated histone H3 and facilitate subsequent H3 acetylation (Li
et al., 2006; Pena et al., 2006; Shi et al., 2006; Taverna et al., 2006;
Wysocka et al., 2006). Since Pygo2 contains an evolutionarily
conserved PHD finger, we wondered whether it too may play a
facilitating role in germ cell histone acetylation. Double staining of the
same testis sections using anti-acetyl-K9 of histone H3 (AcK9 H3) and
anti-acetyl-K12 of histone H4 (AcK12 H4) revealed identical patterns
in elongating spermatids of wild-type mice (Figs. 7A, E), suggesting
that histone H3 K9 acetylation occurs concomitantly with H4
hyperacetylation during spermatid development. While no difference
was detected betweenwild-type and f/fmales in K12 or K8 acetylation
of histone H4 (AcK12 H4 or AcK8 H4) (Figs. 7E–H), we observed a
significant reduction in the extent of K9 acetylation of histone H3 in f/f
spermatids (Fig. 7B). A similar reduction in staining intensity was
observedwhen an antibody that recognizes both acetyl-K9 and acetyl-
K14 of histone H3 (AcK9/K14 H3) was used (Fig. 7D). Reduced histone
H3 acetylation was obvious in stage 9 spermatids (Figs. 7B, D), where
Pygo2 protein is predominantly nuclear, and persisted until later
stages (data not shown). In contrast to acetylation, immunofluores-
cence analysis failed to reveal any significant change in the levels of
K4-trimethylated histone H3 (Me3K4 H3) in f/f germ cells (Fig. 7J).

To quantitatively assess the changes in histone H3 acetylation, we
performed Western blot analysis of lysates prepared from purified
elongating/elongated spermatids. Comparing to the wild-type, a ∼2-
fold reduction in K9/K14-acetylated histone H3 levels was seen in f/f
elongating/elongated spermatids (Fig. 7K). To evaluate the possible
significance of reduced histone H3 acetylation, we assessed the
chromatin-bound fraction of histone H3 in wild-type and f/f testes by
determining the apparent chromatin/total nuclear ratio of the
protein. Relative to wild-type samples, a higher proportion of histone
H3 was chromatin-bound in f/f testes (Fig. 7L). In contrast, the
chromatin/nuclear ratio was decreased in f/f samples for Pygo2. Taken
y and β-catenin nuclear localization. (A, B) Whole-mount staining for β-galactosidase
(B). A section of the Tg testis is shown in panel C. (D, E) Immunostaining using anti-β-
AT-gal transgene. (F, G) Immunostaining of wild-type (F) and f/f (G) testes using anti-β-
with anti-β-catenin staining to illustrate the nuclear location of the β-catenin protein in
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together, these results identify Pygo2 as a regulator of global histone
H3 hyperacetylation in elongating spermatids, and correlate mis-
regulated acetylation with aberrant chromatin retention of histone
H3 in Pygo2-reduced testis.

We next asked whether Pygo2, like PHD finger protein Yng1
(Taverna et al., 2006), associates with a HAT activity. Extracts from
mouse testis were used for immunoprecipitation using anti-Pygo2
antibody, and it was evident that the antibody precipitated the
endogenous Pygo2 protein (Fig. 8A). When HAT activity was
measured, a significant enrichment of an activity that was able to
acetylate both histone H3 and H4 peptide substrates was observed in
α-Pygo2 immunoprecipitates over IgG controls (Fig. 8B). Interestingly,
β-catenin was not detected in the immunoprecipitates. As a control,
we note that Pygo2-β-catenin interactionwas detected in 293Tcells in
our hands (data not shown). Collectively, our results demonstrate that
Pygo2 in testis associates with a HAT activity likely in a β-catenin-
independent manner, providing a possible biochemical mechanism
for Pygo2's regulation of histone acetylation in germ cells.

In vivo evidence that Pygo2 and β-catenin have independent regulatory
pathways in male germ cells

Next we performed experiments to directly address whether
Pygo2 functions in spermiogenesis by regulating the transcriptional
output of Wnt/β-catenin signaling. We first examined the expression
of BAT-gal, a widely used Wnt reporter gene in which LacZ expression
is under the control of LEF/TCF-responsive elements (Maretto et al.,
2003), in testis. Testes from BAT-gal transgenic mice stained blue with
β-galactosidase substrates (Fig. 9A), while non-transgenic littermates
appeared white (Fig. 9B). The predominant sites of LacZ expression
were round spermatids (Figs. 9C, D). The β-galactosidase protein
persisted in early elongating (step 9–10) spermatids but diminished
upon further maturation (data not shown). These results imply the
presence of factors in round spermatids that can activate LEF/TCF
target gene expression. Indeed, nuclear β-catenin, presumably pro-
duced as a result of active Wnt signaling, was detected in round
spermatids (Fig. 9F) and weakly in pachytene spermatocytes, but not
in elongating spermatids that normally express Pygo2 (data not
shown). No significant reduction in β-galactosidase activity or
expression was observed in round and early elongating spermatids
of f/fmice (Fig. 9E and data not shown), indicating that reduced Pygo2
levels have little effect on the activity of the LEF/TCF-responsive
promoter that is present in the BAT-gal transgene. Furthermore,
nuclear localization of β-catenin was still detected in f/f round
spermatids (Fig. 9G). These results, together with the biochemical
data above showing that β-catenin and Pygo2 in testis do not co-
immunoprecipitate, suggest that the actions of β-catenin and Pygo2
are spatially separated, and that Pygo2 function in spermiogenesis is
β-catenin-independent.

Discussion

Spermiogenesis entails a major biochemical and morphological
restructuring of the germ cell involving replacement of somatic
histones by protamines packing the DNA into the condensed
spermatid nucleus during the elongation phase. Our results uncover
an important role for Pygo2 in mammalian spermiogenesis, as re-
duced levels of Pygo2 originated from hypomorphic floxed alleles
result in a complete spermiogenic arrest and male infertility. Pygo2-
reduced spermatids fail to properly elongate and shape their nuclei,
and these phenotypes partially overlap those observed in mouse
mutants of protamines, transition proteins, and H1fnt. Indeed, we
observed a decreased expression of Prm1, Prm2, Tnp2, and H1fnt in f/
f testis. This effect is rather specific, as other late-spermatid-
expressing genes such as Tnp1 are not affected. Therefore, it is
unlikely that the reduced expression of H1fnt, Prm1, Prm2, and Tnp2
is simply due to a reduced presence of late spermatids in f/f testis. In
mice and humans, genes encoding Prm1, Prm2, and Tnp2 are
clustered together on one chromosome and their expression coor-
dinately regulated in a haploid-specific manner during spermatogen-
esis (Nelson and Krawetz, 1993), whereas the Tnp1 gene is located on
another chromosome. The uniform down-regulation of the clustered
genes in f/f testis raises an intriguing possibility that Pygo2 directly or
indirectly regulates the activation of this gene cluster in a concerted
manner. This notion is worth testing experimentally. Prm1, Prm2,
Tnp1, and RT7 are all downstream targets of CREM, a key haploid
germ cell transcription factor (Delmas et al., 1993). The largely
unaltered expression of Tnp1 and RT7 also suggests that Pygo2
reduction does not result in a general decrease in CREM-dependent
transcription.

Besides a potential role in regulating specific haploid genes, a
functional Pygo2 protein is essential in vivo for K9/K14 hyperacetyla-
tion of histone H3. We show that H3 hyperacetylation occurs during
spermatid elongation and nuclear condensation, and that it is se-
lectively reduced in f/f mutant spermatids. While it is formally pos-
sible that this defect is a secondary consequence of other cellular/
molecular changes such as those that may occur in the somatic
support cells or in premeiotic germ cells, two pieces of evidence are
consistent with a more direct role for Pygo2 in the acetylation of
histone H3: 1) histone H3 hyperacetylation and its decrease in f/f
mutant spatiotemporally correlate with abundant nuclear expression
of Pygo2; 2) Pygo2 associates with a HATactivity in testis extracts. One
of the proposed consequences of histone hyperacetylation is the
facilitated displacement of histones from the chromatin. Consistently
with this hypothesis, we observed an increased chromatin association
(retention) of histone H3 in f/f mutant testis. Our results offer no
insights as to the relative importance of Pygo2's effect on haploid gene
expression and histone H3 acetylation. Our current thinking is that
Pygo2 regulates both events in elongating spermatids, thereby
coordinating histone displacement with the production of proteins
that can take histones' place to package the germ cell DNA in a more
compact fashion.

Which HAT does Pygo2 associate with? Our results of HAT assays
on purified histone peptide substrates indicate that this HAT does not
distinguish between H3 and H4 in vitro. Therefore, it is unlikely that
the Pygo2-associated HAT is CDYL, which has been previously
identified as a histone H4-specific HAT expressed in maturing
spermatids (Lahn et al., 2002). Despite the in vitro promiscuity of
Pygo2-associated HAT, reduced Pygo2 levels affect histone H3 but not
H4 hyperacetylation. This in vivo specificity implicates the existence of
additional mechanisms that target Pygo2-associated activity to
histone H3. PHD fingers have recently been found to be a recognition
motif for histone H3 trimethylated at K4 (Li et al., 2006; Pena et al.,
2006; Shi et al., 2006; Wysocka et al., 2006). Furthermore, K4
trimethylation of histone H3 facilitates its subsequent acetylation by
Yng1-associated HAT (Taverna et al., 2006). Global K4 trimethylation
of H3 during germ cell development has recently been shown to
spatiotemporally overlap global histone hyperacetylation (Godmann
et al., 2007), but the underlying molecular link between these two
modification events is unclear. We propose that the PHD domain of
Pygo2 binds to K4-trimethyl histone H3 in germ cell chromatin,
thereby targeting Pygo2-associated HATactivity to histone H3. Clearly,
future studies beyond the scope of this work are needed to test our
model and to identify the Pygo2-associated HAT.

Testes of f/fmice express Pygo2 at a level that is approximately 40%
of the wild type. Since +/null heterozygous – presumably expressing
50% of wild-type level of Pygo2 – and +/f males are fertile with no
apparent defects in spermatid elongation, we surmise that there is a
critical threshold of Pygo2 dosage below which spermiogenesis
cannot be sustained. We note the interesting finding that the nuclear
concentration of Pygo2 appears to be disproportionally impacted by
the mutation comparing to the cytoplasmic concentration. Perhaps a
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threshold level of Pygo2 is necessary for efficient nuclear localization;
when Pygo2 levels drop below this threshold, the cytoplasmic/nuclear
distribution is altered, leading to a specific reduction in protein levels
inside the nucleus. Dissecting the underling mechanism of this
observation is outside the scope of the current work. Alternatively,
the f/f mutation may have an allele-specific effect. f/f mice do not
display apparent defects in somatic epithelial tissues that are known
to be affected by a Pygo2 null mutation (Li et al., 2007). This difference
reveals a tissue- and cell type-specific sensitivity of developmental
processes to Pygo2 protein levels. Remodeling of the germ cell
chromatin during spermatid elongation is global in nature, whereas
chromatin remodeling in somatic cells is more gene- and locus-
specific. Therefore, elongating spermatids may entail a higher level of
nuclear Pygo2 proteins for proper chromatin modifications, and are
therefore particularly sensitive to the f/f-induced reduction in Pygo2
levels.

Our data demonstrate that canonical Wnt signaling is active (by
virtue of expressing nuclear β-catenin and activating a LEF/TCF target
promoter) in differentiating germ cells, particularly in spermatocytes
and round spermatids. However, this activation does not seem to
require Pygo2, as Pygo2 protein is not detected in these cells. Instead,
Pygo2 is present in elongating spermatids and is required for their
further differentiation. Although we cannot fully exclude the pos-
sibility that there are subtle differences inWnt signaling betweenwild
type and mutant that are beyond our method of detection, our
analysis supports the notion that the function of Pygo2 in male germ
cells is independent of β-catenin, and by inference,Wnt signaling. This
work is consistent with previous reports to show that mammalian
Pygopus genes have evolved to perform Wnt-independent functions
in addition to their roles in mediating canonical Wnt signaling (Li et
al., 2007; Schwab et al., 2007; Song et al., 2007).
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