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Abstract
The maintenance of a stable stem cell population in the epidermis is important for robust regeneration
of the stratified epithelium. The population size is usually regulated by cell secreted extracellular
signalling molecules as well as intracellular molecules. In this paper, a simple model incorporating
both levels of regulation is developed to examine the balance between growth and differentiation for
the stem cell population. In particular, the dynamics of a known differentiation regulator c-Myc, its
threshold dependent differentiation, and feedback regulation on maintaining a stable stem cell
population are investigated.
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1. Introduction
The fate of a cell, whether it dies, divides or differentiates, is usually governed by its gene
regulatory network interpreting external stimuli and internal regulations. The robust
maintenance of a cell type population size, i.e. homeostasis, requires complex intracellular and
extracellular regulations. When homeostasis is lost, a cell population either grows unboundedly
or loses its ability to reach optimal size. Consequently, birth defects or diseases such as cancer,
may occur. Epithelial development in the skin epidermis is an excellent model system for
studying homeostasis maintained by dynamic interactions of feedback and adaptation
occurring at scales involving both the cell population and individual cells.

The epidermis that undergoes constant regeneration has been traditionally proposed to consist
of three types of cells: stem, transit amplifying (TA), and terminally differentiated cells. The
stem cells divide into stem cells and/or differentiate into TA cells. The TA cells are
distinguished from the self-renewing stem cells by a limited proliferative potential, as they can
only undergo limited rounds of division before becoming terminally differentiated cells [8].
The proto-oncogene c-Myc, an intracellular transcription factor, plays a paradoxal role in
epidermis by promoting both proliferation and terminal differentiation [23]. When c-Myc
levels are elevated in post-mitotic cells, these cells re-enter cell cycle to become proliferation-
competent TA cells [18]. However, when c-Myc levels are aberrantly elevated in stem/TA cells
using genetic means, this leads to increased terminal differentiation and depletion of the stem
cell pool [2,21]. A solution to the paradox seems to reside in the ability of c-Myc to drive stem
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cells into a TA phase, thereby initiating the irreversible process of terminal differentiation.
Together, these studies have led to the hypothesis that c-Myc levels are normally higher in TA
cells compared to stem cells [18]. In addition, cells occupying different lineage stages produce
secreted factors (extracellular molecules), such as TGF-β. Such secreted factors are known to
regulate intracellular molecules including c-Myc [9]. Thus, the cell populations are clearly
determined by both intracellular and extracellular regulation and their interactions. As the
populations of different cell lineage stages have different levels of c-Myc and the fate of
individual cells are c-Myc dependent, an understanding of c-Myc dynamics and distribution
is important for studying epidermal stem cell dynamics. Such knowledge may have general
implications for other multi-stage cell lineages, for example that in the hematopoietic system
where c-Myc is also found to promote differentiation [25].

To study the multi-scale interaction on stem cell populations, we present in this paper a simple
cell population model incorporating the level of c-Myc, its potential extracellular regulations,
and c-Myc threshold dependent cell differentiation. Unlike a classic logistic model [16] in
which the steady state size of the cell population is limited by the carrying capacity, a generic
parameter used to model the external constraints on growth, such as cell-cell competition for
nutrients, spatial effects, and growth inhibition via contact [1], the new model reaches steady
state through intracellular and extracellular interactions and regulations. This model has many
similar features of population balance models [10], also referred to as structured models. Such
models have been used for biological populations in terms of time and an intrinsic variable.
The intrinsic variable of the population may correspond to cell maturity or age [4,22], cell size
[3], the concentration of a cell division labelling dye [13], or gene expression [15]. Our model
in this paper emphasizes the study of the cell population as a function of c-Myc, a key
intracellular regulator of cell proliferation and differentiation. In this regard, it is different from
some other discrete (e.g. [7,20]), continuous (e.g. [6,11,12]), and stochastic (e.g. [14]) cell-
lineage models.

The paper is organized as follows: in Section 2, we present the mathematical model; in Section
3, we explore and discuss the limitations of a linear case; in Section 4, we study a nonlinear
model with regulated threshold dependent differentiation; and in Section 5, we summarize our
results and discuss possible extensions of the model.

2. Mathematical Model
We model the stem cell population with c-Myc number threshold dependent differentiation.
Let us define C(t) as the number (or concentration) of c-Myc protein within individual stem
cells. The maximum number (or concentration) of c-Myc within a cell is cmax. The exact
number of c-Myc molecules in a cell is unknown, however, a transit amplifying cell is likely
to have more c-Myc than a stem cell. In the model, cmax, the maximum number of c-Myc
proteins in a cell, is chosen with an arbitrary unit. The quantities in the model related to c-Myc
are all scaled by cmax, and C = cmaxc. Let N (c, t) be the stem cell population distribution in
c. The typical epidermal cell division time is approximately 24 hours [24]. We chose the time
unit as one day.

Then the model takes the form,
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(2.1)

where H() is the Heaviside function and cSC is the threshold value for cell differentiation. The
natural boundary conditions for this system are N = 0 at c = 0 and c = 1. The parameters for
cell division and differentiation are τdiv and τdiff, representing the mean times to divide or
differentiate, respectively. The second term on the left-hand side can be interpreted as
population flux with respect to c-Myc. The change of the cell population distribution is
dependent on the change of c-Myc, as well as cell division and differentiation. The number of

cells with c between a0 and a1 is clearly , so the total stem cell number at time t is

(2.2)

The 22N(2c, t) term models symmetric cell divisions where the c-Myc level in the parent cell
is evenly distributed to the daughter cells after each division. A factor of 2 is the doubling in
cell number and the other factor of 2 is due to the different interval sizes occupied by the
daughter cells in (c, c + Δc) and the mother cell in (2c, 2(c + Δc)).

The model (2.1) is solved numerically with a Matlab hyperbolic solver [19] using a Lax-
Wendroff scheme. This numerical scheme is second order accurate in time and space, which
corresponds to the c variable in this model. An independent implementation of the second order
Lax-Wendroff scheme is also carried out for testing the Matlab solver.

3. Non-regulated differentiation: a linear case
The classical Malthusian growth model shows that an unregulated population exhibits either
exponential growth or decay [16]. When the net growth rate of the population is zero, the total
population size should be fixed for all time. However, the distribution of a population may
change over time, even when the total population size is fixed. In this section, we consider a
case of population growth without any regulation. Feedback regulation by the cell population

on c-Myc dynamics, i.e. , is studied in Section 4.

Consider the growth of a population where differentiation can occur for all c without any
threshold, i.e. cSC = 0. We assume that protein c is produced at a constant rate without
significant degradation, . The model (2.1) then reduces to

(3.1)

Analytical approaches for population balance equations (3.1) can be found in [10]. The total
cell number calculated by integrating Eq. (3.1) over C is
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(3.2)

and it is Malthusian growth.

For such a system, only balanced cell division and differentiation, τdiv = τdiff, can lead to a
steady state population distribution. We calculate and use the analytical steady state distribution
to test the accuracy of the numerical solution. While it appears c-Myc could be unbounded as
it is increasing at a constant rate, the c-Myc level inside the cell is in fact halved after each cell
division and c-Myc within the cell population remains bounded.

When the cell division rate and the differentiation rate are different, the cell population grows
or decays exponentially depending on the relative strength of the two rates. When cell
differentiation occurs more frequently than division, i.e. τdiff < τdiv, the population eventually
goes extinct even though the cell population distribution centered at  divides and
differentiates over time, and successive rounds of cell division create transient peaks in the
population distribution (Figure 1). The total cell number of the numerical solution is consistent
with the analytical solution given by Eq. (3.2) (Figure 1(c)). When cell division is more frequent
than differentiation τdiv < τdiff, the population blows up over time (Figure 2). In both cases, the
initial cell distribution is

(3.3)

When cell division and differentiation are equal (τdiv = τdiff ≡ τ), the total population size remains
unchanged over time while the cell population distribution varies over time and reaches a non-
uniform steady state. Such detailed dynamical behavior could not be captured by classical
homogeneous population growth models. In particular, for this case, the governing equation
for N̄(c) becomes a linear system,

(3.4)

(3.5)

One may seek an analytical solution to the steady state with a Dirichlet series [5],

(3.6)
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Then the recurrence relation  is obtained, with , and the steady state solution
becomes

(3.7)

where the constant d0 can be expressed in terms of the total cell number N(0),

(3.8)

Figures 3 and 4 show the approach towards the same steady state solution when two different
initial cell distributions with the same total cell number are used. In Figure 3, Eq. (3.3) is used

as the initial condition while in Figure 4 we use  as the initial
condition. The exact steady state distributions calculated using (3.6) are shown in Figure 3(b)
and Figure 4(b) in red. It is interesting to observe that both populations starting with one peak
exhibit multiple transient peaks before reaching the one-peak steady state.

As seen in Figure 3(c) and Figure 4(c), the maximum absolute error between the exact analytical
steady state solution and the numerical solution at t = 10 for successive halving of ΔC is roughly
0.25, 0.07, and 0.025, and 0.25, 0.06, 0.02, respectively. The maximum error is reduced by a
factor of four when the spatial resolution increases by a factor of two. This suggests the
numerical calculation is second-order accurate.

These calculations also indicate that without any regulation on cell population growth, a steady
state population can only be maintained with equal cell division and differentiation rates for
all time. The same steady state population distribution can be reached from different initial
population distributions (i.e., cells expressing different levels of c-Myc) as long as initial total
cell numbers are the same. In addition, (3.6–3.8) show the total initial cell number only affects
the height of the steady state, not the distribution of the steady state, and the steady state is only
controlled by c̄τ, a product of the mean growth rate for c-Myc and the differentiation and
division rate.

4. Regulated threshold dependent differentiation
In this section we consider the full model, where cell differentiation is possible only when c-
Myc inside a cell is above the threshold cSC.

After integrating the full model (2.1), the total cell number at steady state satisfies the following
relationship:

(4.1)

Eq. (4.1) suggests that τdiff < τdiv is a necessary condition for existence of a steady state. This
is in contrast to the case without differentiation threshold in Section 3. where the division rate
must equal the differentiation rate for maintaining steady state population size.
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With a differentiation threshold, there is only cell division in the region [0, cSC]. To counter
this extra growth for achieving steady state, it is necessary for the cells with c above the
threshold to be more likely to differentiate than to divide. In order to maintain stable population
size, intuitively, we expect a regulation mechanism to bias cell differentiation when population
size is large, and bias division when the population is small. Such regulation could be achieved
via diffusible secreted factors and may occur directly by regulating c-Myc, or indirectly through
other genes such as Ovol1 which regulates c-Myc [17]. It is natural to assume that the amounts
of the diffusive cell-secreted factors are proportional to the total cell numbers. Here, we
consider a simple positive regulation on the synthesis of c through a Hill function:

(4.2)

where c0 < c1. The positive regulation is to bias differentiation as the population size increases.
Increasing population size leads to increased c-Myc synthesis via putative mechanisms
mentioned above, thus intracellular c-Myc will reach the differentiation threshold faster. The
parameter γ0 is a reference value for which the regulation becomes significant. The c-Myc
synthesis rate is c0 when the stem cell population is relatively small N ≪ γ0 and c1 when N
≫ γ0. The Hill exponent, n0, measures the slope of transition between the two states: c0 and
c1.

There are two asympotic limits for (4.2). When the population size is relatively small, i.e. N
≪ γ0, then c approaches the value c0/cdeg. As the population size increases, the regulatory effect
of the population becomes more significant when N ≫ γ0 and c-Myc approaches the value
c1/cdeg. It should be expected that when c1/cdeg < cSC the cell population will grow out of
control because the c-Myc level within cells never increases above the differentiation threshold.
However, the condition c1/cdeg > cSC can not guarantee existence of a steady state. As seen in
Figure 5, both cases have c1/cdeg > cSC but when regulation strength is not strong enough the
population grows exponentially within the time frame under examination. When the regulation
becomes stronger, the population reaches a steady state.

Unlike the non-regulated population growth model presented in Section 3. the steady state
population distribution through regulation is independent of the initial cell population size.
Figures 6 and 7 are simulations of populations with different initial distributions and initial
cell numbers, and all the populations reach the same steady state (Figures 7(b)). In the six cases
of Figure 6, the total numbers of stem cells at the steady state are smaller than the initial total
cell numbers for the first three cases, and it is the opposite for the second three cases.

In these calculations, c0/cdeg < cSC < c1/cdeg. The regulation causes c to approach a value within
the exclusive cell division region when the population size is small relative to γ0, and c to
approach a value greater than the differentiation threshold otherwise. Transient proliferation
can be seen where the initial distribution is concentrated below the differentiation threshold of
c < cSC. Most notably in Figure 6(b), the cell population reaches a maximum before declining
towards the steady state. The parameter values used for Figures 6 and 7 are τdiv = 1, τdiff = 0.2,
c1 = 1, c0 = 0.2, γ0 = 2, cdeg = 1, n0 = 1, cSC = 0.4.

Finally, we study the effect of the different parameter values on the steady state distribution in
Figure 8. When differentiation rate τdiff becomes larger, the total steady state population size
becomes larger as well (Figure 8(a)) because the time to differentiation is longer. Smaller c0
values usually lead to a larger population at the steady state (Figure 8(b)). This is because
slower c-Myc synthesis results in a longer time to reach the differentiation threshold, hence,
more proliferation occurs before reaching steady state. The parameter γ0 measures the
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population size for which the feedback regulation becomes significant (i.e., large population
size resulting in higher c-Myc expression). For larger γ0, the steady state population size is
greater (Figure 8(c)) because the population grows to a larger size before being constrained by
the regulation.

5. Discussion
We have studied a simple model of cell population growth with threshold dependent
differentiation. One of the important features in the model is a multi-scale regulation between
the putative extracellular secreted factors and intracellular molecules. Such regulation along
with the threshold dependent differentiation is found to be critical for maintaining homeostasis
of the cell population. A necessary condition for the existence of a steady state is the mean
time to differentiation is less than the mean time for division. In addition, various conditions
for creating a steady state cell population and dependence of the cell population on parameters
have been discussed.

It would be of interest to further study the nature of the steady states systematically.
Computationally, we have observed that different initial cell numbers (Figure 6 and 7) with
different mean numbers of c-Myc approach the same steady state in some regions of parameter
space. However, we also observed non-existence of steady state solutions for some other
parameters (Figure 5). One question at hand is to investigate whether the steady state solution
is a global attractor using an analytical approach.

In the current model, we have only considered a threshold for stem cell differentiation; there
may very well be a threshold for cell division. Because quiescent stem cells tend to have very
low levels of c-Myc [23], we might use a lower threshold on c for cell division. Also, we have
observed that the stem cell population in our current model tends to either reach homeostasis
or grow without control for most of the parameter values, with very few cases of vanishing
population. This suggests that the simple model has a simple form that prevents the stem cell
population from going to extinction. It would be interesting to study the growth of stem cells
when the transit amplifying cells, whose cell cycle exit and differentiation might also be
threshold dependent, are included in the model. Such extensions to multi-stage cell lineage
should be straightforward. As more detailed and realistic intracellular controls through gene
regulatory networks are built into such models, their study will provide better insights for the
role of each regulatory component and the system behavior of the multi-stage cell lineage
system.
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Figure 1.
Extinction of a cell population, c̄ = 0.1, τdiv = 1, τdiff = 0.5. (a) The cell population distribution
over time. (b) The cell population distribution at different times. (c) The total cell number over
time; Solid line: exact solution; “+”: numerical solution.
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Figure 2.
Unbounded growth of a cell population. c̄ = 0.1, τdiv = 1, τdiff = 2. (a) The cell population
distribution over time. (b) The cell population distribution at different times. (c) The total cell
number over time. Solid line: exact solution; “+”: numerical solution.
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Figure 3.
Balanced cell division and differentiation; c̄ = 0.1, τ = 1. (a) The population distribution over
time. (b) The analytical solution of the steady state distribution is in red. The cell population
at different times. (c) The absolute error of the numerical result with ΔC = 0.01 in green, ΔC
= 0.005 in red, and ΔC = 0.0025 in blue.

Cai et al. Page 11

Math Model Nat Phenom. Author manuscript; available in PMC 2010 July 9.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 4.
Balanced cell division and differentiation; c̄ = 0.1, τ = 1. (a) The cell population distribution
over time. (b) The analytical solution of the steady state distribution is in red. (c) The absolute
error of the numerical result with ΔC = 0.01 in green, ΔC = 0.005 in red, and ΔC = 0.0025 in
blue.
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Figure 5.
The population may grow exponentially when the regulation strength is not strong enough.
Solid line: c1 = 0.6, a case of exponential growth; “+”: c1 = 0.8, a case of existence of steady
state. Other parameters are τdiv = 1, τdiff = 0.2, c0 = 0.2, γ0 = 2, cdeg = 1, n0 = 1, cSC = 0.4.
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Figure 6.
Temporal dynamics for six different initial populations: (a) N(c, 0) = 20 exp(−40(c − 1)2), (b)
N(c, 0) = 40 exp(−40c2), (c) N(c, 0) = 40 exp(−40(c − 1)2), (d) N(c, 0) = 2.5 exp(−40(c −
1)2), (e) N(c, 0) = 5 exp(−40c2), (f) N(c, 0) = 5 exp(−40(c −1)2).

Cai et al. Page 14

Math Model Nat Phenom. Author manuscript; available in PMC 2010 July 9.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 7.
The systems with different initial population distributions all approach the same steady state.
(a) The total cell number over time for the six different initial conditions. (b) The population
distributions at t = 12 for the six cases shown in Figure 6.
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Figure 8.
Steady state profiles at different parameter values. (a) τdiff = 0.1, 0.2, 0.4; (b) c0 = 0.05, 0.2,
0.6; (c) γ0 = 1, 2, 4. The other parameters are τdiv = 1, c1 = 1, cdeg = 1, n0 = 1, cSC = 0.4.
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