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Abstract—In a distributed storage system, recovering from
multiple failures is a critical and frequent task that is crucial
for maintaining the system’s reliability and fault-tolerance. In
this work, we focus on the problem of repairing multiple failures
in a centralized way, which can be desirable in many data storage
configurations, and we show that a significant repair traffic
reduction is possible. First, the fundamental tradeoff between
the repair bandwidth and the storage size for functional repair
is established. Using a graph-theoretic formulation, the optimal
tradeoff is identified as the solution to an integer optimization
problem, for which a closed-form expression is derived. Ex-
pressions of the extreme points, namely the minimum storage
multi-node repair (MSMR) and minimum bandwidth multi-
node repair (MBMR) points, are obtained. Second, we describe
a general framework for converting single erasure minimum
storage regenerating codes to MSMR codes. The repair strategy
for e failures is similar to that for a single failure, however
certain extra requirements need to be satisfied by the repairing
functions for a single failure. For illustration, the framework
is applied to product-matrix codes and interference alignment
codes. Furthermore, we prove that the functional MBMR point
is not achievable for linear exact-repair codes. We also show that
exact-repair minimum bandwidth cooperative repair (MBCR)
codes achieve an interior point, that lies near the MBMR point,
when k ≡ 1 mod e, k being the minimum number of nodes
needed to reconstruct the entire data. Finally, for k > 2e, e | k
and e | d, where d is the number of helper nodes during repair,
we show that the functional repair tradeoff is not achievable
under exact repair, except for maybe a small portion near the
MSMR point, which parallels the results for single-erasure repair
by Shah et al.

Index Terms—Regenerating codes, distributed storage, multi-
node centralized repair, minimum storage, minimum bandwidth.

I. INTRODUCTION

Ensuring data reliability is of paramount importance in mod-
ern storage systems. Reliability is typically achieved through
the introduction of redundancy. Traditionally, simple replica-
tion of data has been adopted in many systems. For instance,
Google file systems opted for a triple replication policy [3].
However, for the same redundancy factor, replication systems
fall short on providing the highest level of reliability. On
the other hand, erasure codes can be optimal in terms of
the redundancy-reliability tradeoff. In erasure codes, a file
of size M is divided into k fragments, each of size M

k .
The k fragments are then encoded into n fragments using
an (n, k) maximum distance separable (MDS) code and then
stored at n different nodes. Using such a scheme, the data
is guaranteed to be recovered from any n− k node erasures,
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providing the highest level of worst-case data reliability for the
given redundancy. However, traditional erasure codes suffer
from high repair bandwidth. In the case of a single node
erasure, they require downloading the entire data of size M
to repair a single node storing a fragment of size Mk . This
expansion factor made erasure codes impractical in some
applications using distributed storage systems. In the last
decade, the repair problem has gained increasing interest and
motivated the research for a new class of erasure codes with
better repair capabilities. The seminal work in [4] proposed
regenerating codes that optimally solve the repair bandwidth
problem. Interestingly, the authors in [4] proved that one
can significantly reduce the amount of bandwidth required
for repair and the bandwidth decreases as each node stores
more information. Formally, suppose any k out of n nodes
are sufficient to recover the entire file of size M. Assuming
that d nodes, termed helpers, participate in the repair process,
denoting the storage capacity of each node by α and the
amount of information downloaded from each helper by β,
then, an optimal (M, n, k, d, α, β) regenerating code satisfies

M =

k−1∑
i=0

min{α, (d− i)β}. (1)

Equation (1) describes the fundamental tradeoff between the
storage capacity α and the bandwidth β. Two extreme points
can be obtained from the tradeoff. Minimum storage regener-
ating (MSR) codes correspond to the best storage efficiency
with α = M

k , while minimum bandwidth regenerating (MBR)
codes achieve the lowest possible bandwidth at the expense of
extra storage per node.

If we recover the exact same information as the failed
node, we call it exact repair, otherwise we call it functional
repair. Using network coding [5], [6], it is possible to construct
functional regenerating codes satisfying (1) [4]. Following the
seminal work in [4], there has been a flurry of interest in
designing exact-repair regenerating codes that achieve the op-
timal tradeoff, focusing mainly on the extreme MSR and MBR
points, e.g., [7]–[16]. For interior points that are between the
MBR and MSR points in the tradeoff of (1), [17] showed that
most points are not achievable for exact repair. Moreover, there
has been a growing literature focused on understanding the
fundamental limits of exact-repair regenerating codes. Other
outer bounds for exact repair include [18]–[20] for general
parameters, and [21] for linear codes. The aforementioned
references, as most of the studies on regenerating codes in
the literature, focus on the single erasure repair problem.
However, in many practical scenarios, such as in large scale
storage systems, multiple failures are more frequent than a
single failure. Moreover, many systems (e.g., [22]) apply a lazy
repair strategy, which seeks to limit the repair cost of erasure
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codes. Instead of immediately repairing every single failure, a
a lazy repair strategy waits until e erasures occur, e ≤ n− k,
then, the repair is done by downloading the equivalent of the
total information in the system to regenerate the erased nodes.
However, a natural question of interest is, whether one can
reduce the amount of download in such scenarios.

In this work, we consider centralized repair. Indeed, there
are situations in which, due to architectural constraints, it is
more desirable to regenerate the lost nodes at a central server
before dispatching the regenerated content to the replacement
nodes [22]. For instance, one can think of a rack-based node
placement architecture [23] in which failures frequently occur
to nodes corresponding to a particular rack. In this scenario,
a centralized repair of the entire rack is favorable as opposed
to repairing the rack on a per-node basis. Furthermore, [23]
showed that a centralized repair framework can have inter-
esting applications in communication-efficient secret sharing.
Finally, centralized repair can be used in a broadcast network,
where the repair information is transmitted to all replacement
nodes (e.g. [24]).

Our centralized repair framework requires the content of any
k out of n nodes in the system to be sufficient to reconstruct
the entire data. Upon the failure of e nodes in the system,
the repair is carried out by contacting any d helpers out of the
n−e available nodes, d ≤ n−e, and downloading β amount of
information from each of the d helpers. Our first objective is to
characterize the functional repair tradeoff between the storage
per node α and the repair bandwidth β under the centralized
multiple failure repair framework. We also seek to investigate
the achievability of the functional tradeoff under exact repair.

A. Related work

Cooperative regenerating codes (also known as coordinated
regenerating codes) have been studied to address the repair
of multiple erasures [25], [26] in a distributed manner. In
this framework, each replacement node downloads information
from d helpers in the first stage. Then, the replacement nodes
exchange information between themselves before regenerating
the lost nodes. Cooperative regenerating codes that achieve
the extreme points on the cooperative tradeoff have been
developed; namely, minimum storage cooperative regenerating
(MSCR) codes [26]–[28] and minimum bandwidth cooper-
ative regenerating (MBCR) codes [29]. In [30], the authors
proved that the interference alignment MSR construction of
[8], originally designed for repairing any single node failure,
can recover from multiple failures in a cooperative way.
Specifically, it is shown that any set of systematic nodes,
set of parity-check nodes, or pair of nodes can be repaired
cooperatively with optimal bandwidth.

The number of nodes involved in the repair of a single node,
known as locality, is another important measure of node repair
efficiency [31]. Various bounds and code constructions have
been proposed in the literature [31], [32]. Recent works have
investigated the problem of multiple node repair under locality
constraints [33], [34].

The problem of centralized repair has been considered in
[14], in which the authors restricted themselves to MDS codes,

corresponding to the point of minimum storage per node. The
authors in [14] showed the existence of MDS codes with
optimal repair bandwidth in the asymptotic regime where the
storage per node (as well as the entire information) tends to
infinity. In [35], the authors proved that Zigzag codes, which
are MDS codes designed initially for repairing optimally
single erasures [15], can also be used to optimally repair
multiple erasures in a centralized manner. In [23], the authors
independently proved that multiple failures can be repaired in
Zigzag codes with optimal bandwidth. Moreover, [23] defines
the minimum bandwidth multi-node repair codes as codes
satisfying the property of having the downloaded information
dβ matching the entropy of e nodes1. Based on that, the
authors derived a lower bound on β for systems having
a certain entropy accumulation property and then showed
achievability of the minimum bandwidth codes using MBCR
codes. However, the optimal storage size per node α is not
known under these conditions. In [36], the authors presented
an explicit MDS code construction that provides optimal repair
for all e ≤ n − k and k ≤ d ≤ n − e simultaneously. It
is worth pointing out that the previous constructions are for
high-rate codes, with large subpacketization α. The authors
in [24] studied the problem of broadcast repair for wireless
distributed storage which is equivalent to the model we study
in this paper. In [37], the authors presented an approach that
enables single erasure MSR codes to recover from multiple
failures simultaneously with near-optimal bandwidth. Based
on simulations, [37] showed that their approach can provide
efficient recovery of most of the failure patterns, but not all of
them. The repair problem of Reed Solomon codes has been
recently investigated in [38] for single erasure and in [39]–[42]
for multiple erasures.

B. Contributions of the paper

The main contributions of this paper are the characterization
of functional tradeoff, and the examination of its achievability
under exact repair for the extreme points and the interior
points. They are summarized as follows.
• We first establish the explicit functional tradeoff between

the repair bandwidth and the storage size for functional
repair (Theorems 1, 2, 3). We obtain the tradeoff using
information flow graphs. From the functional tradeoff,
we characterize the minimum storage multi-node repair
(MSMR) point, and the minimum bandwidth multi-node
repair (MBMR) point.

• When the number of erasures e satisfies e ≥ k, k being
the minimum number of nodes needed to reconstruct the
entire data, the tradeoff reduces to a single point, for
which we provide an explicit code construction.

• We formalize a construction for exact-repair MSMR
codes. Given an instance of an exact linear MSR code, we
present a framework to construct an instance of an exact
linear MSMR code. We note here that [27] and [37] used
a similar approach for MSCR codes and their numerical

1The definition of minimum bandwidth multi-node repair codes in our paper
is simply the minimum bandwidth point on the functional tradeoff, which is
different from [23] for e - k.
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results, respectively. Based on this framework, we study
the product-matrix (PM) MSR codes [43] and the interfer-
ence alignment (IA) MSR construction in [8]. We prove
the existence of PM and IA MSMR codes for any number
of failures e, e ≤ n−k (Theorems 4, 5, 9). Moreover, for
the IA code, we prove that the code can always efficiently
recover from any set of e ≤ n − k node failures as
long as the failed nodes are either all systematic nodes or
all parity nodes (Theorem 6); for failures including both
systematic and parity nodes, we derive explicit design
conditions under which exact recovery is ensured, for
some particular system parameters (Theorems 7, 8). We
note here that unlike previous constructions, our codes
are applicable when the code rate is low and they use a
small subpacketization size of α = k − 1 or k.

• We prove that, to our surprise, functional MBMR point is
not achievable for linear exact repair codes for 1 < e < k
(Theorems 10, 11), while linear codes achieve such point
for single erasure [43].

• We show that exact-repair MBCR codes achieve an
interior point, that lies near the MBMR point, when k ≡ 1
mod e (Theorem 12).

• We show that the functional repair tradeoff is not
achievable under exact repair for interior points between
MBMR and MSMR points, except for maybe a small
portion near the MSMR point, for k, d being multiples
of e and k > 2e (Theorems 13, 14), which parallels the
results for single erasure repair [17]. The achievability of
the functional tradeoff under exact repair is summarized
in Table I.

• Finally, we study the adaptive repair problem of multiple
erasures in MBR codes and present an MBR construction
with optimal repair, simultaneously for varying numbers
of helpers and varying numbers of erasures (Theorem 15).

C. Organization of the paper

The remainder of the paper is organized as follows. In
Section II, we first describe the system model before analyzing
the fundamental functional repair tradeoff between the storage
size and the repair bandwidth. Section III describes our code
construction for the case e ≥ k, as well as the MSMR codes
framework and its application to the product-matrix and the
interference alignment codes. We prove the non-achievability
of MBMR point under linear exact repair in Section IV. The
non-achievability of the interior points under exact repair is
investigated in Section V. The adaptive repair of multiple
erasures for an MBR code is presented in Section VI and
Section VII draws conclusions.

Notation. [n] denotes the set of elements {1, . . . , n}. d·e
and b·c represent the ceiling and the floor functions. For two
sets A,B, A\B denotes the set of elements that are in A but
not in B. |A| denotes the size of A. The symbol 1{E} denotes
the indicator function of an event E, which is 1 if E is true,
and 0 otherwise. The notations e | k and e - k are used to
denote whether k is a multiple of e, or not, respectively. The
superscript t is used to denote the transpose of a matrix. For
a matrix A, |A| denotes its determinant and Ai,j refers to its

entry at position (i, j). In denotes the identity matrix of size n
and diag{λ1, . . . , λn} denotes the (n×n) diagonal matrix with
the corresponding elements. Vectors are denoted with lower-
case bold letters. u = [u1, . . . , um] denotes a vector of length
m. Note that the notation [k] may refer to a vector of size
1, or the set {1, . . . , k}, however the meaning is clear from
the context. ei denotes the i-th standard basis vector whose
dimension is clear from the context.

II. FUNCTIONAL STORAGE-BANDWIDTH TRADEOFF

A. System model

The centralized mutli-node repair problem is characterized
by parameters (M, n, k, d, e, α, β). We consider a distributed
storage system with n nodes storing M amount of informa-
tion. The data elements are distributed across the n storage
nodes such that each node can store up to α amount of
information. Every node corresponds to a codeword symbol.
The system should satisfy the following two properties:
• Reconstruction property: a data collector (DC) connecting

to any k ≤ n nodes should be able to reconstruct the
entire data.

• Regeneration property: upon failure of e nodes, a central
node is assumed to contact d helpers, k ≤ d ≤ n−e, and
download β amount of information from each of them.
New replacement nodes join the system and the content
of each is determined by the central node. β is called the
repair bandwidth. The total bandwidth is denoted γ = dβ.

We consider functional repair and exact repair. In the former
case, the replacement nodes are not required to be exact copies
of the failed nodes, but the repaired code should again satisfy
the above two properties. Our objective is to characterize
the tradeoff between the storage per node α and the repair
bandwidth β under the centralized multiple failure repair
framework. On the optimal functional tradeoff, the minimum
bandwidth mutli-node repair point is called MBMR, and it
has the minimum possible β, while the minimum storage
mutli-node repair point is called MSMR and has the minimum
possible α. When considering exact repair, the minimum
storage and minimum bandwidth points may be different from
the above functional extreme points. While it has been shown
for single erasure that the extreme points match for functional
and exact repair, we will show later that MBMR is not
achievable under exact repair.

In the paper, we will use the notation k = ηe+ r, such that
η =

⌊
k
e

⌋
and 0 ≤ r ≤ e − 1. We now study the fundamental

tradeoff between the storage size α and the repair bandwidth
β for e erasures under functional repair. We use the technique
of evaluating the minimum cut of a multicast information
flow graph similar to the single erasure codes [4] and the
cooperative regenerating codes [26].

B. Information flow graphs

The performance of a storage system can be characterized
by the concept of information flow graphs (IFGs). Our con-
structed IFG depicts the amount of information transferred,
processed and stored during repair. We design our IFG with the



4

MSMR point MBMR point Interior points

e = 1 X [8], [15], [43] X [43]
7, except maybe for a small portion near the MSMR
point [17].

1 < e < k
X [14], [36], [Sections

III-B, III-C, III-D]
7 (for linear codes)

[Section IV]

• if k ≡ 1 mod e: an interior point near the MBMR
point is achievable [Section IV-D].
• if e | k, e | d, k > 2e : 7, except maybe for a small
portion near the MSMR point [Section V].

e ≥ k XSection III-A XSection III-A X Section III-A

TABLE I: Summary of achievability results of functional repair tradeoff under exact repair for an (n, k, d, e, α, β) distributed
storage system. MSMR and MBMR points are defined to be the minimum storage point and the minimum bandwidth point on
the functional tradeoff, respectively. Here e | k, e | d means that k, d are multiples of e. The symbol X denotes achievability
while 7 denotes non-achievability, both of which are under exact repair.

following different kinds of nodes (see Figure 1). It contains
a single source node s that represents the source of the
data object. Each storage node xi, i ∈ [n], of the IFG is
represented by two distinct nodes: an input storage node xiin
and an output storage node xiout. Each output node xiout is
connected to its input node xiin with an edge of capacity α,
reflecting the storage constraint of each individual node. The
information flow graph is formed with n initial storage nodes,
connected to the source node with edges of capacity ∞. The
IFG evolves with time whereupon failure of e nodes, e new
nodes simultaneously join the system. Each of the replacement
nodes xj , j ≥ n, is similarly represented by an input node xjin
and an output node xjout, linked with an edge of capacity α.
To model the centralized repair nature of the system, we add
a virtual node xivirt, i ≥ 1, that links the d helpers to the new
storage nodes. The virtual node xivirt is connected to the d
helpers through d incoming edges each of capacity β. The
same node xivirt is also connected to the input nodes xjin of
the replacement nodes, with edges of capacity∞. We define a
repair group to be any set of e nodes that have been repaired
simultaneously. In an IFG, a repair group is then associated
with the virtual node that performs the repair operation.

Each IFG represents one particular history of the failure pat-
terns. The ensemble of IFGs is denoted by G(n, k, d, e, α, β).
For convenience, we drop the parameters whenever it is clear
from the context. Given an IFG G ∈ G, there are

(
n
k

)
different

data collectors connecting to k output storage nodes in G with
edges of capacity∞. The set of all data collectors (DCs) nodes
in a graph G is denoted by DC(G). For an IFG G ∈ G and
a data collector t ∈ DC(G), we partition the nodes of G into
two disjoint sets, U, Ū , s ∈ U, t ∈ Ū , and a cut is the sum of
the capacities for all edges from nodes in U to nodes in Ū .
The minimum cut (min-cut) value separating the source node
s and the data collector t is denoted by mincutG(s, t).

C. Network coding analysis

The key idea behind representing the repair problem by an
IFG lies in the observation that the repair problem can be cast
as a multicast network coding problem [4]. Celebrated results
from network coding [5], [6] are then invoked to establish the
fundamental limits of the repair problem.

According to the max-flow bound of network coding [5], for
a data collector to be able to reconstruct the data, the min-cut
separating the source to the data collector should be larger than
or equal to the data object size M. Considering all possible
data collectors and all possible failure patterns, and assuming
that the number of failures/repairs is bounded, the following
condition is necessary and sufficient for the existence of
centralized multi-node repair codes [4, Proposition 1]

min
G∈G

min
t∈DC(G)

mincutG(s, t) ≥M. (2)

Analyzing the minimum cut of all IFGs results in the following
theorem.

Theorem 1. For fixed system parameters (M, n, k, d, e, α, β),
assuming that the number of failures/repairs is bounded,
regenerating codes satisfying the centralized multi-node repair
condition exist if and only if

M≤ min
u∈P

f(u), (3)

where

f(u) =

g∑
i=1

min(uiα, (d−
i−1∑
j=1

uj)β), (4)

P = {u = [u1, . . . , ug] : 1 ≤ ui ≤ e, g ∈ N,
g∑
i=1

ui = k}.

(5)

Note that g in (5) corresponds to the support of u, and it
satisfies dke e ≤ g ≤ k. We call the vector u ∈ P a recovery
scenario.

Proof: Consider a data collector that connects to a subset
of k nodes {xjout : j ∈ I}, where I is the set of k contacted
nodes. Then, the reconstruction process can be described by
a scenario u ∈ P as follows. The size of the support of u
corresponds to the number of repair groups of size e taking
part in the reconstruction process, while ui corresponds to the
number of nodes contacted from repair group i.

We first show that the min-cut minimized over all pos-
sible IFGs and over all data collectors is lower bounded
by min

u∈P
f(u). As all incoming edges of DC have infinite

capacity, we only examine cuts (U, Ū) with s ∈ U and
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Fig. 1: Example of an information flow graph: k = 3, d = 4, n = 6, e = 2. The unlabeled edges have capacity ∞. Nodes 1
and 2 are repaired in the first stage and nodes 3 and 4 are repaired in the second stage. A data collector connecting to any 3
nodes should be able to recover the entire information.

{xiout : i ∈ I} ⊆ Ū . Every directed acyclic graph has a
topological sorting, which is an ordering “<” of its vertices
such that the existence of an edge x→ y implies x < y. We
recall that nodes within the same repair group are repaired
simultaneously, hence it is possible that all input (or output)
nodes in a repair group are adjacent in the ordering. We thus
order the g repair groups connected to DC according to the
sorting. Since nodes are sorted, nodes in the i-th repair group
do not have incoming edges from nodes in the j-th repair
group, with j > i, i, j ∈ [g]. Considering the i-th repair
group, we consider two cases:

• xivirt ∈ U : as xivirt is connected with edges of capacity
∞ to xjin, for j in repair group i, we only consider the
case xjin ∈ U, x

j
out ∈ Ū , for all j in repair group i such

that xjout is connected to the DC. The contribution to the
cut is uiα.

• xivirt ∈ Ū : since the i-th repair group is the topologically

i-th repair group, at most
i−1∑
j=1

uj edges come from output

nodes in Ū and are not part of the cut. The contribution

to the cut is at least (d−
i−1∑
j=1

uj)β.

Thus, the contribution of the i-the repair group is at least

min(uiα, (d −
i−1∑
j=1

uj)β). Finally, summing all contributions

from different repair groups and considering the worst-case
for u ∈ P implies that

min
G∈G

min
t∈DC(G)

mincutG(s, t) ≥ min
u∈P

(

g∑
i=1

min(uiα, (d−
i−1∑
j=1

uj)β)),

with P defined as in (5).
Now, considering a scenario u ∈ P , we show that there

exists an information flow graph where the the min-cut is
equal to f(u). In this graph, there are initially nodes labeled
from 1 to n, and we consider g repair groups (i.e., eg
newcomers). Nodes in the i-th repair group are labeled from
n + ie + 1 to n + ie. The i-th repair group connects to

nodes n − d − (
i−1∑
j=1

ui) + 1, . . . , n, and the first uj nodes

from repair group j, for j ≤ i − 1. Figure 1 illustrates the
graph for n = 6, k = 3, d = 4, e = 2,u = [1, 2]. Consider
a DC that connects to the first ui nodes from the i-th repair
group, for i ∈ [g]. According to the first part of the proof,
the min-cut (U, Ū) should be as follows. For each i ∈ [g], if

uiα ≤ (d−
i−1∑
j=1

uj)β), then we include the ui output nodes of

the contacted nodes from the i-th repair group in U and their
corresponding output nodes in Ū ; otherwise, we include xivirt
in Ū . Then, this cut (U, Ū) achieves f(u). Hence, the min-cut
minimized over all graphs and over all data collectors should
be equal to min

u∈P
f(u). The theorem follows according to the

necessary and sufficient condition in (2).

Our characterization of Theorem 1 relies on the bound-
edness assumption of the total number of failures/repairs. A
future direction is to investigate the correctness of Theorem 1
for arbitrary number of failures/repairs, similar to [26], [44].

D. Solving the minimum cut problem

In this section, we derive the structure of the optimal
scenario u in (3) for any set of parameters (α, β). For instance,
we show that for me < k ≤ (m+ 1)e, the number of optimal
repair groups g∗ (the support of u) is equal to m + 1. The
result is formalized in the following theorem. Recall that we
denote η = bk/ec, r = k − ηe.

Theorem 2. For fixed system parameters (M, n, k, d, e, α, β),
functional regenerating codes satisfying the centralized multi-
node repair condition exist if and only if

M≤ f(u∗) =

d ke e∑
i=1

min(u∗iα, (d−
i−1∑
j=1

u∗j )β),

where
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u∗ =



[k], if k ≤ e,
[e, . . . , e︸ ︷︷ ︸
η times

], else if k = ηe,

[r, e, . . . , e︸ ︷︷ ︸
η times

], else if k = ηe+ r and α ≤ d+ηr−ηe
r

β,

[e, . . . , e︸ ︷︷ ︸
η times

, r], otherwise,

(6)

where 0 < r < e.

Note that [k] in (6) means a vector with a single entry k. We
note that [23], [24] have independently developed Theorem 1
or an equivalent of Theorem 1, without entirely characterizing
the optimal solution. The authors of [45] independently proved
via a different approach Theorem 2, except for the last case
in (6).

We denote by [v,u,w] the vector that is the concatenation
of the vectors v,u,w. The next lemma shows that the mini-
mum cut can be obtained by optimizing any subsequence of
u first. The proof follows directly from the definition of f()
in (4) and is omitted.

Lemma 1. Consider vectors v,w,u,u′ such that∑
i ui =

∑
i u
′
i. If

f(u) ≥ f(u′),

then,

f([v,u,w]) ≥ f([v,u′,w]).

Lemma 2. Let α, β be non-negative reals, u1, u2, d, e, s, l be
non-negative integers such that u1 + u2 = s ≤ e, then the
following inequality holds

f([u1, e, . . . , e︸ ︷︷ ︸
l times

, u2]) ≥ min(f([s, e, . . . , e︸ ︷︷ ︸
l times

]), f([e, . . . , e︸ ︷︷ ︸
l times

, s])),

where f(u) is defined as in (4).

Proof: To prove the result, we cast it as an optimization
problem:

minimize
u=[u1,u2]

min(u1α, dβ) +

l−1∑
i=0

min(eα, (d− ie− u1)β)

+ min(u2α, (d− (l + 1)e− u1)β)

subject to 0 ≤ u1 ≤ s,
0 ≤ u2 ≤ e,
u1 + u2 = s. (7)

Substituting u2 by s−u1 in (7), using the identity min(x, y) =
x+y−|x−y|

2 and after eliminating constant terms, (7) becomes
equivalent to

minimize
u1

− u1lβ − |u1α− dβ|

−
l−1∑
i=0

|eα− dβ + ieβ + u1β| − |sα− u1(α− β)− (d− le)β|

subject to 0 ≤ u1 ≤ s. (8)

The objective function in (8), as a function of u1, is concave
over the interval [0, s]. The concavity is due to the convexity
of x→ |x|. Therefore, the minimum is achieved at one of the
extreme values. Equivalently, u∗1 = s or u∗1 = 0.

Lemma 2 addresses the case u1 +u2 ≤ e. Generalizing it to
the case where e ≤ u1 + u2 ≤ 2e follows the same approach.

Lemma 3. Let α, β be non-negative reals, u1, u2, d, e, s, l
be non-negative integers such that u1 + u2 = e + s and
0 ≤ u1, u2, s ≤ e. Then, the following inequality holds

f([u1, e, . . . , e︸ ︷︷ ︸
l times

, u2]) ≥ min(f([s, e, . . . , e︸ ︷︷ ︸
l+1 times

]), f([e, . . . , e︸ ︷︷ ︸
l+1 times

, s])),

where f(u) is defined as in (4).

Proof: First, we notice that u1 = e + s − u2 ≥ s as
u2 ≤ e. Then, the proof follows along similar lines as that of
Lemma 2 by replacing the constraint in (8) by s ≤ u1 ≤ e.

In proving the result of Theorem 2, we first characterize the
optimal solution in the case of k ≤ e. Insight and intuition
gained from this case are used to motivate and derive the
general optimal solution. We state the following lemma, which
represents a key step towards proving our result.

1) Case k ≤ e: In this scenario, the data collector con-
necting to k nodes from the same repair group yields the
worst-case scenario from an information flow perspective.
Given a particular repair scenario characterized by a vector
u, for any two adjacent repair groups (i.e., two adjacent
entries in u) with u1 and u2 nodes respectively, we have
u1 + u2 ≤ e. One can combine these two groups into a
single repair group to achieve a lower cut value. Indeed, from
the cut expression in (3), the contribution of the initial set
[u1, u2] to the cut is min(u1α, lβ) + min(u2α, (l−u1)β), for
some non-negative integer l. After combining the groups into a
single repair group, the contribution of the newly formed repair
group is min((u1 + u2)α, lβ), which is lower than the initial
contribution by virtue of Lemma 2, thus achieving a lower
cut. This means that starting from an IFG, we construct a new
IFG that has one less repair group and lower min-cut value.
This process can be repeated until we end up with a single
repair group consisting of k ≤ e nodes, which corresponds to
the minimum cut over all graphs in this case.

Therefore, the tradeoff in (3) is simply characterized by
M ≤ min(kα, dβ). Moreover, αMSMR = αMBMR = M

k
and βMSMR = βMBMR = M

d . Equivalently, the functional
storage bandwidth tradeoff reduces to a single point given by
(αMSMR, βMSMR) = (αMBMR, βMBMR) = (Mk ,

M
d ).

2) Case e < k: Motivated by the previous case, the
intuition is that, according to Lemmas 1, 2, and 3, given a
scenario u, one should form a new scenario which exhibits
as many groups of size e as possible. Subsequently, one
constructs a scenario u such that all its entries, except maybe
one entry, are equal to e.

For a fixed β, we denote the cut corresponding to
u = [e, . . . , e︸ ︷︷ ︸

j times

, r, e, . . . , e︸ ︷︷ ︸
η−j times

], as a function of α, by

Cj(α), j = 0, . . . , η. As will be shown later in the proof
of Theorem 2, a careful analysis of the behavior of the
η + 1 different scenarios Cj(α), 0 ≤ j ≤ η, is needed to
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determine the overall optimal scenario. We state the result in
the following lemma, whose proof is relegated to Appendix A.

Lemma 4. Assume e - k. There exists a real number
αc(η) ∈ [deβ,

d
rβ] such that, for any 0 ≤ j ≤ η,

Cj(α)

{
≥ C0(α), if α ≤ αc(η),

≥ Cη(α), if α ≥ αc(η),
(9)

with

αc(η) =
d+ ηr − ηe

r
β. (10)

Proof of Theorem 2: Now that we have the necessary
machinery, we proceed as follows: given any scenario u,
we keep combining and/or changing repair groups by means
of successive applications of Lemma 2 and Lemma 3 on
subsequences of u until we can no longer reduce the minimum
cut. By Lemma 1 we reduced the overall minimum cut. The
algorithm terminates because at each step, either the number of
repair groups in u is reduced by one, or the number of repair
groups of full size e is increased by one. As the number of
repair groups is lower bounded by η + 1, and as the number
of repair groups of full size e is upper bounded by η, the
algorithm must terminate after a finite number of steps. It can
be seen then that the above reduction procedure has a finite
number of outcomes, given by

• u = [e, . . . , e︸ ︷︷ ︸
η times

] if k = ηe,

• u = [e, . . . , e︸ ︷︷ ︸
jtimes

, r, e, . . . , e︸ ︷︷ ︸
η−j times

] when k = ηe+ r,

with 0 < r < e and j ∈ {0, . . . , η}.
Therefore, if e | k, then the optimal scenario corresponds to
considering exactly η repair groups. On the other hand, if e - k,
then, it is optimal to consider exactly η + 1 repair groups.
However, the optimal position of the repair group with r nodes
needs to be determined. Then, using Lemma 4, the result in
Theorem 2 follows.

Example 1. Let u = [1, 3, 2, 3, 2] with e = 3. Then, one
can start by reducing the first three repair groups [1, 3, 2].
This leads to u = [3, 3, 3, 2]. Another approach would be to
consider the last three repair groups [2, 3, 2]. Reducing this
vector leads to either u = [1, 3, 3, 3, 1] or u = [1, 3, 1, 3, 3].
Reducing further u = [1, 3, 3, 3, 1] leads to u = [2, 3, 3, 3]
or u = [3, 3, 3, 2]. Reducing u = [1, 3, 1, 3, 3] leads to u =
[3, 2, 3, 3] or u = [2, 3, 3, 3]. It remains to compare the cuts
given by u = [3, 3, 3, 2], u = [3, 3, 2, 3], u = [3, 2, 3, 3] and
u = [2, 3, 3, 3]. Following Theorem 2, either u = [2, 3, 3, 3]
or u = [3, 3, 3, 2] gives the lowest min-cut.

E. Explicit expression of the tradeoff

Having characterized the optimal scenario generating the
minimum cut in the last section, we are now ready to state
the admissible storage-repair bandwidth region for the cen-
tralized multi-node repair problem, the proof of which is in
Appendix B.
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Fig. 2: Multi-node functional repair tradeoff: k = 8, d =
10,M = 1, e ∈ {1, 2, 3, 4, 8}. When e - k, the point with
eα = dβ is not the MBMR point.

Theorem 3. For an (M, n, k, d, e, α, β) storage system
with total bandwidth γ = dβ, there exists a thresh-
old function α∗(M, n, k, d, e, γ) such that for any α ≥
α∗(M, n, k, d, e, γ), regenerating codes exist. For any α <
α∗(M, n, k, d, e, γ), it is impossible to construct codes
achieving the target parameters. The threshold function
α∗(M, n, k, d, e, γ) is defined as follows:
• if k ≤ e, then: α∗ = M

k , γ ∈ [M,+∞),
• if k = ηe, η ≥ 2, then:

α∗ =

{
M
k , γ ∈ [f0(η − 1),+∞),
M−γg0(i)

ie , γ ∈ [f0(i− 1), f0(i)], i = η − 1, . . . 1,

• if k = ηe+ r with η ≥ 1, 1 ≤ r ≤ e− 1, then:

α∗ =


M
k , γ ∈ [fr(η − 1),+∞),
M−γgr(i)
r+ie , γ ∈ [fr(i− 1), fr(i)], i = η − 1, . . . 1,

M−γgr(0)
r , γ ∈ [ dM

(η+1)d−e(η+1
2 )
, fr(0)],

(11)

where

fr(i) =
2edM

−k2 − r2 + e(k − r) + 2kd− e2(i2 + i)− 2ier
,

(12)

gr(i) =
(η − i)(−2r + e+ 2d− ηe− ei)

2d
.

The functional repair tradeoff is illustrated in Figure 2 for
multiple values of e ∈ {1, 2, 3, 4, 8} and k = 8, d = 10,
M = 1.

Remark 1. In the case of e|k, e|d, the following equality holds
for all points on the tradeoff

M =

η−1∑
i=0

min(eα, (d− ie)β) ⇐⇒ M
e

=

η−1∑
i=0

min(α, (
d

e
− i)β).

Therefore, the tradeoff between α and β is the same as the
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single erasure tradeoff of a system with reduced parameters
given by Me , k

e = η and d
e . The expression of the tradeoff

in this case can be recovered from [4] with the appropriate
parameters.

We next present the expressions of the two extreme points on
the optimal tradeoff. We focus on the case e < k, as otherwise
the optimal tradeoff reduces to a single point.
MSMR. The MSMR point is the same irrespective of the
relation between k and e, and it is given by

αMSMR =
M
k
, γMSMR =

M
k

ed

d− k + e
. (13)

MBMR. Interestingly, the MBMR point depends on whether
e divides k or not.
• If k = ηe, we obtain

γMBMR =
2edM

−k2 + ek + 2kd
=

dM
dη − e

(
η
2

) , (14)

αMBMR =
γMBMR

e
. (15)

The amount of information downloaded for repair is equal to
the amount of information stored at the e replacement nodes.
This property of the MBMR point is similar to the minimum
bandwidth point in the single erasure case [4] and also the
minimum bandwidth cooperative repair point [26].
• If k = ηe+ r, we obtain

γMBMR =
2edM

(k − r + e)(2d− k + r)
=

dM
d(η + 1)− e

(
η+1

2

) ,
(16)

αMBMR = γMBMR
d+ ηr − eη

rd
. (17)

This situation is novel for multiple erasures as the e nodes
need to store more than the overall downloaded information.
This is an extra cost in order to achieve the low value of
the repair bandwidth. Figure 2 illustrates this situation with
e = 3, k = 8. However, later we will see that for both e|k and
e - k, the total bandwidth at MBMR is equal to the entropy
of the failed nodes (see Lemma 6 and Lemma 11):

H(WE) = dβ = γ,

where E ⊂ [n] is any subset of nodes of size e and WE is
the information stored across the nodes in E.

Remark 2. From the statement of Theorem 2, we note that if
we only consider points between the MSMR and the MBMR
points, then the scenario u = [r, e, . . . , e] always generates
the lowest cut. In fact, the scenario u = [e, . . . , e, r] corre-
sponds to points beyond the MBMR point, namely, points with
α ≥ αMBMR, β = βMBMR.

Centralized strategy v.s. separate strategy. We compare
the centralized repair scheme repairing e nodes to a separate
strategy repairing each of the e nodes separately using single
erasure regenerating codes. We fix k, α and M.
Case I: both strategies use d helpers. The separate strategy
requires a total bandwidth given by edβ1, while the centralized
repair requires dβe, where the subscript indicates the number

of erasures repaired at a time. For simplicity, we assume that
e | k. The case e - k can be treated in a similar way. For points
on the multi-node repair tradeoff, we have

M =

η−1∑
j=0

min(eα, (d− je)βe).

Consider a point with the same α, k, d,M on the single
erasure tradeoff, we write

M =

η−1∑
j=0

min(eα, (d− je)βe) =

k−1∑
j=0

min(α, (d− j)β1)

=

η−1∑
j=0

e−1∑
i=0

min(α, (d− i− je)β1)

≤
η−1∑
j=0

emin(α, (d− je)β1) =

η−1∑
j=0

min(eα, (d− je)eβ1).

It follows that βe ≤ eβ1 with equality if and only if e = 1.
Therefore, for any storage capacity α, multi-node repair re-
quires strictly less bandwidth than a separate strategy for the
same number of helpers d.
Case II: multi-node repair uses d − e + 1 helpers, and
separate repair uses d helpers. In this case, the original number
of available nodes that can serve as helpers is assumed to
be d, and e ≥ 1 erasures occur within the available nodes.
Then a separate strategy may require a smaller bandwidth for
some values of α, as illustrated by Figure 3. However, as d
is sufficiently large, we observe numerically that multi-node
repair with d− e+ 1 helpers performs better than a separate
strategy for all values of α. Moreover, for the MSMR point, the
separate repair bandwidth is edβ1,MSR = eMk

d
d−k+1 , and cen-

tralized repair bandwidth is (d−e+1)βe,MSMR = M
k
e(d−e+1)
d−k+1 .

It follows that a centralized repair is always better that a
separate repair strategy, specifically, for e > 2,

(d− e+ 1)βe,MSMR

edβ1,MSR
=
d− (e− 1)

d
< 1.

III. EXACT-REPAIR MSMR CODES CONSTRUCTIONS

In the remainder of the paper, we study exact repair. In this
section, we first analyze the case e ≥ k and then construct
MSMR codes when e < k. In later sections, we study the
feasibility of MBMR codes and the interior points under exact
repair for e < k.

A. Construction when k ≤ e
In the case of k ≤ e, the optimal tradeoff reduces to a single

point, so our MSMR construction in this section is also an
MBMR code. The optimal parameters satisfy α = M

k , β = M
d

and γ =M. We note that the overall repair bandwidth dβ and
the reconstruction bandwidth kα are the same. Therefore, one
can achieve α and γ by dividing the data into k symbols and
encoding them using an (n, k) MDS code (for example, a
Reed-Solomon code). The repair can be done by downloading
the full content of any k out of d helpers while not using
d−k helpers. Such repair is asymmetric in nature. We describe
one alternative approach for achieving the repair with equal
contribution from d helpers.
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Fig. 3: Centralized multi-node repair vs separate repair strat-
egy: k = 7,M = 1. Separate repair strategy uses d = 9 to
repair 3 nodes successively while multi-node repair is plotted
for d = 7 and d = 9.

1) Divide the original file into kd symbols (that isM = kd)
and encode them using an (nd, kd) MDS code.

2) Store the encoded symbols at n nodes, such that each
node stores α = d encoded symbols.

3) For reconstruction, from any k nodes, we obtain kd
different symbols. By virtue of the MDS property, we
can reconstruct the data.

4) For repair, each helper node transmits any β = M
d =

k symbols. The replacement nodes receive dk different
coded symbols, which are sufficient to reconstruct the
whole data and thus regenerate the missing symbols.

Remark 3. The above procedure works for a specific prede-
termined d. However, it can be generalized to support any
value of d satisfying k ≤ d ≤ n − e. For instance, let
δ = lcm(k, k + 1, k + 2, . . . , n − e) (lcm denotes the least
common multiple). Assume M = kδ. The file of size M is
then encoded using an (nδ, kδ) MDS code. Each node stores
α = M

k = kδ
k = δ coded symbols. To repair with d helpers,

for any k ≤ d ≤ n−e, each node transmits any β = M
d = kδ

d
coded symbols for his node. Similarly, it can be seen that
reconstruction is always feasible.

B. Minimum storage codes framework

In the following subsections, we discuss an explicit MSMR
code construction method using existing MSR codes designed
for single failures for k > e. We first describe the general
framework, and then present two specific codes. We denote
the code parameters by (n, k, d, e, α, γ).

The framework described in this section has been developed
in [37] for numerical simulations. We present it here in a
formal and analytical way. Consider an instance of an exact
linear (n, k, d, α, β) MSR code, where β = α

d−k+1 . Consider
e nodes, indexed by f1, . . . , fe, and other distinct d − e + 1
nodes, indexed by h1, . . . , hd−e+1, such that d−e+1 ≥ k. Let
H = {f1, . . . , fe, h1, . . . , hd−e+1} and define Hfj = H\{fj}.

Consider the single-node repair algorithm corresponding to
failed node fj and helper nodes Hfj . We denote by sHh,fj
the information sent by node h to repair node fj , for helpers
h ∈ Hfj . We drop the superscript H when it is clear from the
context. The size of sh,fj is β symbols.

Now we construct an (n, k, d−e+1, e, α, eβ) MSMR code.
Upon failure of the e nodes f1, . . . , fe, the centralized node
carrying the repair connects to the set of d − e + 1 helpers
h1, . . . , hd−e+1. Each helper node hi transmits eβ symbols
given by ∪ej=1{shi,fj}. One can check that the parameters of
an MSMR code in (13) are satisfied with equality.

The approach consists in using the underlying MSR repair
procedure for each of the e failed nodes. Note that shi,fj can
be obtained from the d − e + 1 helpers, for i ∈ [d − e +
1]. To this end, the MSR repair procedure requires sHfi,fj for
all {(i, j) : i, j ∈ [e], i 6= j}, which we treat as unknowns.
Let Ei,j(·) denote the encoding function used to encode the
information sent from node hi to node fj . Also, let Di(·)
denote the decoding function used by the MSR code to repair
node fi given information from d helpers. Then, we write

sHfi,fj = Ei,j(wfi)

= Ei,j(Di(s
H
h,fi , h ∈ Hfi)), (18)

where wj denotes the content of node j, and i, j ∈ [e], i 6= j.
Equation (18) generates e(e−1)β linear equations in e(e−1)β
unknowns. Let s be a vector containing the unknowns sfi,fj .
Then, we seek to form a system of linear equations as

As = b, (19)

where A is a known (e(e − 1)β × e(e − 1)β) matrix and b
is a known (e(e − 1)β × 1) vector. If A is non-singular, one
can thus recover s. Then, the centralized node can recover the
failed node wfi as wfi = Di(sh,fi , h ∈ Hfi). We adopt the
above framework throughout the section.

Remark 4. While the described framework applies to codes
with arbitrary rates, we focus in the sequel on low-rate codes.
High-rate MSMR constructions have been presented in [36].
However, in the low-rate regime, our constructions perform
better. For instance, for a target MSMR code with rate 1

2 , the
construction in [36] yields a storage size α = k2k−1, while
applying the above approach to IA codes [8] or to PM codes
[43] results in a smaller storage size α = k and α = k − 1,
respectively.

C. Product-matrix codes

In this subsection, we construct MSMR codes for any e
erasures based on product-matrix (PM) codes [43]. The PM
framework allows the design of MBR codes for any value of
d and the design of MSR codes for d ≥ 2k − 2. Moreover,
the PM construction offers simple encoding and decoding and
ensures optimal repair of all nodes. Product-matrix MSR codes
are a family of scalar MSR codes, i.e., β = 1. We first focus
on the case d = 2k−2. Under this setup, α = d−k+1 = k−1,
M = k(k − 1). The codeword is represented by an (n × α)
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code matrix C such that its i-th row corresponds to the α
symbols stored by the i-th node. The code matrix is given by

C = ΨM,Ψ =
[
Φ ΛΦ

]
,M =

[
S1

S2

]
,

where Ψ is an (n × d) encoding matrix and M is a (d × α)
message matrix. S1 and S2 are (α × α) symmetric matrices
constructed such that the

(
α+1

2

)
entries in the upper-triangular

part of each of the two matrices are filled up by
(
α+1

2

)
distinct

file symbols. Φ is an (n × α) matrix and Λ is an (n × n)
diagonal matrix. The elements of Ψ should satisfy:

1) any d rows of Ψ are linearly independent;
2) any α rows of Φ are linearly independent;
3) the n diagonal elements of Λ are distinct.

The above conditions may be met by choosing Ψ to be a Van-
dermonde matrix, in which case its ith row is given by ψti =[
1 λi · · · λd−1

i

]
. It follows that Λ = diag{λα1 , . . . , λαn}

for some coefficients λ1, λ2, . . . , λn. In the following, we
assume that Ψ is a Vandermonde matrix.
Repair of a single erasure in PM codes. The single erasure
repair algorithm [43] is reviewed below. Let wt

i denote the
content stored at a failed node. Let φti be the ith row of Φ.
Then, wt

i = ψtiM =
[
φti λαi φ

t
i

]
M = φtiS1 + λαi φ

t
iS2. Let

Hi = {h1, . . . , hd} denote the set of d helpers. Each helper
h transmits sh,i = wt

hφi = ψthMφi to the replacement node,
who obtains ΨHiMφi, where Ψt

Hi =
[
ψh1

· · · ψhd
]
.

Note that ΨHi is invertible by construction. Thus, using the
symmetry of S1 and S2, we obtain (Mφi)

t =
[
φtiS1 φtiS2

]
.

We can then reconstruct wt
i = φtiS1 + λαi φ

t
iS2.

Repair of multiple erasures in PM codes. Given the
symmetry of PM codes, we can assume w.l.o.g that nodes
in E = {1, . . . , e} have failed. Define Ei = E\{i}. Let
H = {1, . . . , d+ 1}. The centralized node connects to helper
node h ∈ {e+ 1, . . . , d+ 1}, and obtains {ψthMφj , j ∈ E}.

Let s = [s1,2, s2,1, . . . , s1,e, se,1, . . . , se−1,e, se,e−1]t. Our
goal is to express explicitly A and b as in (19).

Consider the repair of node i ∈ E by the set of helpers in
Hi = H\{i}. From the single-node repair, we write

wi =
[
Iα λαi Iα

]
Ψ−1
HisHi , such that

Ψt
Hi =

[
ψ1 · · · ψi−1 ψi+1 · · · ψd+1

]
,

stHi =
[
s1,i · · · si−1,i si+1,i · · · sd+1,i

]
.

It follows that

si,j = φtjwi

=
[
φtj λαi φ

t
j

]
Ψ−1
Hi (

∑
l∈Hi

sl,iel,i)

=
∑
l∈Ei

(
[
φtj λαi φ

t
j

]
Ψ−1
Hiel,i)sl,i

+

d+1∑
l=e+1

(
[
φtj λαi φ

t
j

]
Ψ−1
Hiel,i)sl,i, (20)

Here, for l ∈ [d + 1]\{i}, we use the column standard basis
el and define

el,i ,

{
el, l < i,

el−1, l > i.

Note that the second term in (20) is known from the helpers.
Moreover, to compute (20), one may use the inverse of
Vandermonde’s matrix formula [46]. Let h ∈ {1, . . . , d}, we
have

(Ψ−1
Hiel,i)h =

γh(l, i)∏
m∈Hi\{l}(λl − λm)

=
γh(l, i)∑d

j=1 γj(l, i)λ
j−1
l

,

(21)

where the subscript h in (·)h means the h-th entry, and

γh(l, i) = (−1)d−h
∑

m1<...<md−h∈Hi\{l}

λm1 . . . λmd−h .

(22)
We obtain[
φtj λαi φ

t
j

]
Ψ−1
Hiel,i =

∑α
h=1(γh(l, i) + λαi γh+α(l, i))λh−1

j∑d
h=1 γh(l, i)λh−1

l

.

(23)

Therefore, one can construct A and b in (19) as follows:

• The entries of b are indexed with (i, j), corresponding
to si,j . The entry of b at index (i, j) is given by∑d+1
l=e+1(

[
φtj λαi φ

t
j

]
Ψ−1
Hiel,i)sl,i.

• Index the e(e− 1) rows (and columns respectively) of A
with (i, j). A has zero in all entries except: For every
row in A indexed by (i, j):

– the entry at column indexed by (i, j) is -1.
– for l ∈ Ei, the entry at column indexed by (l, i) is

given by
[
φtj λαi φ

t
j

]
Ψ−1
Hiel,i as in (23).

For clear presentation, we first prove the existence of product-
matrix MSMR codes for 2 erasures, and then prove the result
for general e.

Theorem 4. There exists (n, k, 2k − 3, 2, k − 1, 2) product-
matrix MSMR codes, defined over a large enough finite field,
such that any two erasures can be optimally repaired.

Proof: In this case, the matrix A of (19) is given by

A =

[
−1

[
φt2 λα1φ

t
2

]
Ψ−1
H1

e2,1[
φt1 λα2φ

t
1

]
Ψ−1
H2

e1,2 −1

]
.

From (21), noting that H1\{2} = H2\{1}, we obtain the
determinant of A to be

|A| = 1−
[
φt2 λα1φ

t
2

]
Ψ−1
H1

e2,1

[
φt1 λα2φ

t
1

]
Ψ−1
H2

e1,2

= 1−
(
α∑
h=1

λh−1
2 (γh(1, 2) + λα1 γh+α(1, 2)))

d∑
h=1

λh−1
2 γh(1, 2)

d∑
h=1

λh−1
1 γh(1, 2)

× (

α∑
h=1

λh−1
1 (γh(1, 2) + λα2 γh+α(1, 2)))

, 1− N(λ1, . . . , λd+1)

D(λ1, . . . , λd+1)
.

|A| can be viewed as a rational function of (λ1, . . . , λd+1),
as N and D are polynomials in (λ1, . . . , λd+1). We want to
show that the following polynomial is not identically zero:

P (λ1, . . . , λd+1) , D(λ1, . . . , λd+1)|A|
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= D(λ1, . . . , λd+1)−N(λ1, . . . , λd+1).

Let yα = (−1)αλ3 · · ·λα+2, yα−1 = (−1)α−1λ3 · · ·λα+1.
Then, it can be seen that P contains the term

yαyα−1(λd−1
1 + λd−1

2 − λα1λα−1
2 − λα2λα−1

1 ),

which is not zero. Hence, P (λ1, . . . , λd+1) is a non-zero
polynomial. The PM construction, when based on a Van-
dermonde matrix, requires λαi 6= λαj [43], or equivalently,
g(λ1, λ2) , λαi − λαj 6= 0. Let Q(λ1, . . . , λn) denote the
polynomial obtained by varying the set of helpers and failure
patterns, taking the product of all corresponding polynomials
P , and also multiplied by all g for all pairs of two nodes. Then,
Q is not identically zero. By Combinatorial Nullstellensatz
[47], we can find assignments of the variables {λ1, . . . , λn}
over a large enough finite field, such that the polynomial is
not zero. Equivalently, we can guarantee the successful optimal
repair of any two erasures among the n storage nodes.

Theorem 5. There exists (n, k, 2k−e−1, e, k−1, e) product-
matrix MSMR codes, defined over a large enough finite field,
such that any e erasures can be optimally repaired.

Proof: We only consider e > 2, as the case of e = 2 is
covered by Theorem 4. Entries in each column indexed by si,j
in A is either −1 or some other (e−1) non-zero entries whose
denominator is the same and given by

∏
m∈H\{i}

(λi − λm).

We multiply this common denominator to all entries in the
column si,j , for all pairs i 6= j. When λi’s are chosen to be
distinct, this does not change the singularity of A. Denote this
transformed matrix by B. Using (23), the entry of B in row
(i, j) and column (l,m) is a polynomial in λ1, . . . , λd+1:

B(i,j),(l,m) =
−
∑d
h=1 γh(i, j)λh−1

i , l = i,m = j,∑α
h=1

(
γh(l, i)λh−1

j + γh+α(l, i)λαi λ
h−1
j

)
, m = i,

0, otherwise.

Notice that e + α − 1 ≤ k − 1 + α − 1 = d − 1. Let y =
(−1)α−1λe+1 · · ·λe+α−1, which is a term in γα+1(i, j) for
all (i, j) by (22). We observe that there is a single term ±yλαi
in the polynomial B(i,j),(l,m) for the non-zero entries of B.

Recall that the Leibniz formula for determinant of a (m×m)
matrix B is given by

|B| =
∑
σ

sgn(σ)
∏
i

bσ(i),i,

where σ is a permutation from the permutation group Sm, sgn
is the sign function of permutations, and bi,j is the entry (i, j)
of B.

Claim 1. The term T =
∏e
i=1(yλαi )e−1 in |B| has a non-

zero coefficient.
Claim 1 implies that |B| is not a zero polynomial. Then,

proceeding as in the proof in Theorem 4, by Combinatorial
Nullstellensatz [47], we can find assignments of the variables
{λ1, . . . , λn} over a large enough finite field, such that the
code guarantees optimal repair of any set of e erasures.

Next, we prove Claim 1. Note that the term T can be created
if and only if we take the single term ±yλαi in the non-zero

entries of B (depending on the permutation σ). Therefore, it
is easy to see that the coefficient of term T in |B| is the
determinant of the following (e(e− 1)× e(e− 1)) matrix C

C(i,j),(l,m) =


−1, l = i,m = j,

1, m = i,

0, otherwise.

One can verify that C is diagonalizable, and the eigenvalues
satisfy:

• Eigenvalue e− 2 has multiplicity 1, with the correspond-
ing (right) eigenvector (1, 1, . . . , 1)t.

• Eigenvalue −2 has multiplicity e−1, with the correspond-
ing eigenspace {(x1,2, . . . , xe,e−1)t : x1,j = x1,2,∀j ∈
[e]\{1}, xi,j = xi,1,∀i ∈ [e]\{1},∀j ∈ [e]\{i}, x1,2 +∑e
i=2 xi,1 = 0} of dimension e− 1.

• Eigenvalue −1 has multiplicity e(e − 2), with the
corresponding eigenspace {(x1,2, . . . , xe,e−1)t :∑

1≤i≤e,i 6=j xi,j = 0,∀j ∈ [e]} of dimension e(e− 2).

To ensure that |C| 6= 0, a sufficient condition is to require the
finite field to have a characteristic such that the eigenvalues
{e − 2,−2,−1} are non-zero and |C| 6= 0. Therefore, Claim
1 is proved and the theorem statement follows.

Remark 5. There exists product-matrix MSMR codes, defined
over a large enough finite field, that simultaneously repair
any e ∈ [n− k] erasures with optimal bandwidth. Indeed, let
Q̃ =

∏n−k
e=2 Qe, where Qe is the polynomial corresponding

to the code constraints for e erasures such that matrix A
in (19) is invertible. Recall that the reconstruction process
for PM codes requires that ααi − ααj 6= 0 for αi 6= αj . Let
g(λ1, . . . , λn) =

∏
1≤i<j≤n(λαj − λαi ). Let Q(λ1, . . . , λn) =

g(λ1, . . . , λn)Q̃(λ1, . . . , λn). By Theorem 4 and Theorem 5,
Q is not zero and the result follows by Combinatorial Null-
stellensatz.

We note that the sufficient condition that matrix C is
invertible in the proof of Theorem 5 is not necessary for the
existence of PM codes. Indeed, as it will be shown in Example
2, we can construct PM codes with optimal multi-node repair
property over finite fields of characteristic 2.

Example 2. Consider the product-matrix code with n =
11, k = 6, d = 10, α = 5. The code is defined over
F26 with Λ = diag{λα1 , . . . , λα11} and λi = gi−1 with g
being the generator of the multiplicative group of F26 . Recall
that with the above choice of λi, any field of size at least
nα = 55 is sufficient to meet the PM code requirements
[43]. We first consider repair of e = 2 erasures. One
can check that out of the

(
11
2

)
= 55 possible 2 failure

patterns, 2 patterns are not recoverable according to (19):
E ∈ {{1, 2}, {10, 11}}. Considering the same code structure,
for e = 3 erasures, one observes that out of the

(
11
3

)
= 165

possible 3 failure patterns, 5 patterns are not recoverable:
E ∈ {{1, 2, 11}, {2, 3, 7}, {2, 4, 8}, {3, 4, 7}, {5, 9, 10}}. It is
worth noting that a lazy repair strategy can be beneficial in the
following way: if nodes 10 and 11 fail, i.e., E = {10, 11}, then,
one can optimally repair any 3 erasures E ∈ {{i, 10, 11}, i 6=
10, i 6= 11}. Finally, as suggested by Theorem 4 and Theo-



12

rem 5, we find that increasing the underlying field size to F28

suffices to ensure optimal repair of all two and three erasure
patterns in this scenario.

Remark 6. Following the code shortening procedure de-
scribed in [43], we construct an (n, k, d − e + 1, e, k − 1, e)
product-matrix MSMR code C with optimal repair for any
e ∈ [n− k] erasures such that 2k − 2 ≤ d ≤ n− 1. First, as
described in Remark 5, we consider an (n+ (d−2k+ 2), k+
(d − 2k + 2), d + (d − 2k + 2) − e + 1, e, d − k + 1, β = 1)
product-matrix MSMR code C′ in systematic form with varying
e ∈ [n−k]. Note that the code C′ exists because the parameters
satisfy Theorem 5. The first (d−2k+2) systematic nodes of C′

are set to zeros. Then, the target code C is formed by deleting
the first (d − 2k − 2) rows in each code matrix of C′ . It can
be seen that the repair procedure for e erasures in C can be
done by invoking that of the original code C′ , which leads to
the result.

D. Interference alignment codes
In this subsection, we give explicit code coefficient con-

ditions for optimal MSMR codes from IA codes [8] for
e = 2, 3, 4 erasures, and for any e ≤ k erasures from only
the systematic (or only the parity) nodes. Moreover, we show
the existence of MSMR codes for any e ≤ k erasures.

The scalar MSR IA code construction is based on inter-
ference alignment techniques. The code is systematic and
defined over a finite field Fq with optimal repair bandwidth
for the case k

n ≤
1
2 and d ≥ 2k − 1. We focus on the case

n = 2k, d = 2k − 1, β = 1. In this scenario, the storage size
is α = d− k + 1 = k.

Notation. For an invertible matrix B, we define its inverse
transpose to be B′ , (B−1)t. The columns of B

′
constitute

the dual basis of the column vectors of B. Recall that Bi,j
denotes the (i, j)-th element of matrix B. We use the following
symbols to denote the transmission of information during
repair operations.
• si,j : from systematic node i to parity node j.
• ri,j : from systematic node i to systematic node j.
• s̄i,j : from parity node i to systematic node j.
• r̄i,j : from parity node i to parity node j.
The IA code is constructed as below. Consider k linearly

independent vectors {v1, . . . ,vk}, vi ∈ Fkq , i ∈ [k]. Let

V =
[
v1, . . . ,vk

]
, U = κ−1V

′
P, (24)

where every submatrix of the (k×k) matrix P is invertible and
κ is an arbitrary non-zero constant in Fq satisfying κ2−1 6= 0.
Let wl, l ∈ [k] denote the content of systematic node l and
w̄i the content of parity node i , i ∈ [k]. Let ui,vi,u

′

i,v
′

i

be the i-th column of U, V, U ′, V ′, respectively. Then, by the
construction in [8],

w̄t
i =

k∑
j=1

wt
jG

(i)
j , G

(i)
j = uiv

t
j + Pj,iI,

such that the matrix G(i)
j indicates the encoding submatrix for

parity node i, associated with information unit j, and I is the
identity matrix of size (k × k) .

Repair of a systematic node. Assume that systematic node l
fails. The general repair procedure is described in [8]. In this
section, we explicitly develop the exact expression of wl as it
is needed later in repairing multiple erasures. Each systematic
node j ∈ [k]\{l} transmits rj,l = wt

jv
′

l . Each parity node i ∈
[k] transmits s̄i,l = w̄t

iv
′

l . Noting that G(i)
j v

′

l = 1{j=l}ui +

Pj,iv
′

l , it follows that

s̄i,l = wt
l(ui + Pl,iv

′

l) +
∑

j∈[k]\{l}

Pj,irj,l.

Canceling the interference from systematic nodes, and arrang-
ing the contributions of parity nodes in matrix form, we write

s̄1,l −
∑

j∈[k]\{l}
Pj,1rj,l

...
s̄k,l −

∑
j∈[k]\{l}

Pj,krj,l

 =

u
t
1 + Pl,1v

′t
l

...
utk + Pl,kv

′t
l

wl

=
1

κ
P t(I + κele

t
l)V
−1,

where the last equality is obtained by substituting U by its
expression in (24). Using the Sherman-Morrison formula, for
an invertible square matrix A of size (k×k) and vectors u,v
of length k,

(A+ uvt)−1 = A−1 − A−1uvtA−1

1 + vtA−1u
,

we obtain that ( 1
κP

t(I+κele
t
l)V
−1)−1 = U

′− κ2

1+κV ele
t
lP
′
,

it follows that

wl = (U
′
− κ2

1 + κ
V ele

t
lP
′
)


s̄1,l −

∑
j∈[k]\{l}

Pj,1rj,l

...
s̄k,l −

∑
j∈[k]\{l}

Pj,krj,l

 . (25)

Repair of a parity node. The repair of a parity node is
optimally achieved through the duality property of IA codes
resulting in a structure that is also conducive to interference
alignment. Indeed, inverting the roles of parity and systematic
nodes, it follows from [8] that

wi =

k∑
j=1

w̄t
jG
′(i)
j ;G

′(i)
j =

1

1− κ2
(v
′

iu
′t
j − κ2P

′

i,jI).

Assume parity node l fails, then systematic node i transmits
si,l = wt

iul and parity node j sends r̄j,l = w̄t
jul. Note that

G
′(i)
j ul = 1

1−κ2 (−κ2uj + 1{j=l}v
′

i). It follows that

si,l =
1

1− κ2
w̄t
l(v

′

i − κ2P
′

i,lul) +
∑

j∈[k]\{l}

−κ2

1− κ2
P
′

i,j r̄j,l.

Combining information from different helpers, we obtain after
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simplification
s1,l + κ2

1−κ2

∑
j∈[k]\{l}

P
′

1,j r̄j,l

...
sk,l + κ2

1−κ2

∑
j∈[k]\{l}

P
′

k,j r̄j,l

 =
1

1− κ2

v
′t
1 − κ2P

′

1,lu
t
l

...
v
′t
k − κ2P

′

k,lu
t
l

 w̄l

=
κ

1− κ2
P
′
(I − κeletl)U tw̄l,

where the last equality is obtained by replacing V −1 =
κP
′
U t. Inverting the system of equations and using the

Sherman-Morrison formula, we obtain

w̄l = ((1−κ2)V+(1+κ)U
′
ele

t

lP
t)


s1,l + κ2

1−κ2

∑
j∈[k]\{l}

P
′
1,j r̄j,l

...
sk,l + κ2

1−κ2

∑
j∈[k]\{l}

P
′
k,j r̄j,l

 .
(26)

Repair of multiple erasures. The goal is to construct the
system of linear equations as in (19). We need to derive the
equations relating the information transferred across the failed
systematic and parity nodes according to (18). Consider a
systematic node l ∈ [k] and a parity node m ∈ [k], from
(25), we write

sl,m = utmwl

= (utmU
′
− κ2

1 + κ
utmV ele

t
lP
′
)


s̄1,l −

∑
j∈[k]\{l}

Pj,1rj,l

...
s̄k,l −

∑
j∈[k]\{l}

Pj,krj,l



= (etm −
κ

1 + κ
Pl,metlP

′
)


s̄1,l −

∑
j∈[k]\{l}

Pj,1rj,l

...
s̄k,l −

∑
j∈[k]\{l}

Pj,krj,l

 (27)

= (etm −
κ

1 + κ
Pl,metlP

′
)(
∑
j∈[k]

s̄j,lej −
∑

j∈[k]\{l}

rj,lP
tej)

= (1− κ

1 + κ
Pl,mP

′

l,m)s̄m,l

−
∑

j∈[k]\{m}

(
κ

1 + κ
Pl,mP

′

l,j)s̄j,l −
∑

j∈[k]\{l}

Pj,mrj,l.

(28)

Here (27) is obtained by noting that U tV = 1
κP

t, and (28)
follows using P

′
P t = I . Similarly, consider two systematic

nodes l1, l2 ∈ [k], l1 6= l2, starting from (25) and noting that
V
′tU

′
= κP

′
, we obtain after simplification

rl1,l2 = v
′t
l2wl1 =

∑
j∈[k]

(κP
′

l2,j)s̄j,l1 − κrl2,l1 . (29)

Proceeding in a similar way, for a systematic node l ∈ [k] and
a parity node m ∈ [k], starting from (26), we obtain

s̄m,l = v
′t
l w̄m = (1− κ2 + κ(1 + κ)P

′

l,mPl,m)sl,m

+
∑

j∈[k]\{l}

(κ(1 + κ)P
′

l,mPj,m)sj,m +
∑
j∈[k]

(κ2P
′

l,j)r̄j,m.

(30)

Finally, consider two parity nodes m1,m2 ∈ [k],m1 6= m2,
starting from (26), we obtain

r̄m1,m2 = utm2
w̄m1 =

∑
j∈[k]

(
1− κ2

κ
Pj,m2

)sj,m1
+ κr̄m2,m1

.

(31)

The details of deriving (29), (30) and (31) can be found in
Appendix C. Equations (28), (29), (30) and (31) can thus be
used to derive A and b as defined in (19).

In the following theorem, we show that the IA code already
provides optimal repair for systematic (respectively parity)
failures, without the need to modify the coding matrices.

Theorem 6. In the interference alignment MSR code [8], it
is possible to optimally repair any set of e ≤ k systematic
(respectively parity) failures.

Proof: Assume w.l.o.g that nodes {1, . . . , e} have failed.
Let s =

[
r1,2, r2,1, . . . , re−1,e, re,e−1

]t
. Then, from (29), it

follows that A is a block-diagonal matrix given by

A =


1 κ
κ 1

. . .
1 κ
κ 1

 .

It follows that |A| = (1− κ2)
e(e−1)

2 6= 0 as κ2 6= 1 by design.
The same procedure applies to any set of e failures among
parity nodes using equation (31).

Theorem 7. The interference alignment MSR code achieves
optimal simultaneous repair of one systematic node l and one
parity node m if Pl,m(P−1)m,l 6= 1.

Proof: Assume that systematic node l and parity node m
failed. Let s = [sl,m, s̄m,l]

t. From (28), we obtain

sl,m = (1− κ

1 + κ
Pl,mP

′

l,m)s̄m,l + c1,

where c1 is a known quantity independent of s. Similarly, from
(30), we obtain

s̄m,l = (1− κ2 + κ(1 + κ)Pl,mP
′

l,m)sm,l + c2,

where c2 is a known quantity independent of s. It follows that
A, as defined in (19), is given by

A =

[
−1 1− κ

1+κPl,mP
′

l,m

1− κ2 + κ(1 + κ)Pl,mP
′

l,m −1

]
.

After simplification, we have |A| 6= 0 ⇐⇒ κ2(Pl,mP
′

l,m −
1)2 6= 0 ⇐⇒ Pl,m(P−1)m,l 6= 1, as κ 6= 0.

Combining Theorems 6 and 7 we know that (2k, k, 2k −
2, 2, k, 2) MSMR codes for 2 erasures can be constructed
through IA codes. We point out that Theorems 6 and 7 have
been derived in [30] for cooperative repair, using a different
technique. Recall that MSCR codes are in particular MSMR
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codes [23]. However, their technique cannot be extended to
more than two node failures including systematic and parity
nodes [30].

Theorem 8. The interference alignment MSR code achieves
optimal simultaneous repair of:
• two systematic failures l1, l2 and one parity failure m if
1− Pl1,m(P−1)m,l1 − Pl2,m(P−1)m,l2 6= 0,
• one systematic failure l and two parity failures m1,m2 if
1− Pl,m1(P−1)m1,l − Pl,m2(P−1)m2,l 6= 0,
• three systematic failures l1, l2, l3 and one parity failure m
if

1− Pl1,m(P−1)m,l − Pl2,m(P−1)m,l2 − Pl3,m(P−1)m,l3 6= 0,

• one systematic failure l and three parity failures m1,m2,m3

if

1− Pl,m1(P−1)m1,l − Pl,m2(P−1)m2,l − Pl,m3(P−1)m3,l 6= 0,

• two systematic failures l1, l2 and two parity failures m1,m2

if

1− Pl1,m1(P−1)m1,l1 − Pl1,m2(P−1)m2,l1 − Pl2,m1(P−1)m1,l2

− Pl2,m2(P−1)m2,l2 + Pl1,m1(P−1)m1,l1Pl2,m2(P−1)m2,l2

+ Pl1,m2(P−1)m2,l1Pl2,m1(P−1)m1,l2

− Pl1,m1(P−1)m1,l2Pl2,m2(P−1)m2,l1

− Pl1,m2(P−1)m2,l2Pl2,m1(P−1)m1,l1 6= 0.

Proof: The proof follows along similar lines as Theorem 7
by constructing A using (28), (29), (30) and (31). The explicit
expression of |A| can then be obtained for example by using
the Symbolic Math Toolbox of MATLAB, from which the
above conditions can be readily obtained (the MATLAB source
code can be found in [48]).

Combining Theorems 6 and 8 we know that (2k, k, 2k −
e, e, k, e) MSMR codes for e = 3, 4 erasures can be con-
structed through IA codes.

Remark 7. Deriving an exact condition under which the
recovery of multiple failures for large e is not straightforward.
However, we suspect that the general formula is given by the
following expression

|A| = k2sp(1− k2)

(
s
2

)
+
(
p
2

)(
1−∑

L⊂S,J⊂P,
|L|=|J|,

|J|≤min(s,p)

∑
σ∈ΠL,J

∑
σ
′∈ΠL,J

sgn(σ)sgn(σ
′
)
∏
i∈L

Pi,σ(i)

∏
j∈J

P
′

j,σ
′
(j)

)e
,

(32)

where ΠL,J is the group of permutations between the two
sets L and J (L and J are ordered in increasing order), and
element of order h in L is mapped to element of order h
in J) and sgn(σ) refers to the sign of a permutation σ. For
example, if L = {1, 2, 3}, J = {2, 3, 4} and σ(1) = 3, σ(2) =
4, σ(3) = 2. Then, sgn(σ)=1. One can check that the formulas
in Theorems 6, 7 and 8 satisfy (32). A general proof of (32)
is still open.

Example 3. Consider the IA code with n = 8, k = 4, d = 7,
α = 4, β = 1. The code is defined over the finite field F25 and

let g be the generator of its multiplicative group. Let P be a
Vandermonde matrix given by

P =


1 1 1 1
1 g g2 g3

1 g2 g4 g6

1 g3 g6 g9

 .
Using Theorems 6, 7 and 8, one can check that any two, three
and four erasures can be repaired optimally using our repair
framework.

In the following theorem, we provide an existence proof of
IA MSMR codes for multiple erasures.

Theorem 9. There exists (2k, k, 2k − e, e, k, e) interference
alignment MSMR codes, defined over a large enough finite
field, such that any e ≤ k erasures can be optimally repaired.

Proof: From Theorem 6, we know that if the errors are
all either systematic or parity nodes, then efficient repair is
possible. Thus, we only need to analyze the case of a mixture
of systematic and parity failures.

Consider e ≤ k failures consisting of q systematic nodes
and p parties nodes, indexed by the sets Q and P . W.lo.g,
assume that Q = [q] and P = [p]. Let s denote the vector of
unknowns such that pairs (ri,j , rj,i), (r̄i,j , r̄j,i) and (si,j , s̄j,i)
are grouped together. Using (28), (29), (30) and (31), we
construct A as in (19). Denote the determinant of A as
F (κ, Pi,j , P

′

i,j , i ∈ Q, j ∈ P) , |A|. The rows and columns
of A are indexed by {ri,j , si,j , r̄i,j , s̄i,j}. Let Mi,j denote the
minor in A corresponding to Ai,j . Similarity, Ni,j denotes
the minor in P corresponding to Pi,j . As P ′ = (P−1)t,
P
′

i,j =
(−1)i+jNj,i
|P | , one concludes that F is a rational function

in (κ, Pi,j , i, j ∈ [k]).
Claim 2. F is not identically zero for any q, p ≥ 0, q+p =

e ≤ k.
If Claim 2 holds, then the theorem is proved due to

the following argument. By symmetry among the systematic
(respectively parity) nodes of IA codes, any e-erasure pat-
tern corresponds to a non-zero rational function F . Recall
from [8] that the reconstruction process requires that every
submatrix of P is invertible. This can be translated into a
polynomial constraint given by g(Pi,j , i ∈ Q, j ∈ P) 6= 0.
Let T , g

∏
e erasures F . Here the product is over all possible

e erasures, and the rational function F depend on the erasure
pattern. Then, it follows that T is a non-zero rational poly-
nomial in (κ, Pi,j , (i, j) ∈ [k] × [n − k]). By Combinatorial
Nullstellensatz [47], we can find assignments of the variables
(κ, {Pi,j}) over a large enough finite field, such that the code
guarantees optimal recovery of any set of e erasures.

Next, we prove Claim 2. We assume first that q ≤ k
2 . Let

Pi,j = 0 ∀ (i, j) ∈ Q× P. (33)

Note that one can always construct a (normalized) invertible
matrix P satisfying (33), so we can assume |P | = 1. Thus F
is a polynomial. We will show

F (κ, Pi,j = 0, P ′i,j , (i, j) ∈ Q× P)

= F (κ, Pi,j = 0, P ′i,j = 0, (i, j) ∈ Q× P) 6= 0,
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which implies

F (κ, Pi,j , P
′
i,j , (i, j) ∈ Q× P) 6= 0.

To this end, we first prove that F (κ, Pi,j = 0, P ′i,j , (i, j) ∈ Q×
P), viewed as a polynomial of (κ, {P ′i,j}), does not depend on
{P ′i,j}. From (29) and (30), one can check that P

′

i,j appears
in A at entries given by
• Arl,i,s̄j,l for l ∈ Q\{i},
• As̄m,i,r̄j,m for m ∈ P\{j}.

For any l ∈ Q\{i}, consider the two columns in A indexed by
rl,i and ri,l. Both columns have non-zero entries only at rows
indexed with rl,i and ri,l. Then, after removing entries at row
rl,i, it follows that both columns become linearly dependent,
as both columns are scalar multiples of the same standard basis
vector. Thus, Mrl,i,s̄j,l = 0.

The example in (34) illustrates the case of two sys-
tematic failures, given by systematic nodes 1 and 2, and
one parity failure, given parity node 1. In this case s =[
s11, s̄11, r12, r21, s21, s̄12

]
. Setting Pi,j = 0 for all i =

1, 2, j = 1 and looking at the submatrix of A by remov-
ing row r1,2 and column s̄2,1 in (34), it can be seen that
columns r1,2, r2,1 are dependent, hence its corresponding
minor Mr1,2,s̄2,1 = 0. Similarly, for any m ∈ P\{j}, consider
the two rows in A indexed by r̄j,m and r̄m,j . Both rows have
non-zero entries only at columns indexed with r̄j,m and r̄m,j .
Then, after removing entries at column r̄j,m, it follows that
both rows become linearly dependent. Thus, Ms̄m,i,r̄j,m = 0.

The minors in A of all terms corresponding to P
′

i,j are
thus equal to zero. Therefore, w.l.o.g, one can assume that
P
′

i,j = 0,∀(i, j) ∈ Q×P . It follows that A is block-diagonal
matrix such that

• Row/column pairs (ri,j , rj,i) correspond to
[
−1 −κ
−κ −1

]
,

• Row/column pairs (r̄i,j , r̄j,i) correspond to
[
−1 κ
κ −1

]
,

• Row/column pairs (si,j , s̄j,i) correspond to[
−1 1

1− κ2 −1

]
.

• Other entries are 0.
Therefore, |A| = κ2qp(1 − κ2)(

q
2)+(p2) 6= 0, as κ 6= 0 and

κ2 6= 1.
Assume now that q > k

2 . Then, p ≤ k
2 . Proceeding similarly,

one can show that if P
′

ij = 0,∀(i, j) ∈ Q × P , then, all
terms Pij have no impact on |A| and one obtains similarly
|A| = κ2rp(1− κ2)(

r
2)+(p2).

IV. NON-EXISTENCE OF EXACT MBMR REGENERATING
CODES

Recall that the MBMR point is defined as the minimum
bandwidth point on the functional tradeoff. In this section,
we explore the existence of linear exact MBMR regenerating
codes for 1 < e < k. Unlike the single erasure repair problem
[43] and the cooperative repair problem [29], we prove that
linear exact regenerating codes do not exist. Following [29],
[43], we proceed by investigating subspace properties that
linear exact MBMR codes should satisfy. Then, we prove that
the derived properties over-constrain the system.

A. Subspace viewpoint

Linear exact regenerating codes can be analyzed from a
viewpoint based on subspaces. A linear storage code is a
code in which every stored symbol is a linear combination
of theM symbols of the file. Let f denote anM-dimensional
vector containing the source symbols. Then, any symbol x
can be represented by a vector h satisfying x = f th such that
h ∈ FM, F being the underlying finite field. The vectors h
define the code. A node storing α symbols can be considered
as storing α vectors. Node i stores h

(i)
1 . . .h

(i)
α . It is easy to

see that linear operations performed on the stored symbols
are equivalent to the same operations performed on the these
vectors:

∑
γif

thi = f t(
∑
γihi), γi ∈ F. Thus, each node is

said to store a subspace of dimension at most α. We write
WA to denote the subspace stored by all nodes in the set
A, A ⊆ [n]. For repair, each helper node passes β symbols.
Equivalently, each node passes a subspace of dimension at
most β. We denote the subspace passed by node j to repair a
set R of e nodes by SRj . The subspace passed by a set of nodes
A to repair a set R of e nodes is denoted by SRA =

∑
j∈A S

R
j ,

where the sum denotes the sum of subspaces.
Notation. The notation

⊕
j Xj denotes the direct sum of

subspaces {Xj}. For a general exact regenerating code, which
can be nonlinear, we use by abuse of notation WA, SRA to
represent the random variables of the stored information in
nodes A, and of the transmitted information from helpers A to
failed nodes R. Properties that hold using entropic quantities
for a general code do hold when considering linear codes.
For instance, consider two sets A and B. Then, we note the
following

H(WA)→ dim(WA),

H(WA|WB)→ dim(WA)− dim(WA ∩WB),

I(WA,WB)→ dim(WA ∩WB),

where the symbol → means translates to. When results hold
for general codes, we only prove for the entropy properties,
and the proof for the subspace properties of linear codes
is omitted. All results on entropic quantities are for general
codes, and all results on subspaces are for linear codes. More-
over, all results in this section refer to properties of optimal
exact multi-node repair codes with k > e (constructions for
k ≤ e are presented in Section III-A), some of which are
specific to MBMR codes and will be noted.

In this section, we assume that the codes are symmetric.
Namely, the entropy (or subspace) properties do not depend
on the indices of the nodes. Note that one can always construct
a symmetric code from a non-symmetric code [49], hence our
assumption does not lose generality. We now start by proving
some properties that exact regenerating codes, satisfying the
optimal functional tradeoff, should satisfy. We note that the
following property is also presented in [35, Lemma 4].

Lemma 5. Let B ⊆ [n] be a subset of nodes of size e, then for
an arbitrary set of nodes A, such that 0 ≤ |A| ≤ d,B∩A = ∅,

H(WB |WA) ≤ H(WB |SBA ) ≤ min(eα, (d− |A|)β).

Proof: If nodes B are erased, consider the case of having
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A =

s1,1 s̄1,1 r1,2 r2,1 s2,1 s̄2,1



−1 1− κP11P
′
11

κ+1 0 −P21 0 0 s1,1

1− κ2 + κ(κ+ 1)P11P
′

11 −1 0 0 κ(κ+ 1)P21P
′

11 0 s̄1,1

0 κP
′

21 −1 −κ 0 0 r1,2

0 0 −κ −1 0 κP
′

11 r2,1

0 0 −P11 0 −1 1− κP21P
′
21

κ+1 s2,1

κ(κ+ 1)P11P
′

21 0 0 0 1− κ2 + κ(κ+ 1)P21P
′

21 −1 s̄2,1

(34)

nodes A and nodes C as helper nodes, |C| = d− |A|. Then,
the exact repair condition requires

0 = H(WB |SBA , SBC )

= H(WB |SBA )− I(WB , S
B
C |SBA )

≥ H(WB |SBA )−H(SBC )

≥ H(WB |SBA )− (d− |A|)β.

Moreover, we have H(WB |SBA ) ≤ H(WB) ≤ |B|α,
H(WB |WA) ≤ H(WB |SBA ), and the results follows.

In the next two subsections, we focus on the cases where
e | k and e - k, respectively.

B. Case e | k

Note that in this case since e < k, we have k ≥ 2e. Recall
from Theorem 2 that points on the optimal tradeoff satisfy

M =

η−1∑
j=0

min(eα, (d− je)β).

Points between and including MSMR and MBMR satisfy

d− k + e

e
β ≤ α ≤ d

e
β.

Lemma 6. (Entropy of data stored): Consider points on the
optimal tradeoff. For an arbitrary set L of storage nodes of
size e, and a disjoint set A such that |A| = em < k for some
integer m,

H(WL) = eα,

H(WL|WA) = min(eα, (d− em)β).

For linear codes,

dim(WL) = eα,

dim(WL)− dim(WL ∩WA) = min(eα, (d− em)β).

Hence, the contents of any group of e nodes are independent.
In particular, for a set A of nodes, 1 ≤ |A| ≤ e, H(WA) =
|A|α.

Proof: By reconstruction requirement, we write

M = H(W[k])

= H(W[e]) +

η−1∑
j=1

H(W{ej+1,...,e(j+1)}|W[je])

≤ min(eα, dβ) +

η−1∑
j=1

min(eα, (d− ej)β)

=M,

where the inequality follows from Lemma 5. Thus, all inequal-
ities must be satisfied with equality.

Corollary 1. At the MBMR point, for any set L of size e and
disjoint set A of size |A| = em < k, we have

dim(WL ∩WA) = emβ.

Proof: By Lemma 6 and eα = dβ,

dim(WL)− dim(WL ∩WA) = min(eα, (d− em)β)

= (d− em)β.

Using the fact that dim(WL) = eα = dβ, we obtain the result.

Lemma 7. For any set E of size e, and a disjoint set A of
size d, the MBMR point satisfies

WE =
⊕
j∈A

SEj ,dim(SEj ) = β.

Hence, the subspaces SEj and SEj′ are linearly independent.
For every set Q ⊆ A, dim(SEQ) = |Q|β. Moreover, each
subspace SEj has to be in WE , namely, SEj ⊆WE .

Proof: For exact repair, we need WE ⊆
∑
j

SEj . Thus,

dβ = eα = dim(WE) ≤ dim(
∑
j

SEj ) ≤ dβ.

Thus, every inequality has to be satisfied with equality.

Lemma 8. At the MBMR point, for any set E of e nodes and
any other disjoint set Q of size |Q| ≤ k − e, we have

SEQ = WE ∩WQ,dim(WE ∩WQ) = dim(SEQ) = |Q|β.

Proof: Consider Q nodes such that |Q| ≤ k − e helping
in the repair of a set E of e nodes. Let J contains Q such
that |J | = k − e. Denote Qc = J\Q. From Corollary 1, we
have dim(WE ∩WJ) = (k − e)β. On the other hand, from
Lemma 7, we have dim(SEJ ) = (k − e)β and SEJ ⊆ WE .
Moreover, by definition, SEJ ⊆ WJ . Thus, SEJ ⊆ WE ∩WJ .
As the dimensions match, it follows that SEJ = WE ∩WJ .
Note that SEA ⊆ WE ∩ WA holds for any subset A of size
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|A| ≤ d. Now, we write

SEJ = WE ∩WJ = WE ∩ (WQ +WQc)

⊇WE ∩WQ +WE ∩WQc

⊇ SEQ + SEQc = SEJ .

This implies that all inclusion inequalities have to be satisfied
with equality and the result follows.

The next lemma plays an important role in establishing the
non-existence of exact MBMR codes. It only holds true when
e ≥ 2, which conforms with the existence of single erasure
MBMR codes.

Lemma 9. Consider the MBMR point. When e ≥ 2, for any
set of e+ 2 ≤ k nodes, labeled 1 through e+ 2, it holds that

dim(We+2 ∩W[e+1]) = dim(We+2 ∩W[e]) = β.

Proof: We have

dim(W[e+2]) = dim(W[e]) + dim(We+1 +We+2)

− dim(W[e] ∩ (We+1 +We+2))

= eα+ 2α− 2β,

where the second equality follows from Lemma 6, Lemma 8.
On the other hand, we write

dim(W[e+2]) = dim(W[e])

+ dim(We+1)− dim(We+1 ∩W[e])

+ dim(We+2)− dim(We+2 ∩W[e+1])

= eα+ 2α− β − dim(We+2 ∩W[e+1]).

The lemma follows from equating both equations.

Theorem 10. Exact linear regenerating MBMR codes do not
exist when 2 ≤ e < k and e | k.

Proof: Assuming that there exists an exact-repair regen-
erating code, we consider the first e nodes. Then, these nodes
store linearly independent vectors. We write, for i = 1, . . . , e,
Wi =

[
Vi1 Vi2

]
where Vi,1 contains β linearly independent

columns and Vi,2 contains the remaining (α − β) basis
vectors for node i. Now, consider node e + 1. We have
dim(We+1 ∩W[e]) = β by Lemma 9. That means that node
e+ 1 contains β columns, linearly dependent on the columns
from the first e nodes. Since the first e nodes should be linearly
independent, w.l.o.g, we can assume that the β dependent
vectors of node e+ 1, denoted by Ve+1,1, is of the form

Ve+1,1 =

e∑
i=1

Vi,1xi, (35)

such that xi 6= 0β×1 ∀i = 1, . . . , e. Now, consider node
e + 2. From Lemma 9, node e + 2 contains (α − β) vectors
linearly independent from vectors in nodes 1 through e + 1.
The remaining basis vectors of node e+ 2 (which are linearly
independent of the (α − β) vectors) are denoted by Ve+2,1.
Now, to repair any set of e nodes out of the set of first e+ 1
nodes, node e+ 2 can only pass Ve+2,1. Otherwise, Lemma 8
will be violated. Then, this implies that Ve+2,1 ⊆WJ , for all
J ⊆ {1, . . . , e+ 1} such that |J | = e. Then, it can be seen

that Ve+2,1 can only be of the same form in (35)

Ve+2,1 =

e∑
i=1

Vi,1yi, such that yi 6= 0β×1 ∀i = 1, . . . , e.

Similar reasoning applies to node i for i = e + 3, . . . , k + 1
to conclude that Vi,1 can be written as in (35).

Now, assume the first e nodes fail. Then, node i can only
pass Vi,1 for i = e + 1, . . . k + 1. We recall from Lemma 8
that S[e]

i = Wi ∩W[e]. The total number of vectors passed by
these nodes is (k − e + 1)β ≥ (e + 1)β. On the other hand,
from (35), all Vi,1 are generated by eβ vectors. Thus, the
set {Vi,1, i = e+ 1, . . . , k + 1} must be linearly dependent,
which contradicts the linear independence property of the
passed subspaces passed for repair, as stated by Lemma 7.

C. Case e - k
Recall that from the analysis of Theorem 2, for k = ηe+ r,

1 ≤ r ≤ e − 1, at the MBMR point, two scenarios generate
the same minimum cut:

u1 = [r, e, . . . , e] and u2 = [e, . . . , e, r].

Equivalently, we have

M = f(u1) = f(u2), (36)

where f() is defined as in (4). Moreover, all points between
and including MSMR and MBMR on the tradeoff satisfy

M = min(rα, dβ) +

η−1∑
i=0

min(eα, (d− r − ie)β) = f(u1),

d− k + e

e
β ≤ α ≤ d+ ηr − ηe

r
β. (37)

Properties satisfied by exact regenerating codes developed in
the previous section extend to the case e - k with slight
modifications. We state the properties without detailed proofs
as the techniques are the same.

Lemma 10. Consider points on the optimal tradeoff. For an
arbitrary set R of storage nodes of size r, and a set A such
that |A| = je + r < k for some integer j ≤ η − 1, for all
exact-regenerating codes operating on the functional tradeoff,
it holds that

H(WR) = rα,

H(WE |WA) = min(eα, (d− r − je)β).

For linear codes,

dim(WR) = rα,

dim(WE)− dim(WE ∩WA) = min(eα, (d− r − je)β).

Proof: The result can be derived by proceeding as in
Lemma 6 and using the fact that M = f(u1) from (37).

Remark 8. In the case of e - k, a set of e nodes are no longer
linearly independent. This is expected as eα > dβ. Instead,
it can be seen from Lemma 10 that any set of r nodes are
linearly independent.
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Lemma 11. For exact-regenerating codes operating at the
MBMR point, given sets E,A,R and B such that |E| = e,
E and A are disjoint, R and B are disjoint, |A| = je with
j ≤ η − 1, |R| = r and |B| = ηe, it holds that

H(WE) = dβ,

H(WE |WA) = (d− je)β,
H(WR|WB) = (d− ηe)β.

For linear codes,

dim(WE) = dβ,

dim(WE)− dim(WE ∩WA) = (d− je)β,
dim(WR)− dim(WR ∩WB) = (d− ηe)β.

Proof: The result can be derived by proceeding as in
Lemma 6 and using the fact that M = f(u2) from (36) and
eα ≥ dβ, rα ≥ (d− ae)β.

It is easy to see that Lemma 7 and Lemma 8 hold true for the
case e - k, and for conciseness we do not repeat these lemmas.
The following lemma is used to derive the contradiction in our
non-achievability result.

Lemma 12. Let k = ηe+ r, then exact linear MBMR point is
not achievable when d > k. When d = k, for any set of r+ 1
nodes, it holds that

dim(Wr+1 ∩W[r]) = β.

Proof: We have

dβ = dim(W[e])

=

e∑
i=1

(
dim(Wi)− dim(Wi ∩W[i−1])

)
= eα−

e∑
i=r+1

dim(Wi ∩W[i−1]),

where the last equality follows from the fact that the first r
nodes are linearly independent. Thus, it follows that

e∑
i=r+1

dim(Wi ∩W[i−1]) = eα− dβ = (e− r)(α− ηβ),

(38)

where we used α = (d+ rη− eη)β/r for MBMR point. Now
we write

(e− r)(α− ηβ) =

e∑
i=r+1

dim(Wi ∩W[i−1])

≥
e∑

i=r+1

dim(Wi ∩W[r])

= (e− r) dim(Wr+1 ∩W[r]),

where the last equality follows using symmetry. Then, it
follows that

dim(Wr+1 ∩W[r]) ≤ α− ηβ. (39)

Combining (38) and (39), we obtain
e∑

i=r+2

dim(Wi ∩W[i−1]) ≥ (e− r − 1)(α− ηβ). (40)

On the other hand, we have
e∑

i=r+2

dim(Wi ∩W[i−1]) ≤
e∑

i=r+2

dim(Wi ∩WEi)

= (e− r − 1)β, (41)

where Ei is a set of e nodes containing the first i−1 nodes and
arbitrary e − i + 1 nodes, excluding node i, and the equality
follows from Lemma 8. Combining (40) and (41), it follows

(e− r − 1)(α− ηβ) ≤
e∑

i=r+2

dim(Wi ∩W[i−1]) ≤ (e− r − 1)β.

(42)

It follows that α − ηβ = d−ηe
r β ≤ β. The inequality holds

only when d = k and α − ηβ = β. Indeed, when d > k, we
have α−ηβ > β. Therefore, we only consider the case d = k.
Hence, it follows from (42) that

e∑
i=r+2

dim(Wi ∩W[i−1]) = (e− r − 1)β.

Using (38), we obtain dim(Wr+1 ∩W[r]) = β.

Theorem 11. Exact linear regenerating MBMR codes do not
exist when e < k and e - k.

Proof: From Lemma 12, exact linear MBMR codes may
only be feasible when d = k. Next we show that in fact such
codes do not exist. Consider repair of the set of nodes E
containing nodes 1 through e. Consider helper node i. As
dim(Wi ∩ W[r]) = dim(Wi ∩ W[e]) = β, it follows that
Wi ∩W[r] = Wi ∩W[e] = SEi . Then, each helper node sends
vectors in the span of W[r]. Thus, the span of all sub-spaces
S

[e]
i is included in the span of W[r]:

∑
i

SEi ⊆ W[r]. This

implies that dim(
∑
i

SEi ) ≤ dim(W[r]). Namely, we should

have dβ ≤ rα: this is a contradiction as dβ > rα.

D. Minimum bandwidth cooperative regenerating codes as
centralized multi-node repair codes

In [23], the authors argued that MBCR codes can be used
as centralized multi-node repair regenerating codes. We recall
that MBCR codes are characterized with

(αMBCR, γMBCR) = (
M(2d+ e− 1)

k(2d− k + e)
,

M2de

k(2d− k + e)
).

In the case of e | k, it is shown that MBCR codes achieve
the MBMR bandwidth, i.e, γMBCR = γMBMR. In the case of
e - k, by imposing a certain entropy accumulation property
on the entropy of any group of r nodes, [23] showed that
the bandwidth achieved by MBCR codes is optimal. It is
important to note here that, from (16), it can be checked that
the entropy constraint condition results in γMBCR > γMBMR
for e - k. Moreover, in both cases, it is not clear whether
MBCR lies on the exact tradeoff of centralized repair. The next
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Fig. 4: Optimal functional repair tradeoffs for fixed e = 3 and
different k ∈ {7, 8, 9}. The MBCR point lies on the tradeoff
only in the case of k = 7.

theorem determines the cases in which MBCR codes meet the
centralized functional repair tradeoff (but does not correspond
to the minimum bandwidth point on the functional curve). As
a consequence, for such cases, MBCR codes meet the exact
repair tradeoff as well.

Theorem 12. Assume 1 < e ≤ k, then, minimum bandwidth
cooperative regenerating codes meet the centralized functional
repair tradeoff if and only if k ≡ 1 mod e.

Proof: When e | k, from (14) and (15), it follows that
γMBMR = γMBCR and αMBCR = αMBMR + M(e−1)

k(2d−k+e) . Thus,
αMBMR < αMBCR. When e - k, from (12) and (17), one can
check that γMBMR < γMBCR < fr(0). Using (11), it follows
that the optimal storage size corresponding to γMBCR and
achieving the centralized functional repair tradeoff is given
by

α∗(γMBCR) =
M− γMBCRgr(0)

r
=
M(2d+ e− r)
k(2d− k + e)

= αMBCR −
M(r − 1)

k(2d− k + e)
.

Therefore, α∗(γMBCR) ≤ αMBCR with equality if and only if
r = 1.

Figure 4 illustrates the functional tradeoff for fixed e =
3,M = 1 and multiple values of k ∈ {7, 8, 9} such that
d = k. As proved in Theorem 12, MBCR codes are optimal
centralized repair codes only when r = 1, which corresponds
to k = 7 in Figure 4. When e | k, MBCR codes achieve the
same bandwidth as MBMR codes, but have a higher storage
cost.

Remark 9. Theorem 12 proves that, when e - k, r = 1, MBCR
codes achieve an interior point on the functional tradeoff that
lies near the MBMR point. We note that the existence of this
exact-repair interior point does not contradict the infeasibility
result in Section V, where we assume e|k.

V. INFEASIBILITY OF THE EXACT- REPAIR INTERIOR
POINTS

In this section, we study the infeasibility of the interior
points on the optimal functional-repair tradeoff for e | k, e |
d, 2e < k, similarly to [17]. We note that all interior points
satisfy (d − k + e)β ≤ eα ≤ dβ. This can be written as
(d′ − η + 1)β ≤ α ≤ d′β, where d

′
= d

e and η = k
e . This

is similar to the single erasure case with reduced parameters.
The proof techniques in this section follow along similar lines
as [17] and some of the proofs are relegated to the appendix.

Parameterization of the interior points. Let α = (d′ −
p)β−θ, namely eα = (d−ep)β−eθ with p ∈ {0, 1, . . . , η−1},
θ ∈ [0, β) such that θ = 0 if p = η−1. Points on the functional
tradeoff satisfy

M = e

η−1∑
i=0

min(α, (d′ − i)β).

A. Properties of exact-repair codes

We present a set of properties that exact-repair codes,
satisfying the optimal functional tradeoff, must satisfy.

Lemma 13. For a set A of arbitrary nodes of size ej, a set
L of nodes of size e such that L ∩A = ∅, we have

I(WL,WA) =


0, j ≤ p,
e((j − p)β − θ), p < j < η,

eα, j ≥ η.

Proof: See Appendix D.

Corollary 2. For an arbitrary set L of size e, and a disjoint
set A such that |A| = em < k for some integer m, we have

H(WL|SLA) = H(WL|WA) = min(eα, (d− em)β).

Proof: From Lemma 5, we have H(WL|SLA) ≤
min(eα, (d− em)β). On the other hand, from Lemma 6,

H(WL|SLA) ≥ H(WL|WA) = min(eα, (d− em)β).

Thus, H(WL|SLA) = H(WL|WA) = min(eα, (d− em)β).

Lemma 14. In the situation where node m is an arbitrary
helper node assisting in the repair of a second set of arbitrary
nodes L of size e, we have

H(SLm) = β,

irrespective of the identity of the other d − 1 helper nodes.
Moreover, for set B of size |B| ≤ d− k + e with B ∩ L = ∅,
we have

H(SLB) = |B|β.

Proof: See Appendix E.

Helper node pooling. Consider a set F consisting of a
collection of f ≤ d + e nodes (f is a multiple of e), and
a subset R of the set F consisting of er′ nodes, r′ ≥ 1. A
helper node pooling scenario is a scenario where upon failure
of any e nodes L ⊆ R, the d helper nodes include all the f−e
remaining nodes in F . The remaining d−f+e helper nodes are
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fixed given L. Consider a subset of nodes M ⊆ F\R. Partition
the nodes in R into arbitrary but fixed sets R1, R2, . . . , Rr′ ,
each of size e. Denote by SRM = (SR1

M , . . . S
Rr′
M ) the collec-

tive transmitted information from helper nodes M to repair
R1, . . . , Rr′ , respectively.

Lemma 15. In the helper node pooling scenario where
min(η, fe ) > p + 2 ≥ r′, for any set of e arbitrary nodes
M ⊆ F\R, we have

H(SRM ) ≤ e(2β − θ).

Proof: See Appendix F.

Lemma 16. In the helper node scenario where min{η, fe } >
p + 1 ≥ r′, for an arbitrary set of e nodes M ⊆ F\R, and
an arbitrary pair of set of e nodes L1, L2, it must be that

H(SL1

M |S
L2

M ) ≤ eθ,

and hence

H(SRM ) ≤ e(β + (r′ − 1)θ).

Proof: See Appendix G.

B. Non-existence proof
For interior points, 1 ≤ p ≤ η − 2. First, we consider the

interior points for which eα is a multiple of β. That is: eα =
(d− ep)β, θ = 0.

Theorem 13. Exact-repair codes do not exist for the interior
points with θ = 0.

Proof: Consider a sub-network F consisting of d + e
nodes. The parameters satisfy the condition in Lemma 16.
Note that by the regeneration property for any set of e
nodes L ⊆ F , H(WL|SLF−L) = 0. Moreover, for distinct
M,L1, L2 ⊆ F , with θ = 0, we have H(SL1

M |S
L2

M ) = 0.
We partition the nodes in F into groups of size e, denoted
Li, i = 1, 2, . . . , d′ + 1. Then, we write

M≤ H(WF ) ≤ H(SL1

F−L1
, . . . , S

Ld′+1

F−Ld′+1
)

= H(SF−L1

L1
, . . . , S

F−Ld′+1

Ld′+1
)

≤
d′+1∑
i=1

H(SF−LiLi
)

≤
d′+1∑
i=1

eβ (43)

= (d+ e)β,

where the inequality (43) follows from Lemma 16. On the
other hand,

M =

d′−1∑
i=0

min(eα, (d− ie)β)

=

d′−1∑
i=0

min((d− ep)β, (d− ie)β)

= 2(d− ep)β +

d′−1∑
i=2

min((d− ep)β, (d− ie)β)

≥ 2(d− ep)β + (η − 2)eβ

≥ 2eβ + (d− ep)β + (η − 2)eβ

= (d− 2e)β + (k − 2e− ep)β
≥ (d− 2e)β,

where we assume 1 ≤ p ≤ η − 2 (non-MSMR point). Thus,
ep+ 2e ≤ k ≤ d. Both bounds are contradictory, thus proving
the impossibility result in the case of θ = 0.

Theorem 14. For any given values of M, exact-repair re-
generating codes do not exist for the parameters lying in the
interior of the storage-bandwidth tradeoff when θ 6= 0, except
possibly for the case p+ 2 = η and θ ≥ d−ep−e

d−ep β.

Proof: See Appendix H.

VI. ADAPTIVE MULTI-NODE REPAIR FOR MBR CODES

In this section, we study multi-node repair for MBR codes,
allowing a varying number of helpers and a varying number
of failures. In Section IV, we proved that MBMR codes are
not achievable for linear exact repair codes, when 2 ≤ e < k.
When e = 1, exact MBMR codes are MBR codes and their
existence is well established in the literature [43]. Adaptive
regenerating codes possess the extra feature that the number
of helpers involved in the repair process can be adaptively
selected, which provides the storage system with robustness
to the network varying conditions [25], [50]. Adaptive MSR
codes have been constructed in [36]. On the other hand,
adaptive MBR codes have been investigated in [51], in which
case optimal repair means that the total repair bandwidth for
each number of helpers d is the lowest possible, and is given
by γ = α,∀dmin ≤ d ≤ dmax (assuming the storage per
node contains no redundancy). Here dmin, dmax are between
k and n − 1. It is shown in [51] that adaptive MBR codes,
designed for arbitrary d, dmin ≤ d ≤ dmax, are equivalent
to MBR codes that are designed for the worst-case number
of helpers dmin, and they satisfy optimal repair for arbitrary
number of helpers dmin ≤ d ≤ dmax. Namely, adaptive MBR
codes satisfy for any dmin ≤ d ≤ dmax,

dβ = α,

α =
2dminM

−k2 + k + 2kdmin
=

dminM
dmink −

(
k
2

) ,
where the storage size α corresponds to the MBR code with
dmin helpers.

A natural question of interest is whether there exists an
MBR code that efficiently recover from varying number of
failures simultaneously. In this section, we investigate the
problem of repairing multiple failures in MBR codes under
exact repair, for varying number of helpers d and varying
number of failures e, such that dmin ≤ d ≤ dmax, 1 ≤ e ≤ k,
e+ d ≤ n. First, we derive a lower bound on the multi-node
repair bandwidth for MBR codes, which applies to exact and
functional codes. We assume that an MBR code is designed
for d helpers, and we want to repair e failures. To emphasize
the dependency on e, denote the total repair bandwidth by
γMBR(e).
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Theorem 15. Consider an (n, k, d, α, β) MBR regenerating
code, the total repair bandwidth γMBR(e) needed to repair any
set of 1 ≤ e ≤ k nodes satisfies

γMBR(e) ≥ eα−
(
e

2

)
α

d
. (44)

Proof: Assume w.l.o.g that the first e nodes are to be
repaired. From [52], at MBR point, for any set of A nodes of
size m < k and for i /∈ A, we have H(Wi|WA) = (d−m)β.
Therefore,

H(W[e]) =

e∑
i=1

H(Hi|W[i−1])

=

e∑
i=1

(d− i+ 1)β = (ed−
(
e

2

)
)β.

Noting that at the MBR, α = dβ, (44) follows.
We now briefly describe a construction of adaptive MBR

codes that simultaneously and efficiently repair single node
failures, presented in [51]. Then, we show how to optimally
repair multiple failures in this construction.

A. Adaptive single-failure MBR construction

The construction is based on product matrix codes [43],

[51]. Let α =
dmax∏
d=dmin

d . Define z = α
dmin

and construct the

(α× α) data matrix M as

M =


M1 O · · · O
O M2 · · · O
...

. . .
...

O · · · O Mz

 ,
where O is a (dmin × dmin) zero matrix and each of the
submatrices Mi is filled with information symbols, and is
symmetric and satisfies the structural properties of a product-
matrix MBR code for parameters k and dmin. For instance,
Mi is given by

Mi =

[
Ni Li
Lti O

′

]
,

where Ni is a symmetric (k×k) matrix, Li is (k×(dmin−k))
matrix, and O

′
is (dmin − k)× (dmin − k) zero matrix. let Ψ

be an (zn×dmin) Vandermonde matrix, with rows denoted by
ψtj , for 1 ≤ j ≤ zn. Then, storage node l is associated with

wt
l =

[
ψt(l−1)z+1, . . . , ψ

t
lz

]
M =

[
ψt(l−1)z+1M1, . . . , ψ

t
lzMz

]
.

Single node repair. Denote the set of helpers by H such that
|H| = d and dmin ≤ d ≤ dmax. Let Ω be an (z × z) matrix
such that Ωt is a Vandermonde matrix. Assume that node f
fails. Let Ωd be an (αd × z) matrix containing the first αd rows
of Ω. Moreover, let Φi be an (α× z) matrix

Φi =

ψ(i−1)z+1

. . .
ψiz

 .

Each helper node ij ∈ H transmits stij ,f = wt
ij

ΦfΩtd. After
simplification, the replacement node obtains

wt
f

[
Φi1Ωtd, . . . ,ΦidΩtd

]
= wt

fΘH.

Noting that ΘH is invertible [51], the replacement node can
thus recover wt

f .

B. Adaptive multi-node repair in MBR codes

We state our result in the following theorem.

Theorem 16. Adaptive single-failure MBR regenerating codes
with storage per node α and arbitrary number of helpers
dmin ≤ d ≤ dmax, presented in [51], can simultaneously and
optimally repair e failures with d helpers, for all dmin ≤ d ≤
dmax, 1 ≤ e ≤ k, e+ d ≤ n.

Proof: Assume w.l.o.g that the first e nodes failed and
d helpers are used, where dmin ≤ d ≤ dmax, 1 ≤ e ≤ k,
e + d ≤ n. Denote the helpers by the set H = {i1, . . . , id}.
First, the repair of node 1 is done by contacting all the d
helpers and downloading α

d symbols from each one of them,
using the procedure described for single node repair. Node 2
is then repaired using only dmin helpers, comprising repaired
node 1 and any other dmin − 1 helpers in H, such that
each helper provides α

dmin
= z symbols. The same procedure

is then applied repeatedly until recovering the last node e
by contacting any dmin − e + 1 helpers in H and using
contributions from the e−1 already repaired nodes. The overall
repair bandwidth is given by

d
α

d
+

e−1∑
i=1

z(dmin − i) = eα−
(
e

2

)
α

dmin
,

which matches the bound in (44), establishing the optimality
of the repair procedure.

Remark 10. Repairing e failures in an (n, k, dmin, α, β) MBR
code separately requires a bandwidth of size eα. However,
simultaneously repairing e failures using d ≥ dmin reduces
the bandwidth by

(
e
2

)
α

dmin
.

Remark 11. The repair procedure of multiple erasures in
Theorem 16 is asymmetric. However, one can always duplicate
the code a sufficient number of times to achieve a symmetric
repair strategy (e.g. [49]).

VII. CONCLUSION

We studied the problem of centralized repair of multiple
erasures in distributed storage systems. We explicitly char-
acterized the optimal functional tradeoff between the repair
bandwidth and the storage size per node. For instance, we
obtained the expressions of the extreme points on the tradeoff,
namely the minimum storage multi-node repair (MSMR) and
the minimum bandwidth multi-node repair (MBMR) points.
In the case of e ≥ k, we showed that the tradeoff reduces
to a single point, for which we provided a code construction
achieving it. We described a general framework for converting
single erasure minimum storage regenerating codes to MSMR
codes. Then we applied the framework to product-matrix codes
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and interference alignment codes. Furthermore, we proved
that the functional MBMR point is not achievable for linear
exact repair codes for 1 < e < k. We also showed that the
functional repair tradeoff is not achievable under exact repair,
except for maybe a small portion near the MSMR point for
e < k, e | k, e | d. Finally, we presented an MBR code that
can adaptively and optimally repair varying number of failures
with varying number of helpers.

Open problems include the generalization of the non-
existence proof of linear exact-repair MBMR regenerating
codes to non-linear codes. It is interesting to determine the
storage and bandwidth values of an exact minimum bandwidth
regenerating code. Moreover, characterization of the storage-
bandwidth tradeoff for exact repair for the interior points is
still not known.

APPENDIX

A. Proof of Lemma 4

We first state the following lemma which will be useful in
the proof.

Lemma 17. For fixed β, the scenario u = [e, . . . , e, r]
achieves the lowest final value of minimum cut:

lim
α→+∞

f(u) ≥ lim
α→+∞

f([e, . . . , e, r]),∀u ∈ P,

where f(u) and P are defined in (4) and (5), respectively.

Proof: for a specific cut u, we have

lim
α→+∞

f(u) =

g∑
i=1

(d−
i−1∑
j=1

uj)β

= dβg − β
g∑
i=1

i−1∑
j=1

uj = gdβ − β
g−1∑
i=1

ui(g − i)

= β(dg − g
g−1∑
i=1

ui +

g−1∑
i=1

iui) = β((d− k)g +

g∑
i=1

iui).

To obtain the smallest minimum cut value, we need to solve
the following problem

minimize
u,g

(d− k)g +

g∑
i=1

iui

subject to 1 ≤ ui ≤ e,
g∑
i=1

ui = k.

(45)

It can be seen that the solution to (45) is given by u =
[e, . . . , e, r].

We now study the different functions Cj(α) for j = 0, . . . , η.
An example of the different functions to be analyzed is given
in Figure 5, with k = 9, d = 10, β = 1. It is observed that u =
[1, 3, 3, 3] generates the lowest cut before some threshold α∗ =
5, after which the lowest cut is generated by u = [3, 3, 3, 1].
In the following, by analyzing Cj(α) for j = 0, . . . , η, we
prove that the above observation holds true in general.

α

0 2 4 6 8 10 12

f(
u

)

10

15

20

25

30

f([1,3,3,3])

f([3,1,3,3])

f([3,3,1,3])

f([3,3,3,1])

Fig. 5: Values of the cut function for different vectors u for
k = 9, d = 10, β = 1

a) j=0: we have

C0(α) = min(rα, dβ) +

η−1∑
i=0

min(eα, (d− r − ie)β)

= rmin(α,
dβ

r
) +

η−1∑
i=0

emin(α,
(d− r − ie)β

e
).

C0(α) is a piecewise linear function with breakpoints
given by {d−r−(η−1)e

e β, d−r−(η−2)e
e β, . . . , d−re β, drβ}. C0 in-

creases from 0 at a slope of k. Its slope is then reduced by
e by the successive breakpoints and then finally by r until it
levels off.

b) 1 ≤ j ≤ η: for each j, we have

Cj(α) =

j−1∑
i=0

min(eα, (d− ie)β) + min(rα, (d− je)β)

+

η−1∑
i=j

min(eα, (d− r − ie)β)

=

j−1∑
i=0

emin(α,
(d− ie)β

e
)

+ rmin(α,
(d− je)β

r
) +

η−1∑
i=j

emin(α,
(d− r − ie)β

e
).

Cj(α) is also piecewise-linear function with non-
increasing successive slopes. Its breakpoints are given by
{d−r−(η−1)e

e β, . . . , d−r−jee β, d−(j−1)e
e β, . . . , deβ}∪{

d−je
r β}.

The exact relative position of the breakpoint d−je
r β with

respect to the other breakpoints of Cj(α) depends on the
system’s parameters. However, we give a lower bound on
d−je
r β.

d− je
r
− d− r − (j − 1)e

e
=
ed− rd− re+ r2 − j(e2 − re)

re

≥ (e− r)d− re+ r2 − η(e2 − re)
re

≥ (e− r)k − re+ r2 − η(e2 − re)
re

= 0,
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where the first inequality follows by noticing that the ex-
pression is decreasing in j and letting j = η, and the
second inequality follows as the corresponding expression is
increasing d.

Figure 6 illustrates the relative positions of all the break-
points of C0(α) and Cj(α), j ≥ 1, where for example
d−je
r ∈ [d−r−(j−1)e

e , d−r−(j−2)e
e ]. We denote by Cj(∞) =

lim
α→+∞

Cj(α).

Lemma 18. For 1 ≤ j ≤ η, there exists a point αc(j) ∈ [de ,
d
r ]

such that

C0(αc(j)) = Cj(αc(j)),

C0(α) ≤ Cj(α) if α ≤ αc(j),
C0(α) ≥ Cj(α) if α ≥ αc(j),
Cj(α) = Cj(∞) if α ≥ αc(j).

(46)

Proof: W.l.o.g, assume β = 1. First, we note that

C0(α) = Cj(α) = kα for α ≤ d− r − (j − 1)e

e
.

Next, we analyze the behavior of each of the functions
C0(α) and Cj(α) over the successive intervals Ii ,
(d−r−iee , d−r−(i−1)e

e ] for i ∈ {j − 1, j − 2, . . . , 1}. Let
xi = d−r−ie

e and define sj(Ii) as the slope of Cj(α) just
before α = xi . Consider a given interval Ii = (xi, xi−1], we
have

• C0(α) has no breakpoint inside Ii. Thus, C0(α) increases
by

C0(xi−1)− C0(xi) = s0(Ii)− e.

• Cj(α) has either one or two breakpoints inside Ii.
1) in the case of Cj(α) has a single breakpoint inside Ii

(at α = d−ie
e ), Cj(α) increases by

Cj(xi−1)− Cj(xi) = sj(Ii)
r

e
+ (sj(Ii)− e)

e− r
e

= sj(Ii)− e+ r.

2) in the case of Cj(α) has two breakpoints inside Ii,
namely at α = d−je

r and α = d−ie
e . Let ∆ = d−je

r −
d−r−ie

e (c.f. Figure 6). Assuming d−je
r ≤ d−ie

e , then,
Cj(α) increases by

Cj(xi−1)− Cj(xi) = (sj(Ii)− r)(1−∆− e− r
e

)

+
e− r
e

(sj(Ii)− r − e) + sj(Ii)∆

= sj(Ii)− e+ ∆r.

Assuming d−je
r ≥ d−ie

e , then, Cj(α) increases by

Cj(xi−1)− Cj(xi) =
r

e
sj(Ii) + (k − e)(∆− r

e
)

+ (sj(Ii)− r − e)(1−∆)

= sj(Ii)− e+ ∆r,

which shows that the increase does not depend on the
relative position of the two breakpoints.

Now that we have computed the increase increment of each
Cj over Ii, we proceed to compare C0(α) and Cj(α) for

1 ≤ j ≤ η.

We discuss two cases:

Case 1: Assume d−je
r ∈ Ij0 for some j0 ∈ [1, j − 1].

j0 may not exist, which will be discussed in the second case.
Based on the above discussion, it can be seen that

Cj(α) ≥ C0(α), for α ≤ xj0 .

This can be seen by noticing that ∀i < j0, s0(Ii) = sj(Ii) and
that

(Cj(xi−1)− Cj(xi))− (C0(xi−1)− C0(xi)) = r ≥ 0.

Over Ij0 , Cj also dominates C0 at every point as s0(Ij0) =
sj(Ij0) and

(Cj(xi−1)− Cj(xi))− (C0(xi−1)− C0(xi)) = ∆r ≥ 0.

For i > j0, we have s0(Ii)− sj(Ii) = r. Moreover, over each
Ii, i > j0, we have

(Cj(xi−1)− Cj(xi))− (C0(xi−1)− C0(xi))

= (sj(Ii)− e+ r)− (s0(Ii)− e) = 0.

Combining the last equation and the observation that
Cj(xj0−1) ≥ Cj(xj0−1), it follows that Cj continues to
dominate C0 over the successive intervals Ii, i > j0. So far,
we have shown that

Cj(α) ≥ C0(α), for α ≤ d− r
e

.

For α ≥ d−r
e , we observe that Cj increases with a slope of e

and levels off at de while C0 increases at smaller slope given by
r and levels off at dr >

d
e . Moreover, we know from Lemma 17

that C0 levels off at a higher value than that of Cj . Thus, there
exists αc(j) ∈ [de ,

d
r ] that satisfies (46).

Case 2: Assume d−r
e < d−je

r ≤ d
r , then, using similar

arguments as in the first case, it follows that for α ≤ d−r
e ,

Cj(
d−r
e ) ≥ C0(d−re ). At α = d−r

e , Cj(α) has a slope of
r + e, which is higher than that of C0, given by r. Thus, the
slope of Cj remains higher than than of C0 until Cj levels off.
Combining these observations with the fact that C0 levels off
at a higher value, it follows that both curves will intersect only
once. Moreover, the intersection at a point at which Cj has
leveled off i.e., we have αc(j) ≥ max(de ,

d−je
r ). Therefore,

(46) holds also in this case.

Using Lemma 18 and the fact that Cη achieves the smallest
final value from Lemma 17, that is Cη(∞) ≤ Cj(∞),
j ∈ [0, η − 1], it follows that (9) holds for any j ∈ [0, η].
Moreover, as αc(η) ∈ [de ,

d
r ], αc(η) satisfies

rαc(η) +

η−1∑
i=0

(d− r − ie)β = (η + 1)βd− eβ η
2 + η

2
,

which implies that

rαc(η) + η(d− r − eη

2
+
e

2
)β = (η + 1)βd− eβ η

2 + η

2
.

Simplifying the last equation yields (10).
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Fig. 6: relative positions of the breakpoints of C0(α) and Cj(α) (with β = 1)
.

B. Storage-bandwidth tradeoff expression

We start with the case k = ηe+r. The optimization trade-off
is

minimize
α≥0

α

subject to C(α) ≥M.
(47)

The constraint is a piece-wise linear function C(α) is given
by

C(α) =



(η + 1)βd− eβη(η + 1)/2, α ≥ αc,

rα+
η−1∑
j=0

bj , α ∈ [ b0
e
, αc],

(r + ie)α+
η−1∑
j=i

bj , α ∈ [ bi
e
,
bi−1

e
], i = 1, . . . , η − 1,

kα, α ≤ bη−1

e
,

(48)

with αc = d+ηr−ηe
r β, bi = (d− r − ie)β and

η−1∑
j=i

bj = β(η − i)(d− r − e(η − 1 + i)

2
) (49)

= γ
(η − i)(−2r + e+ 2d− ηe− ei)

2d
, γgr(i), (50)

such that

gr(i) =
(η − i)(−2r + e+ 2d− ηe− ei)

2d
.

The expression C(α) increases from 0 to a maximum value
given by β((η + 1)d −

(
η+1

2

)
). To solve (47), we let α∗ =

C−1(M) under the condition M ≤ β((η + 1)d −
(
η+1

2

)
).

Therefore, we obtain,

α∗ =



M
k
, M∈ [0,

kbη−1

e
]

M−
η−1∑
j=i

bj

r+ie
,M∈ [(r + ie) bi

e
+
η−1∑
j=i

bj , (r + ie)
bi−1

e
+
η−1∑
j=i

bj ],

for i = η − 1, . . . 1,

M−
η−1∑
j=0

bj

r
,M∈ [ b0r

e
+
η−1∑
j=0

bj , rαc +
η−1∑
j=0

bj ],

with

rbi
e

+ ibi +

η−1∑
j=i

bj

=
−η2e2 + ηe2 − 2aer + 2dae− e2i2 − e2i− 2eir − 2r2 + 2dr)

2de
γ

=
−k2 − r2 + e(k − r) + 2kd− e2(i2 + i)− 2ier

2ed
γ

, γ
M
f(i)

,

such that

fr(i) =
2edM

−k2 − r2 + e(k − r) + 2kd− e2(i2 + i)− 2ier
.

Therefore, fixing M and varying γ, we write

α∗ =


M
k , M∈ [0, kgr(η−1)γ

e ],
M−γgr(i)
r+ie , M∈ [ γMfr(i) ,

γM
fr(i−1) ], i = η − 1, . . . 1,

M−γgr(0)
r , M∈ [ γMfr(0) , (gr(0) + d+ar−ae

d )γ].

(51)

As a function of γ, after simplifications, we obtain the expres-
sion of α∗ as in Theorem 3. We note that there are η piece-
wise linear portions on the curve. Moreover, the minimum
bandwidth point γMBMR is given by

γMBMR =
M

gr(0) + d+ar−ae
d

=
dM

d(η + 1)− e
(
η+1

2

) . (52)

The expression of αMBMR is given by

αMBMR =
M− γMBMRg(0)

r
= γMBMR

d+ ηr − eη
rd

.

in the case of e | k, we have r = 0. The expression of the
tradeoff is obtained from (51) by setting r = 0 and eliminating
the last line. We note that in this case, there are η − 1 piece-
wise linear portions on the trade-off curve.

C. Derivations of (29), (30) and (31) for IA codes

Consider two systematic nodes l1, l2 ∈ [k], l1 6= l2, starting
from (25) and noting that V

′tU
′

= κP
′
, we obtain after

simplification

rl1,l2 = v
′t
l2wl1

= v
′t
l2(U

′
− κ2

1 + κ
V el1e

t
l1P

′
)


s̄1,l1 −

∑
j 6=l1

pj,1rj,l1

...
s̄k,l1 −

∑
j 6=l1

pj,krj,l1



= κetl2P
′


s̄1,l1 −

∑
j 6=l1

pj,1rj,l1

...
s̄k,l1 −

∑
j 6=l1

pj,krj,l1


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=
∑
j∈[k]

(κP
′
l2,j)s̄j,l1 − κrl2,l1 .

Proceeding in a similar way, for a systematic node l ∈ [k] and
a parity node m ∈ [k], starting from (26), we obtain

s̄m,l = v
′t
l w̄m

= v
′t
l ((1− κ2)V + (1 + κ)U

′
eme

t

mP
t)


s1,m + κ2

1−κ2

∑
j 6=m

P
′
1,j r̄j,m

...
sk,m + κ2

1−κ2

∑
j 6=m

P
′
k,j r̄j,m



= ((1− κ2)etl + (1 + κ)κP
′
l,me

t

mP
t)


s1,m + κ2

1−κ2

∑
j 6=m

P
′
1,j r̄j,m

...
sk,m + κ2

1−κ2

∑
j 6=m

P
′
k,j r̄j,m


= (1− κ2 + κ(1 + κ)P

′
l,mPl,m)sl,m

+
∑

j∈[k]\{l}
(κ(1 + κ)P

′
l,mPj,m)sj,m +

∑
j∈[k]

(κ2P
′
l,j)r̄j,m.

Finally, consider two parity nodes m1,m2 ∈ [k],m1 6= m2,
starting from (26), we obtain

r̄m1,m2 = utm2
w̄m1

= utm2
((1− κ2)V

+ (1 + κ)U
′
em1e

t

m1
P t)


s1,m1 + κ2

1−κ2

∑
j 6=m1

P
′
1,j r̄j,m1

...
sk,m1

+ κ2

1−κ2

∑
j 6=m1

P
′
k,j r̄j,m1



=
1− κ2

κ
etm2

P t


s1,m1 + κ2

1−κ2

∑
j 6=m1

P
′
1,j r̄j,m1

...
sk,m1

+ κ2

1−κ2

∑
j 6=m1

P
′
k,j r̄j,m1


=
∑
j∈[k]

(
1− κ2

κ
Pj,m2 )sj,m1 + κr̄m2,m1 .

D. Proof of Lemma 13

Proof: First, we note that when j ≥ η, I(WL,WA) =
H(WL) − H(WL|A) = H(WL) = eα. In the following, we
assume j < η. We write

I(WL,WA) = H(WL)−H(WL|A)

= eα−min(eα, (d− je)β) (53)
= e(α−min(α, (d′ − j)β))

= e(α− (d′ − j)β)+

= e((j − p)β − θ)+,

where we use the notation (x)+ , max(x, 0). Here (53)
follows from Lemma 6.

E. Proof of Lemma 14

Proof: Partition the set of d helpers into A and B such
that |A| = k − e and |B| = d− k + e, such that m ∈ B. We
have H(WL|SLA) = min(eα, (d−k+ e)β) = (d−k+ e)β, as
eα ≥ (d − k + e)β for all points on the tradeoff. Moreover,
exact repair requires H(WL|SLA, SLB) = 0. Thus, H(SLB) ≥

(d− k+ e)β. This implies H(SLB) = (d− k+ e)β. Moreover,
it must hold that H(SLm) = β in addition to SLm and SLm′ being
independent if m 6= m′. Moreover, by choosing M ⊆ B, one
obtains H(SLM ) = eβ.

F. Proof of Lemma 15

Proof: If the statement holds true for some f, r′, then it
also holds true for all f ′ ≥ f and r′′ ≤ r′. Thus, for the
proof, we only need to consider F = R ∪ M, |F | = f =
e(p+ 3), |R| = r′e = (p+ 2)e, |M | = e.

Consider repair of an arbitrary set of e nodes L ⊆ R, where
the set of helpers include M and the e(p+1) remaining nodes
in R. Then, we write

I(SLM ;WR) = I(SLM ;WL,WR−L)

= I(SLM ;WR−L) + I(SLM ;WL|WR−L)

≥ I(SLM ;WL|WR−L)

= H(WL|WR−L)−H(WL|WR−L, S
L
M )

≥ H(WL|WR−L)−H(WL|SLR−L, SLM )

= min(eα, (d− e(p+ 1))β)

−min(eα, (d− e(p+ 2))β) (54)
= (d− e(p+ 1))β − (d− e(p+ 2))β = eβ.

Here (54) follows from Lemma 6 and Corollary 2. Then, we
obtain

H(SLM |WR) = H(SLM )− I(SLM ;WR) ≤ eβ − eβ = 0.

Hence, H(SLM |WR) = 0. Since L is arbitrary, it follows that
H(SRM |WR) = 0. It follows from Lemma 13 that

H(SRM ) = I(SRM ;WR) ≤ I(WM ;WR) = e(2β − θ).

Hence the proof is completed.

G. Proof of Lemma 16

Proof: The set is R assumed to consist of |R| = er′ =
e(p + 1) nodes, and the set F is such that F = R ∪ {M},
|M | = e. Similar to Lemma 15,

I(SLM ;WR) ≥ H(WL|WR−L)−H(WL|SLR−L, SLM )

= min(eα, (d− (r′ − 1)e)β)−min(eα, (d− r′e)β)

= (d− pe)β − eθ − (d− (p+ 1)e)β

= e(β − θ).

Then, it must be that

H(SLM |WR) = H(SLM )− I(SLM ;WR) ≤ eβ − e(β − θ) = eθ.
(55)

Note that the last inequality holds for any set L ⊆ R. Next,
consider L1, L2 ⊆ R. For this, consider

H(SL1
M , SL2

M ) = I(WR;SL1
M , SL2

M ) +H(SL1
M , SL2

M |WR)

≤ I(WR;WM ) +H(SL1
M , SL2

M |WR)

= I(WR;WM ) +H(SL1
M |WR) +H(SL2

M |WR, S
L1
M )

≤ e(β − θ) + eθ + eθ = e(β + θ), (56)
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where the last inequality follows from Lemma 13 and (55).
Then, we have

H(SL1

M |S
L2

M ) = H(SL1

M , SL2

M )−H(SL2

M )

= H(SL1

M , SL2

M )− eβ
≤ e(β + θ)− eβ = eθ,

where the first equality follows from Lemma 14. Finally,
partitioning the nodes in R into sets R1, R2, . . . , Rr′ of size
e, it follows

H(SRM ) ≤ H(SR1

M ) +

r′∑
i=2

H(SRiM |S
Ri−1

M ) ≤ eβ + e(r′ − 1)θ.

Thus the proof is completed.

H. Proof of Theorem 14

Proof: Take a subnetwork F of d+ e nodes. Let L,M ⊆
F be two disjoint groups of e nodes. Partition the d − e
remaining nodes into two sets, A of cardinality ep and B
of cardinality d− ep− e. Exact repair requires

H(WL|SLA, SLB , SLM ) = 0,

H(WM |SMA , SMB , SML ) = 0.

It follows that

H(WL,WM |WA, S
L
B , S

M
B , S

L
M )

= H(WL|WA, S
L
B , S

M
B , S

L
M ) +H(WM |WL,WA, S

L
B , S

M
B , S

L
M )

= 0.

Therefore, we have

H(SLB , S
M
B , S

L
M ) ≥ H(WL,WM |WA)

= H(WL|WA) +H(WM |WA,WL)

= H(WL)− I(WL;WA) +H(WM )

− I(WM ;WA,WL)

= eα− 0 + eα− e(β − θ) (57)
= 2eα− eβ + eθ

= 2((d− ep)β − eθ)− eβ + eθ

= (2d− 2ep− e)β − eθ. (58)

Here (57) follows from Lemma 13. We note that the lower
bound does not depend on whether d is a multiple of e. Next,
we obtain an an upper bound on the same quantity.

Partition B into sets of size e, denoted by Li. We will use
R = L ∪M, r′ = 2, in the helper node pooling.

case: p+ 2 < η: In this case, the parameters satisfy the
condition in Lemma 15.

H(SLB , S
M
B , S

L
M ) ≤

∑
Li∈B

H(SLLi , S
M
Li) +H(SLM )

≤
∑
Li∈B

e(2β − θ) + eβ (59)

= (d− pe− e)(2β − θ) + eβ

= (2d− 2ep− e)β − (d− ep− e)θ, (60)

where the inequality (59) is obtained using Lemma 14 and
Lemma 15. Equations (58) and (60) are in contradiction if

d− ep− e > e ⇐⇒ d > e(p+ 2), which is true as d ≥ k =
ae > (p+ 2)e.

case: p+2 = η: In this case, Lemma 16 is used to derive
an upper bound on H(SLB , S

M
B , S

L
M ). Lemma 16 does not hold

if η = 2. It holds for η > 2 ⇐⇒ k > 2e. Thus, we consider
k > 2e. We have

H(SLB , S
M
B , S

L
M ) ≤

∑
Li∈B

H(SLLi , S
M
Li ) +H(SLM )

≤
∑
Li∈B

e(β + θ) + eβ

= (d− ep)β + (d− ep− e)θ. (61)

Equations (58) and (61) are in contradiction when
θ < d−ep−e

d−ep β.
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