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Abstract—Having timely and fresh knowledge about the cur-
rent state of information sources is critical in a variety of
applications. In particular, a status update may arrive at the
destination much later than its generation time due to processing
and communication delays. The freshness of the status update at
the destination is captured by the notion of age of information.
In this study, we first analyze a network with a single source, n
servers, and the monitor (destination). The servers independently
sense the source of information and send the status update to
the monitor. We then extend our result to multiple independent
sources of information in the presence of n servers. We assume
that updates arrive at the servers according to Poisson random
processes. Each server sends its update to the monitor through
a direct link, which is modeled as a queue. The service time to
transmit an update is considered to be an exponential random
variable. We examine both homogeneous and heterogeneous
service and arrival rates for the single-source case, and only
homogeneous arrival and service rates for the multiple-source
case. We derive a closed-form expression for the average age
of information under a last-come-first-serve (LCFS) queue for a
single source and arbitrary n homogeneous servers. For n = 2, 3,
we derive the explicit average age of information for arbitrary
sources and homogeneous servers, and for a single source and
heterogeneous servers. For n = 2, we find the optimal arrival
rates given fixed sum arrival rate and service rates.

I. INTRODUCTION

Widespread sensor network applications such as health
monitoring using wireless sensors [1] and the Internet of things
(IoT) [2], as well as applications like efficient monitoring of
physical environment [3], stock market trading and vehicular
networks [4], require sending several status updates to their
designated recipients (called monitors). Outdated information
in the monitoring facility may lead to undesired situations. As
a result, having the data at the monitor as fresh as possible is
crucial.

In order to quantify the freshness of the received status
update, the age of information (AoI) metric was introduced
in [5]. For an update received by the monitor, AoI is defined
as the time elapsed since the generation of the update. AoI
captures the timeliness of status updates, which is different
from other standard communication metrics like delay and
throughput. It is affected by the inter-arrival time of updates
and the delay that is caused by queuing during update pro-
cessing and transmission.

In this paper, we consider AoI in a multiple-server network.
We assume that a number of shared sources are sensed and
then the data is transmitted to the monitor by n independent
servers. For example, the sources of information can be some

shared environmental parameters, and independently operated
sensors in the surrounding area obtain such information. For
another example, the sources of information can be the prices
of several stocks which are transmitted to the user by multiple
independent service providers. Throughout this paper, a sensor
or a service provider is called a server, since it is responsible
for serving the updates to the monitor. We assume that
status updates arrive at the servers independently according
to Poisson random processes, and the server is modeled as
a queue whose service time for an update is exponentially
distributed. We assume information sources are independent
and are sensed by n independent servers.

In [5], the authors consider the single-source single-server
and first-come-first-serve (FCFS) queue model and determine
the arrival rate that minimizes AoI. Different cases of multiple-
source single-server under FCFS and last-come-first-serve
(LCFS) are considered in [6] and the region of feasible age
is derived. In [7] and [8], the system is modeled as a source
that submits status updates to a network of parallel and serial
servers, respectively, for delivery to a monitor and AoI is
evaluated. The parallel-server network is also studied in [9]
when the number of servers is 2 or infinite, and the average
AoI for FCFS queue model is derived.

The authors in [10] formulate a discrete-time decision
problem in order to find a scheduling policy for minimizing the
expected weighted sum of AoI. A multiple-source multiple-
hop setting in broadcast wireless networks is investigated in
[11] and a fundamental lower bound on the average AoI is
derived. Different scheduling policies with throughput con-
straints are considered in [12] to minimize AoI. Another
age-related metric of peak AoI is introduced in [13], which
corresponds to the age of information at the monitor right
before the receipt of the next update. The average peak
AoI minimization in IoT networks and wireless systems is
considered in [14], [15]. The problem of minimizing the
average age in energy harvesting sources by manipulating the
update generation process is studied in [16], [17].

In this paper, we study the average age of information as
in [5]. We mainly consider LCFS with preemption in service
(in short, LCFS) queue model, namely, upon the arrival of
a new update, the server immediately starts to serve it and
drops any old update being served. We derive a closed-form
formula of the average AoI for LCFS and a single source. For
multiple sources, AoI formula is derived for arbitrary number
of sources and n = 2, 3 servers. In addition, the heterogeneous



network with a single source is considered. To obtain the AoI,
we use the stochastic hybrid system (SHS) analysis similar
to [6], [7].

This paper is organized as follows. Section II formally intro-
duces the system model of interest, and provides preliminaries
on SHS. In subsection III-A, we derive the average age of
information formula by applying SHS method to our model
when we have a single information source and the network is
homogeneous. In subsection III-B, we derive AoI for arbitrary
number of information sources and n = 2, 3 servers. In
section IV, we investigate the heterogeneous network for
a single source and n = 2 servers, before concluding in
section V.

II. SYSTEM MODEL AND PRELIMINARIES

Notation: in this paper, we use boldface for vectors, and
normal font with a subscript for its elements. For example,
for a vector x, the j-th element is denoted by xj . For non-
negative integers b ≥ a, we define [a : b] , {a, . . . , b}, and
[a] , [1 : a], for a ≥ 1. If a > b, [a : b] = ∅.

In this section, we first present our network model, and then
briefly review the stochastic hybrid system analysis from [6].

The network consists of m information sources that are
sensed by n independent servers as illustrated in Figure 1.
Updates after going through separate links are aggregated
at the monitor side. Server j collects updates of source i

following a Poisson random process with rate λ
(i)
j and the

service time is an exponential random variable with average
1
µj

, independent of all other servers, j ∈ [n], i ∈ [m]. A

network is called homogeneous if λ(i)j = λ(i), µj = µ, for
all j ∈ [n], i ∈ [m], otherwise, it is heterogeneous. In the case
of a single source in a homogeneous network, we denote λ(1)

simply by λ.
Consider a particular source. Suppose its freshest update

at the monitor at time t is generated at time u(t), the
age of information at the monitor (in short, AoI) is defined
as ∆(t) = t − u(t), which is the time elapsed since the
generation of the last received update. From the definition,
∆(t) linearly increases at a unit rate with respect to t, except
for the reset jump to a lower value when the monitor receives
a fresher update. The goal of this paper is to study the
average AoI, which is the limit of the average age over time,
∆ = limT→∞

∫ T
0

∆(t)dt
/
T . For a stationary ergodic system,

it is also the limit of the average age over the ensemble
∆ = limt→∞ E[∆(t)].

We note a key difference between the model in this work
and most previous models. Updates come from different
servers, therefore they might be out of order at the monitor
and thus a newly arrived update may not have any effect on
AoI because a fresher update may be already delivered.

This paper considers LCFS with preemption in service (in
short LCFS). In this queue model, upon arrival of a new
update, each server immediately drops any previous update
in service and starts to serve the new update.

We view our system as a stochastic hybrid system (SHS) and
apply a method first introduced in [6] in order to calculate aver-
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Figure 1: The n-server monitoring network with S1, S2, ..., Sn
being the independent servers and I1, I2, ..., Im being the
independent information sources, sending the updates from the
sources to the monitor.

age AoI. An SHS can be described by its states and transitions.
The state is composed of a discrete state and a continuous
state. The discrete state q(t) ∈ Q, for a discrete set Q, is a
continuous-time discrete Markov chain (e.g., to represent the
number of idle servers in the network), and the continuous-
time continuous state x(t) = [x0(t), x1(t), . . . , xn(t)] ∈ Rn+1

is the stochastic process for AoI. We use x0(t) to represent
the age at the monitor, and xj(t) for the age at the j-th server,
j ∈ [n]. Graphically, we represent each state q ∈ Q by a node.

For the discrete Markov chain q(t), transitions happen from
one state to another through directed transition edge l, and the
time spent before the transition is exponentially distributed
with rate λ(l). Note that it is possible to transit from the same
state to itself. The transition occurs when an update arrives
at a server, or an update is received at the monitor. Thus
the transition rate is the update arrival rate or the service
rate, λ(l) ∈ {λ(1)1 , ..., λ

(m)
n , µ1, ..., µn}. Denote by L′q and

Lq the sets of incoming and outgoing transitions of state
q, respectively. When transition l occurs, we write that the
discrete state transits from ql to q′l. For instance, if we have 2
states and considering the transition l from state 1 to state
2, we have ql = 1 and q′l = 2, which shows that state
2 is an outgoing transition for state 1 and state 1 is an
incoming transition for state 2. For a transition, we denote that
the continuous state changes from x to x′. In our problem,
this transition is linear in the vector space of Rn+1, i.e.,
x′ = xAl, for some real matrix Al of size (n+ 1)× (n+ 1).
Note that when we have no transition, the age grows at a
unit rate for the monitor and relevant servers, and is kept
unchanged for irrelevant servers. Hence, within the discrete
state q, x(t) evolves as a piece-wise linear function in time,
namely, ∂x(t)∂t = bq , for some bq ∈ {0, 1}n+1.

When the discrete state q(t) is ergodic, the probability of
being at state q converges uniquely to the stationary probability
πq , for all q ∈ Q. We can find these stationary probabilities
from the following set of equations knowing that

∑
q∈Q πq =



1,

πq
∑
l∈Lq

λ(l) =
∑
l∈L′

q

λ(l)πql , q ∈ Q. (1)

Denote by vq = [vq0, vq1, . . . , vqn] a real vector of length
n + 1, for q ∈ Q. A key lemma we use to develop AoI for
our LCFS queue model is the following from [6], which was
derived from the general SHS results in [18].

Lemma 1 ( [6]). If the discrete-state Markov chain q(t) is
ergodic with stationary distribution {πq, q ∈ Q}, and we can
find a non-negative solution of {vq, q ∈ Q} such that

vq
∑
l∈Lq

λ(l) = bqπq +
∑
l∈L′

q

λ(l)vqlAl, q ∈ Q, (2)

then the average age of information is given by

∆ =
∑
q∈Q

vq0. (3)

III. AOI IN HOMOGENEOUS NETWORKS

A. Single Source and Multiple Servers

In this section, we derive AoI with the LCFS queue for
the single-source n-server homogeneous network with arrival
rate λ and service rate µ at all servers. Note that to compute
the average AoI, Lemma 1 requires solving |Q|(n+ 1) linear
equations of {vq, q ∈ Q}. To obtain explicit solutions for these
equations, the complexity grows with the number of discrete
states. Since the discrete state typically represents the number
of idle servers in the system for homogeneous servers, |Q|
should be n + 1. In what follows, we introduce a method
inspired by [7] to reduce the number of discrete states and
efficiently describe the transitions.

We define our continuous state x at a time as follows: the
first element x0 is AoI at the monitor, x1 is the freshest update
among all updates in the servers, and x2 is the second freshest
update in the servers, etc. With this definition, we have x1 ≤
x2 ≤ .... ≤ xn, for any time. Note that the index i of xi does
not represent a physical server index, but the i-th smallest
age of information among the n servers. The physical server
index for xi changes with each transition. We say that the
server corresponding to xi is the i-th virtual server.

A transition l is triggered by the arrival of an update at a
server, or the delivery of an update to the monitor. Recall that
we use x and x′ to denote AoI continuous state vector right
before and after the transition l.

When one update arrives at the monitor and the server
for that update becomes idle, we put a fake update to the
server using the method introduced in [7]. Thus the number
of discrete states is reduced to one, indicating that all servers
are virtually busy. We denote this state by q = 0. In particular,
we put the current update that is in the monitor to an idle server
until the next update reaches this server. This assumption does
not affect our final calculation for AoI, because even if the fake
update is delivered, AoI at the monitor does not change.

Figure 2: SHS for a single source and n homogeneous servers.

l λ(l) x′ =xAl
0 λ [x0, 0, x2, x3, x4, ..., xn]
1 λ [x0, 0, x1, x3, x4, ..., xn]
2 λ [x0, 0, x1, x2, x4, ..., xn]

...
...

n− 1 λ [x0, 0, x1, x2, x3, .., xn−1]
n µ [x1, x1, x1, x1, ..., x1]

n+ 1 µ [x2, x1, x2, x2, ..., x2]
n+ 2 µ [x3, x1, x2, x3, ..., x3]

...
...

2n− 1 µ [xn, x1, x2, x3, ..., xn]

Table I: Table of transitions for a single source and n homo-
geneous servers.

When an update is delivered to the monitor from the k-th
virtual server, the server becomes idle and as previously stated,
receives the fake update. The age at the monitor becomes x′0 =
xk, and the age at the k-th vitual server becomes x′k = x′0 =
xk. In this scenario, consider the update at the j-th virtual
server, for j > k. Its delivery to the monitor does not affect
AoI since it is older than the current update of the monitor,
i.e., xj ≥ xk = x′0. Hence, we can adopt a fake preemption
where the update for the j-th virtual server, for all k ≤ j ≤ n,
is preempted and replaced with the fake current update at the
monitor. Physically, these updates are not preempted and as a
benefit, the servers do not need to cooperate and can work in
a distributed manner.

By utilizing virtual servers, fake update, and fake preemp-
tion, we reduce SHS to a single discrete state with linear
transition Al. In Figure 2, we illustrate our SHS with discrete
state space of Q = {0}. The stationary distribution π0 is trivial
and π0 = 1. We set bq = [1, ..., 1] which indicates that the age
at the monitor and the age of each update in the system grows
at a unit rate. The transitions are labeled l ∈ [0 : 2n− 1], and
for each transition l we list the transition rate and the transition
mapping in Table I. For simplicity, we drop the index q = 0
in the vector v0, and write it as v = [v0, v1, . . . , vn]. Because
we have one state, xAl and vAl are in correspondence. Next,
we describe the transitions in Table I.

Case I. l ∈ [0 : n − 1] : When a fresh update arrives at
virtual server l + 1, the age at the monitor remains the same
and xl+1 becomes zero. This server has the smallest age, so
we take this zero and reassign it to the first virtual server,
namely, x′1 = 0. Accordingly, virtual server l + 1 becomes
virtual server 1, and virtual server 1 becomes virtual server 2,
..., virtual server l becomes virtual server l+ 1. The transition
rate is the arrival rate of the update, λ.
Case II. l ∈ [n : 2n− 1] : When an update is received at the



monitor from virtual server l + 1− n, the age at the monitor
changes to xl+1−n and this server becomes idle. Using fake
updates and fake preemption we assign x′j = xl+1−n, for all
l+ 1− n ≤ j ≤ n. The transition rate is the service rate of a
server, µ.

Below we state our main theorem on the average AoI for
the single-source n-server network.

Theorem 1. The average age of information at the monitor
for homogeneous single-source n-server network where each
server has a LCFS queue is:

∆ =
1

µ

[
1

nρ

n−1∑
j=1

j∏
i=1

ρ(n− i+ 1)

i+ (n− i)ρ
+

1

nρ
+

1

n2

n−1∏
i=1

ρ(n− i+ 1)

i+ (n− i)ρ

]
,

(4)
where ρ = λ

µ .

Proof: Recall that v denotes the vector v0 for the single
state q = 0. By Lemma 1 and the fact that there is only one
state, we need to calculate the vector v as a solution to (2),
and the 0-th coordinate v0 is AoI at the monitor. As mentioned
before, vAl is in correspondence with xAl, so we have:

(nλ+ nµ)v = [1, 1, 1, 1, 1, 1, 1, ..., 1]

+ λ[v0, 0, v2, v3, v4, ..., vn]

+ λ[v0, 0, v1, v3, v4, ..., vn]

+ λ[v0, 0, v1, v2, v4, ..., vn]

...
...

+ λ[v0, 0, v1, v2, v3, ..., vn−1]

+ µ[v1, v1, v1, v1, v1, ..., v1]

+ µ[v2, v1, v2, v2, v2, ..., v2]

+ µ[v3, v1, v2, v3, v3, ..., v3]

...
...

+ µ[vn, v1, v2, v3, ..., vn−1, vn]. (5)

From the 0th coordinate of (5), we have (nλ+ nµ)v0 = 1 +
nλv0 + µ

∑n
j=1 vj , implying

v0 =
1

nµ
+

∑n
j=1 vj

n
. (6)

From the 1st coordinate of (5), it follows that v1 = 1
nλ .

Then, to calculate v0, we have to calculate vi for i ∈ [2 : n].
From the i-th coordinate of (5),

((n− i+ 1)λ+ (i− 1)µ)vi = 1 + µ

i−1∑
j=1

vj + λ(n− i+ 1)vi−1.

(7)
For i ∈ [2 : n− 1], from (7), we obtain

(iµ+ (n− i)λ)(vi+1 − vi) = λ(n− i+ 1)(vi − vi−1).

Hence, wi+1 , vi+1 − vi = λ(n−i+1)
(iµ+(n−i)λ)wi. Setting i = 2 in

(7), we have

((n− 1)λ+ µ)v2 = 1 + µv1 + λ(n− 1)v1. (8)
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Figure 3: AoI versus the number of servers, for fixed total
arrival rate. For each server, the service rate µ = 1 and the
total arrival rate nλ is shown in the x-axis.

Simplifying (8), we obtain w2 = v2 − v1 = 1
(n−1)λ+µ .

Therefore, we write

wj =
1

nλ

j−1∏
i=1

λ(n− i+ 1)

iµ+ (n− i)λ
, 2 ≤ j ≤ n. (9)

Finally, setting i = n in (7),

(λ+ (n− 1)µ)vn = 1 + µ

n−1∑
j=1

vj + λvn−1,

implying µ
∑n
i=1 vi = µ

∑n−1
j=1 vj+µvn = (λ+(n−1)µ)vn+

µvn − 1− λvn−1. Hence,

1

n

n∑
i=1

vi =
λ

nµ
wn + vn −

1

nµ
. (10)

Combining (6) and (10), we obtain the average AoI as

∆ = v0 = vn +
λ

nµ
wn =

n∑
j=2

wj +
1

nλ
+

λ

nµ
wn,

which is simplified to (4) using (9).
Figure 3 shows AoI when the total arrival rate nλ is fixed

and n = 1, 2, 3, 4, 10. We observe that for up to 4 servers,
a significant decrease in AoI occurs with the increase of n.
However, increasing the number of servers beyond 4 provides
only a negligible decrease in AoI. In Figure 4, LCFS (with
preemption in service), LCFS with preemption in waiting, and
FCFS queue models are compared numerically. As can be
seen from the figure, LCFS outperforms the other two queue
models, which coincides with the intuition that exponential
service time is memoryless and older updates in service should
be preempted. Moreover, we observe that the optimal arrival
rate for FCFS queue is approximately 0.5 for all n ≤ 50.

B. Multiple Sources and Multiple Servers

In this subsection, we present AoI calculation with the
LCFS queue for the m-source n-server homogeneous net-
work. Due to the limited space, proofs of theorems are
provided in the online version of the paper [19]. The ar-
rival rate of source i at any server is λ

(i)
j = λ(i), for all
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Figure 4: Comparison of LCFS, FCFS, and LCFS with pre-
emption in waiting (LCFS-W). The number of servers is n = 4
and µ = 1 for each server.

i ∈ [m], j ∈ [n]. The arrival rate of the sources other than
source i is λ(i) ,

∑
i′ 6=i λ

(i′), i ∈ [m]. The service rate at
any server is µ. Let ∆i denote the average AoI at the monitor
for source i ∈ [m]. Without loss of generality, we calculate
∆1 for Source 1 under LCFS.

The continuous state x represents the age for Source 1, and
similar to the single-source case, it is defined as follows: x0 is
AoI of source 1 at the monitor, xi is the age of the i-th freshest
update among all updates of source 1 in the servers. Therefore
x1 ≤ x2 ≤ .... ≤ xn, for any time. Using fake updates and
fake preemption as explained in Section III-A, we obtain an
SHS with a single discrete state and 3n transitions described
below:

Case I. l ∈ [0 : n − 1]: A fresh update arrives at virtual
server l from source 1. This update is the freshest update,
so x′1 = 0. Now, the previous freshest update becomes the
second freshest update, that is x′2 = x1, and so on. Then x′ =
[x0, 0, x1, . . . , xl, xl+2, . . . , xn]. The transition rate is λ(1).

Case II. l ∈ [n : 2n − 1]: A fresh update arrives at
virtual server l′ , l + 1 − n from source i 6= 1. The
age at the monitor does not change, namely, x′0 = x0. The
l′-th freshest update is preempted. Moreover, if the virtual
server l′ does complete service, it does not reduce the age of
the source of interest. Thus, the l′-th virtual server becomes
the n-th virtual server with age x0. Therefore, we have
x′ = [x0, x1, . . . , xl′−1, xl′+1 . . . , xn, x0]. The transition rate
is λ(1).

Case III. l ∈ [2n : 3n−1]: the update of source 1 in virtual
server h , l + 1− 2n is delivered. The age x0 is reset to xh
and the virtual server h becomes idle. Using fake update and
fake preemption, we reset x′l = xh, h ≤ j ≤ n. The transition
rate is µ.

Dropping the index q = 0 and denoting v0 = v =
[v0, v1, . . . , vn], the system of equations for the model is

nµv0 = 1 + µ

n∑
i=1

vi,

v1(λ(1) + nλ(1)) = 1 + λ(1)v2,

n(λ+ µ)vi = 1 + (i− 1)λ(1)vi + (n− i+ 1)λ(1)vi−1

+ iλ(1)vi+1 + (n− i)λ(1)vi

+ µ

i−1∑
j=1

vj + (n− i+ 1)µvi, 2 ≤ i ≤ n,

(11)

where vn+1 , v0 and λ = λ(1) + λ(1) =
∑n
i=1 λ

(i).
The theorems below state the average AoI for n = 2, 3

servers, and determine the optimal arrival rate given the sum
arrival rate.

Theorem 2. For m information sources and n = 2 homoge-
neous servers, the average AoI at the monitor for source i,
1 ≤ i ≤ m, is

∆i =
1

2(λ+ µ)
+
λ+ µ

2µλ(i)
. (12)

Theorem 3. For homogeneous m sources and n = 3 servers,

∆i =
1

3µ

(5ρ(1) + 2(ρ+ 1)2)(ρ+ 1)

2ρ3 + 5ρ(1)ρ+ 2ρ(1)
, 1 ≤ i ≤ m,

where ρ = λ
µ and ρ(i) = λ(i)

µ .

Theorem 4. Consider homogenous m sources and 2 servers.
The optimal arrival rate λ(i)

∗
minimizing the weighted sum

of AoIs, i.e., w1∆1 +w2∆2 + ...+wn∆n for wi ≥ 0, subject
to the constraint λ(1) + λ(2) + ...+ λ(m) = λ, is given by

λ(i)
∗

=
λ
√
wi∑m

i=1

√
wi
, i ∈ [m].

IV. HETEROGENEOUS NETWORKS FOR A SINGLE SOURCE

In this section, we consider a single source and assume that
the arrival and service rates of the servers are arbitrary. We
denote by λ

(1)
j , λj the arrival rate of the single source at

server j, and µj the service rate of server j ∈ [n]. For this
setting, we can no longer use the same technique used in the
homogeneous case to reduce the state space and derive AoI.
In particular, we need to keep track of the age of updates at
the physical servers as well as their ordering, resulting in n!
number of states. In the following, we illustrate the steps for
deriving AoI in the case of n = 2 servers.

Theorem 5. Consider m = 1 source and n = 2 heterogeneous
servers. The average AoI is given by

∆ = (13)
1

µ1 + µ2
+

1

λ1 + λ2
+

1

µ1 + µ2

1

λ1 + λ2
(
µ1λ2

λ1 + µ2
+

µ2λ1

λ2 + µ1
).

Proof: We define State 1 as the state that Server 1 contains
a fresher update compared to Server 2 and State 2 as the state
that Server 2 has the fresher update. Table II summarizes the
transition rates and the mappings in the system.

Based on Table II and solving (1) and (2), we can derive
the exact expression of AoI. Explicit derivations can be found
online at [19].

For n = 2 servers, we find the optimal arrival rates. The
derivation can be found in [19].



l λ(l) Transition x′ =xAl vqlAl
1 λ1 1→ 1 [x0, 0, x2] [v10, 0, v12]
2 λ1 2→ 1 [x0, 0, x2] [v20, 0, v22]
3 λ2 1→ 2 [x0, x1, 0] [v10, v11, 0]
4 λ2 2→ 2 [x0, x1, 0] [v20, v21, 0]
5 µ1 1→ 1 [x1, x1, x1] [v11, v11, v11]
6 µ1 2→ 2 [x1, x1, x2] [v21, v21, v22]
7 µ2 1→ 1 [x2, x1, x2] [v12, v11, v12]
8 µ2 2→ 2 [x2, x2, x2] [v22, v22, v22]

Table II: Table of transitions for n = 2 heterogeneous servers.
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Figure 5: Optimal value of λ1 as a function of µ1. λ1 +λ2 =
λ, µ1 + µ2 = 100.

Theorem 6. For m = 1 and n = 2 heterogeneous servers,
given µ1, µ2 and fixed λ1 + λ2 = λ, the optimal λ1

∗ satisfies
• if µ1 < µ2 and µ2

2 − µ1(λ+µ1)(λ+µ2)
µ2

< 0:

λ1
∗ =

−(µ2 + c(λ+ µ1)) +
√
µ1(λ+ µ2)(2 + µ2

λ+µ1
+ λ+µ1

µ2
)

1 − µ1(λ+µ2)
µ2(λ+µ1)

,

• if µ1 < µ2 and µ2
2 ≥ µ1(λ+µ1)(λ+µ2)

µ2
: λ1

∗ = 0, λ2
∗ = λ,

• if µ1 > µ2 and µ2
1 ≥ µ2(λ+µ1)(λ+µ2)

µ1
: λ1

∗ = λ, λ2
∗ = 0,

• if µ1 > µ2 and µ2
1 <

µ2(λ+µ1)(λ+µ2)
µ1

:

λ1
∗ = λ−

−(µ1 + (λ+µ2)
c

) +
√
µ2(λ+ µ1)(2 + µ1

λ+µ2
+ λ+µ2

µ1
)

1 − µ2(λ+µ1)
µ1(λ+µ2)

,

where c = µ1(λ+µ2)
µ2(λ+µ1)

.

The optimal λ1∗ is illustrated in Figure 5. When µ1 = µ2

the optimal rates that minimize AoI are λ1
∗ = λ2

∗ = λ
2 .

As Figure 5 illustrates, for µ1 = µ2 = 50, optimal rates are
λ1
∗ = λ

2 and in the regimes that one of the service rates is
much greater than the other one, AoI minimizes when all the
updates are sent to the server with the greater service rate.

V. CONCLUSION

In this paper, we studied the age of information in the
presence of multiple independent servers monitoring several
information sources. We derived AoI for the LCFS queue
model using SHS analysis when we had a homogeneous
network and a single source. We also provided the AoI formula
for m sources and n = 2, 3 servers in a homogeneous network.

For a single-source heterogeneous network, the case of n = 2
servers were investigated. Moreover, optimal arrival rates are
obtained when the sum arrival rate and the service rates are
given. Future directions include deriving explicit formula of
AoI for multiple sources in a homogeneous and heterogeneous
sensing networks where the update arrival rate and/or the
service rate are different among the servers for any number of
sources and servers.
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