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Abstract—In distributed storage, erasure codes provide fault-
tolerance while reducing the storage overhead compared to
replication. The network traffic cost during the repair of node
failures, called repair bandwidth, is an important metric in code
design. Regenerating codes are a class of erasure codes developed
with the aim of reducing the repair bandwidth while maintaining
a high level of fault-tolerance. They exhibit a tradeoff between the
storage overhead per node and the repair bandwidth. However,
a fundamental understanding of the storage-repair bandwidth
tradeoff under exact repair is open in general. In this work,
we consider the exact repair problem of multiple failures in a
centralized way. Building upon techniques from the literature, we
first provide an alternative proof of the functional repair bound.
Then, we derive a new outer bound for linear centralized multi-
node exact repair codes and illustrate its performance under
various parameter settings. The derived outer bound shows that,
in general, the centralized multi-node functional repair tradeoff
is not achievable under linear exact repair.

I. INTRODUCTION

In distributed storage systems (DSSs), a file is encoded into
multiple fragments using an erasure code, and then stored
across a number of nodes connected over a network. A serious
challenge for DSSs is node failure, which may occur for
several reasons. Indeed, as the system scales, the number of
hardware failures scales with it. Moreover, the content of some
nodes may be temporarily unavailable for several reasons, such
as software updates, power outage, and network congestion.
The repair problem is the problem of recovering the content
of unavailable nodes, and it is a crucial task in DSSs. The
total amount of information transferred through the network
during a repair process is referred to as repair bandwidth.
Regenerating codes [1], [2] are a class of novel erasure codes
with efficient repair bandwidth.

The focus of this paper is on centralized multi-node repair
codes. We assume all symbols belong to a finite field F. A
file of size M over F is stored in the system, such that each
node stores α symbols in F. The content of any k out of n
nodes in the system is required to be sufficient to reconstruct
the entire data. The repair of e nodes, where 1 ≤ e ≤ n− k,
is achieved by contacting any set of arbitrary d helpers such
that k ≤ d ≤ n − e, and downloading β ≤ α symbols. Fur-
thermore, A code satisfying the centralized repair constraints
is referred to as an (M, n, k, d, e, α, β) regenerating code. We
also say it is a code of the (n, k, d, e) system. If the repaired
information is the same as the lost information, the code is
exact repair. Otherwise, the code is functional repair as long
as the reconstruction and repair requirements are maintained.
We study outer bounds on centralized multi-node exact repair
codes, which is open even for the single-node case in general.

Related work. Several constructions of regenerating codes
repairing a single erasure have been proposed in the litera-
ture, e.g., [3]–[6]. Outer bounds for single-node exact repair

include [7]–[12]. In particular, for linear (n, k, k, 1) systems,
the achievable schemes [5], [6] match the outer bound [9]–
[11]. Following the lines of [11], the authors in [13] derived
outer bounds for linear exact repair cooperative regenerating
codes, where the communication among the replacement nodes
also accounts for the repair bandwidth.

Constructions of centralized multi-node exact repair codes
appear in, e.g., [6], [14]–[18]. Note that the functional repair
bound represents an outer bound for the exact repair tradeoff.
Multi-node functional repair regenerating codes satisfy [18]

M≤ min
l∈P

 g∑
i=1

min(liα, (d−
i−1∑
j=1

lj)β)

 , (1)

where

P = {l = [l1, . . . , lg] : 1 ≤ li ≤ e, g ∈ N,
g∑
i=1

li = k}. (2)

The vector l in (2) represents a scenario where the k contacted
nodes are divided into g groups of sizes li, i = 1, . . . , g,
respectively, such that the first l1 nodes have been repaired
simultaneously, the l2 nodes repaired simultaneously, and so
on [15], [18]. Moreover, [18] showed that most points on the
functional repair tradeoff are not achievable under exact repair.
Table I summarizes the relevant works, and the focus of this
paper is on deriving outer bounds for exact-repair codes when
e > 1.

Exact-repair codes Achievable points Outer bounds
e = 1 [3]–[6] [1], [7]–[12]
e > 1 [6], [14]–[18] [15], [18]

TABLE I: Exact-repair regenerating codes references.

Contributions of the paper. We provide an alternative
proof of the functional repair bound. We then derive a new
outer bound for linear multi-node exact repair regenerating
codes (Theorem 1). We illustrate numerically the new bound,
improving on the functional repair outer bound under various
parameter settings. The techniques used in this paper follow
along the lines of [11], [13]. The proof of Theorem 1 is given
in the following sections.

Theorem 1. Consider a linear exact repair regenerating code
with parameters (M, n, k, d, e, α, β), the file size M satisfies

M≤s− 1

s+ 1
(d+ e)α

+
2

s(s+ 1)

g∑
h=1

min(slhα, hlhα, (d− k +

h∑
t=1

lt)β),

(3)



where l = [l1, . . . , lg] ∈ P , given by (2), and s is an arbitrary
integer with 1 ≤ s ≤ g.

Notation. For a non-negative integer n, define [n] ,
{1, . . . , n}. For integers m ≤ n, define [m,n] , {m,m +
1, . . . , n}. The transpose of a matrix M is denoted by M t.
The (m ×m) identity matrix is denoted by Im. Let M be a
matrix consisting of mn submatrices as

M =

M1,1 · · · M1,n

...
. . .

...
Mm,1 · · · Mm,n

 .
S(M) denotes the column space of M . Consider sets I ⊆
[m], J ⊆ [n], we denote by MI,J the matrix constructed by
collecting submatrices whose indices i and j are in I and J ,
respectively. For i ∈ [m], j ∈ [n], call Mi,[n] = [Mi,1 . . .Mi,n]

the thick row indexed by i and M[m],j =
[
M t

1,j . . .M
t
m,j

]t
the

thick column indexed by j.

II. PROPERTIES OF LINEAR EXACT REPAIR CODES

In this section, we define linear multi-node exact repair
regenerating codes, and establish some of their properties.

An (M, n, k, d, e, α, β) centralized repair regenerating code
encodes a (1×M) message vector m into a (1×nα) codeword
vector c. The first node stores the first α symbols of c, the
second node stores the next α symbols, and so on. Let ci
denote the vector of α symbols stored at node i, such that

c = [c1, c2, . . . , cn] .

A multi-node exact repair regenerating code is linear if
encoding, decoding and repair are linear. Thus, a linear exact
repair code can be regarded as an (nα,M)-linear code, such
that there exists an (M × nα) generator matrix G and an
((nα−M)× nα) parity check matrix H which satisfy

c = mG,GHt = 0,

rank(G) =M, rank(H) = nα−M.

In the following, we restrict n = d + e, as any (n, k, d, e)
system contains a (d + e, k, d, e) system. We now derive a
key lemma that will be used in the proof of Theorem 1,
establishing conditions that must be satisfied by matrix H .

Lemma 1. Consider an (M, n, k, d, e, α, β)-linear central-
ized exact repair code where n = d+e. The matrix H satisfies
the following conditions.

1) The rank of a matrix constructed by collecting n − k
arbitrary thick columns of H is full, i.e., (n− k)α.

2) For any index set R = {i1, . . . , ie} ⊆ [n], where i1 <
. . . < ie and |R| = e, there exists an (eα× nα) matrix

HR =

ARi1,1 · · · AR1,n
...

. . .
...

ARie,1 · · · ARe,n

 ,
where ARi,j is of size (α× α), such that

a) ARR,R = Ieα,
b) for j ∈ D , [n]\R, we have rank(ARR,j) ≤ β,
c) S(Ht

R) ⊆ S(Ht).

Proof. The proof of 1) is identical to [13, Proof of Lemma 1]
and is omitted. It follows from the data reconstruction property.
We now prove 2).

Consider a repair process where the e nodes in R are
centrally repaired with the d nodes in D. Node j ∈ D sends a
(1×β) vector sR,j , which is a linear combination of elements
of cj . That is, there exists an (α× β) matrix ΦR,j such that

sR,j = cjΦR,j , j ∈ D.

From the repair requirement, ci, i ∈ R, can be reconstructed
by linearly combining dβ symbols of {sR,j , j ∈ D}:

ci =
∑
j∈D

sR,jΨ
R
i,j =

∑
j∈D

cjΦR,jΨ
R
i,j , (4)

where ΨR
i,j are encoding matrices of size (β ×α). For i ∈ R,

define

ARi,j =

Iα, if j = i,

−(ΦR,jΨ
R
i,j)

t, if j ∈ D,
0α×α, if j ∈ R\{i}.

(5)

Then, 2a) is proved. Moreover, for j ∈ D,[
(ARi1,j)

t · · · (ARie,j)
t
]

=
[
−ΦR,jΨ

R
i1,j

· · · −ΦR,jΨ
R
ie,j

]
= ΦR,j

[
−ΨR

i1,j
· · · −ΨR

ie,j

]
.

Thus,

rank(ARR,j) = rank(ΦR,j
[
−ΨR

i1,j
· · · −ΨR

ie,j

]
)

≤ rank(ΦR,j) ≤ β.

Finally, for every codeword c, from (4) and (5) we have

∀i ∈ R,
[
ARi,1 ARi,2 · · · ARi,n

]
ct = 0 =⇒ HRc

t = 0.

S(Ht
R) is orthogonal to S(Gt) and hence 2c) is proved.

III. OUTER BOUND FOR LINEAR EXACT REPAIR CODES

In this section, we give an alternative proof of the functional
repair bound (1) and prove Theorem 1 via the following steps:

1) Choose an arbitrary vector l ∈ P , defined in (2).
2) Using Lemma 1, construct an (nα × nα) repair matrix,

Hrepair,l.
3) Find a lower bound for rank(Hrepair,l), hence a lower

bound for rank(H).
4) An upper bound for M is obtained using the relation
M = nα− rank(H) and the lower bound for rank(H).

A. Construction of Hrepair,l

Consider a vector l ∈ P , and let l0 = n− k. Then,
g∑
i=0

li =

n = d+ e. Consider the sets

R
′

h = [

h−1∑
t=0

lt + 1,

h∑
t=0

lt], Rh = R
′

h ∪Nh,

where |R′h| = lh, and Nh is chosen arbitrarily to satisfy Nh ⊆

[
h−1∑
t=0

lt], |Nh| = e − lh. For each set Rh, which is of size e,

by Lemma 1, there exists a matrix HRh
of size (eα × nα).

From this matrix, we collect the last lh thick rows in a matrix
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Fig. 1: Exact repair bound of Theorem 1 (black dashed curves) vs. functional repair bound (blue solid curves with squares)
vs. achievable points from [17] (orange solid curves with circles), in terms of ᾱ = α

M and β̄ = β
M .

ARh

R
′
h,[n]

of size (lhα×nα). Note that in ARh

R
′
h,[

∑h−1
t=0 lt]

, the set
of thick columns that are zero correspond to Nh. The set of
remaining thick columns are given by

Lh = [

h−1∑
t=0

lt]\Nh. (6)

Let H̃ be constructed by taking the first l0 thick columns
of H and H̃† its left-inverse of size (l0α × (nα −M)). We
construct Hrepair,l as follows:

Ht
repair,l =

[
(H̃†H)t (AR1

R
′
1,[n]

)t · · · (A
Rg

R
′
g,[n]

)t
]
.

By Condition 2c) of Lemma 1, S(Ht
repair,l) ⊆ S(Ht). The

thick rows of Hrepair,l have l0α, l1α, . . . , lhα rows, respec-
tively. By grouping the columns by the same pattern, Hrepair,l

consists of (g + 1)2 submatrices as

Hrepair,l =

B0,0 · · · B0,g

...
. . .

...
Bg,0 · · · Bg,g

 ,
where Bh,t is of size (lhα× ltα) and[

B0,0 · · · B0,g

]
= H̃†H,

Bh,t = ARh

R
′
h,R
′
t

, for 1 ≤ h ≤ g, 0 ≤ t ≤ g.

Moreover, Bh,h is the h-th diagonal submatrix of size (lhα×
lhα). It can be immediately checked that B0,0 = I(n−k)α,
and from Condition 2a) in Lemma 1, it follows that Bh,h =
Ilhα, for 1 ≤ h ≤ g.

B. An alternative proof of the functional repair bound

Define δ0 = rank(B[0,g],0) and

δh = rank(B[0,g],[0,h])− rank(B[0,g],[0,h−1]), for 1 ≤ h ≤ g.

Then, δh represents the increment of rank after the h-th thick
column is added. Note that δ0 = (n− k)α. For the h-th thick

row, 1 ≤ h ≤ g, we have

δh ≥ rank(Bh,[0,h])− rank(Bh,[0,h−1])

≥ rank(Bh,h)− rank(Bh,[0,h−1])

= lhα− rank(ARh

R
′
h,[

∑h−1
t=0 lt]

). (7)

By the definition of Lh in (6), we have rank(ARh

R
′
h,[

∑h−1
t=0 lt]

) =

rank(ARh

R
′
h,Lh

). By Condition 2b) in Lemma 1, we have

rank(ARh

R
′
h,j

) ≤ rank(ARh

Rh,j
) ≤ β,∀j ∈ [n]\Rh.

Note that Lh ⊆ [n]\Rh, and |Lh| =
∑h−1
t=0 lt − Nh =∑h

t=0 lt − e = d− k +
∑h
t=1 lt. Therefore, we have

rank(A
Rh

R
′
h
,Lh

) ≤
∑
j∈Lh

rank(A
Rh

R
′
h
,j

) ≤ β|Lh| = β(d− k +

h∑
t=1

lt).

(8)
Thus, combining (7) and (8), we have

rank(Hrepair,l) =

g∑
h=0

δh = (n− k)α+

g∑
h=1

δh

≥ (n− k)α+

g∑
h=1

[lhα− (d− k +

h∑
t=1

lt)]
+

= (n− k)α+

g∑
h=1

[lhα− (d−
g∑

t=h+1

lt)β]+,

as
∑g
t=1 lt = k, where [x]+ , max(0, x). Therefore, we have

M = nα− rank(H) ≤ nα− rank(Hrepair,l)

=

g∑
h=1

lhα−
g∑

h=1

[lhα− (d−
g∑

t=h+1

lt)β]+

=

g∑
h=1

min(lhα, (d−
g∑

t=h+1

lt)β),



which is equivalent to (1).

C. Derivation of Theorem 1

We now obtain a different lower bound for rank(Hrepair,l)
using the following theorem.
Theorem 2 ( [13]). Consider a matrix M with n thick
columns and n thick rows (i.e., M has n2 submatrices, denoted
Mi,j , i, j ∈ [n]). The number of columns (rows) in each thick
column (thick row) does not need to be identical. If M satisfies
the following conditions

1) For any j ∈ [n], the thick column M[n],j has linearly
independent columns,

2) ∀j ∈ [n], rank(Mj,j) = rank(M[n],j),
then, for every integer s ≥ 1, rank(M) is lower bounded by

s(s+ 1)

2
rank(M) ≥

n∑
i=1

max(0, (s− i+ 1)rank(Mi,i), s rank(Mi,i)− Ti), (9)

where Ti =
∑i−1
j=1 rank(Mi,j) for 2 ≤ i ≤ n, and T1 = 0.

For a given vector l, Hrepair,l has (g + 1)2 submatrices.
Moreover, the diagonal submatrices are identity matrices.
Thus, Hrepair,l satisfies the two conditions in Theorem 2.
Consider an integer s ≥ 1. Using (9), we obtain

s(s+ 1)

2
rank(Hrepair,l)

≥ s(n− k)α+

g∑
h=1

max(0, (s− h)lhα, slhα− Th).

Recall Lh as defined in (6), then

Th =

h−1∑
t=0

rank(Bh,t) =

h−1∑
t=0

rank(ARh

R
′
h,R
′
t

)

≤

∑h−1
t=0 lt∑
j=0

rank(ARh

R
′
h,j

) =
∑
j∈Lh

rank(ARh

R
′
h,j

)

≤ |Lh|β = (d− k +

h∑
t=1

lt)β , ∆h.

Thus, we write

rank(Hrepair,l) ≥
2(n− k)α

s+ 1

+
2

s(s+ 1)

g∑
h=1

max(0, (s− h)lhα, slhα−∆h)

≥ 2(n− k)α

s+ 1
+

2

s(s+ 1)

g∑
h=1

slhα

+
2

s(s+ 1)

g∑
h=1

max(−slhα,−hlhα,−∆h),

=
2nα

s+ 1
− 2

s(s+ 1)

g∑
h=1

min(slhα, hlhα,∆h).

In terms of M, we have M ≤ nα − rank(Hrepair,l), which
simplifies to (3) in Theorem 1. While (3) holds for s ≥ 1,
following [13, Remark 6], it is sufficient to consider s ∈ [g].

Remark 1. When s = 1, (3) coincides with the bound in (1).
Theorem 1 is at least as tight as the functional repair bound.
When e = 1, (3) coincides with the bounds in [11].

IV. EVALUATION OF THEOREM 1 AND DISCUSSION

We evaluate Theorem 1 under various parameter settings in
Fig. 1. The bound improves upon the functional repair bound
when d is close to k. For instance, for the (k + e, k, k, e)
system, we observe that the exact repair bound approaches
the inner bound from [17] as k increases, for fixed e. We note
however that Theorem 1 does not rule out the achievability
of the minimum bandwidth point of the functional tradeoff,
which is shown to be not achievable under linear exact
repair in [18]. This letter is a step toward understanding
the fundamental storage-bandwidth under linear exact repair.
Developing matching outer and inner bounds is still open and
represents an interesting research direction.
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