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Abstract—A secure multi-party batch matrix multiplication
problem (SMBMM) is considered, where the goal is to allow
a master to efficiently compute the pairwise products of two
batches of massive matrices, by distributing the computation
across S servers. Any X colluding servers gain no information
about the input, and the master gains no additional information
about the input beyond the product. A solution called Generalized
Cross Subspace Alignment codes with Noise Alignment (GCSA-
NA) is proposed in this work, based on cross-subspace alignment
codes. The state of art solution to SMBMM is a coding scheme
called polynomial sharing (PS) that was proposed by Nodehi
and Maddah-Ali. GCSA-NA outperforms PS codes in several key
aspects — more efficient and secure inter-server communication,
lower latency, flexible inter-server network topology, efficient
batch processing, and tolerance to stragglers.

I. INTRODUCTION

Recent interest in coding for secure, private, and distributed
computing combines a variety of elements such as coded
distributed massive matrix multiplication, straggler tolerance,
batch computing and private information retrieval [1]–[39].
These related ideas converged recently in Generalized Cross
Subspace Alignment (GCSA) codes presented in [39]. GCSA
codes originated in the setting of secure private information
retrieval [36] and have recently been developed further in
[39] for applications to coded distributed batch computation
problems where they generalize and improve upon the state
of art schemes such as Polynomials codes [2], MatDot codes
and PolyDot codes [3], Generalized PolyDot codes [4] and
Entangled Polynomial Codes [5] (all based on matrix parti-
tioning) and Lagrange Coded Computing [6] (based on batch
processing).

As the next step in the expanding scope of coding for
distributed computing, recently in [40] Nodehi and Maddah-
Ali explored its application to secure multiparty computation
[41]. Specifically, Nodehi et al. consider a system including N
sources, S servers and one master. Each source sends a coded
function of its data (called a share) to each server. The servers
process their inputs and while doing so, may communicate
with each other. After that each server sends a message to the
master, such that the master can recover the required function
of the source inputs. The input data must be kept perfectly
secure from the servers even if up to X of the servers collude
among themselves. The master must not gain any information
about the input data beyond the result. Nodehi et al. propose
a scheme called polynomial sharing (PS), which admits basic

matrix operations such as addition and multiplication. By
concatenating basic operations, arbitrary polynomial function
can be calculated. The PS scheme has a few key limitations. It
needs multiple rounds of communication among servers where
every server needs to send messages to every other server. This
carries a high communication cost and requires the network
topology among servers to be a complete graph (otherwise data
security may be compromised), does not tolerate stragglers,
and does not lend itself to batch processing. These aspects
(batch processing, improved inter-server communication effi-
ciency, various network topologies) are highlighted as open
problems by Nodehi et al. in [40].

Since GCSA codes are particularly efficient at batch pro-
cessing and already encompass prior approaches to coded
distributed computing, in this work we explore whether GCSA
codes can also be applied to the problem identified by Nodehi
et al. In particular, we focus on the problem of multiplication
of two matrices. As it turns out, in this context the answer is
in the affirmative. Securing the data against any X colluding
servers is already possible with GCSA codes as shown in
[39]. The only remaining challenge is how to prevent the
master from learning anything about the inputs besides the
result of the computation. Let us refer to the additional terms
that are contained in the answers sent by the servers to the
master, which may collectively reveal information about the
inputs beyond the result of the computation, as interference
terms. To secure these interference terms, we use the idea of
Noise Alignment (NA) – the workers communicate among
themselves to share noise terms (unknown to the master)
that are structured in the same manner as the interfering
terms. Because of their matching structures, when added to the
answer, the noise terms align perfectly with the interference
terms and as a result no information is leaked to the master
about the input data besides the result of the computation.
Notably, the idea of noise alignment is not novel. While there
are superficial distinctions, noise alignment is used essentially
in the same manner in [42].

The combination of GCSA codes with noise alignment,
GCSA-NA in short, leads to significant advantages over PS
schemes. Foremost, because it uses GCSA codes, it allows the
benefits of batch processing as well as straggler robustness,
neither of which are available in the PS scheme of [40].
The only reason any inter-server communication is needed
in a GCSA-NA scheme is to share the aligned noise terms
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Fig. 1: The SMBMM problem.

among the servers. Since these terms do not depend on the
data inputs, the inter-server communication in a GCSA-NA
scheme is secure in a stronger sense than possible with
PS, i.e., even if all inter-server communication is leaked, it
can reveal nothing about the data inputs. In fact, the inter-
server communication can take place before the input data is
determined, say during off-peak hours. This directly leads to
another advantage. The GCSA-NA scheme allows the inter-
server communication network graph to be any connected
graph unlike PS schemes which require a complete graph.

Notation: For positive integers M,N , [N ] and [M : N ]
stand for the set {1, 2, . . . , N} and {M,M + 1, . . . , N},
respectively. For I = {i1, i2, . . . , iN}, XI denotes the set
{Xi1 , Xi2 , . . . , XiN }. For a matrix M, |M| denotes the num-
ber of elements. For a polynomial P , degα(P ) denotes its
degree with respect to a variable α. The notation Õ(a log2 b)
suppresses polylog terms, which means that such a term may
be replaced with O(a log2 b) if the field F supports the Fast
Fourier Transform, and with O(a log2 b log log(b)) otherwise.

II. PROBLEM STATEMENT

Consider a system including 2 sources, S servers (workers)
and one master, as illustrated in Fig. 1. Each source is
connected to every single server. Servers are connected to each
other, and all of the servers are connected to the master. All
of these links are secure and error free.

Each source generates a sequence of L matrices, denoted
as A =

(
A(1), . . . ,A(L)

)
, B =

(
B(1), . . . ,B(L)

)
, such

that for all l ∈ [L], A(l) ∈ Fλ×κ,B(l) ∈ Fκ×µ. The
master is interested in the sequence of product matrices,
AB =

(
A(1)B(1), . . . ,A(L)B(L)

)
. The system operates in

three phases: sharing, computation and communication, and
reconstruction.

1) Sharing: Each source encodes (encrypts) its matrices for
the sth server as Ãs and B̃s, so Ãs = fs(A,ZA), B̃s =
gs(B,ZB), where ZA and ZB represent private random-
ness (noise) generated by the source. The encoded matrices,
Ãs, B̃s, are sent to the sth server.

2) Computation and Communication: Denote the commu-
nication from Server s to Server s′ as Ms→s′ . Define Ms =
{Ms′→s, s

′ ∈ [S] \ {s}} and M = {Ms, s ∈ [S]}. After
the communication among servers, each server s computes a
response Ys and sends it to the master. Ys is a function of Ãs,
B̃s and Ms, i.e., Ys = hs(Ã

s, B̃s,Ms), where hs, s ∈ [S]
are the functions used to produce the answer, and we denote
them collectively as h = (h1, h2, . . . , hS).

3) Reconstruction: The master downloads information from
servers. Some servers may fail to respond (or respond after
the master executes the reconstruction), such servers are
called stragglers. The master decodes the sequence of product
matrices AB based on the information from the responsive
servers, using a class of decoding functions (denoted d). Define
d = {dR : R ⊂ [S]} where dR is the decoding function used
when the set of responsive servers is R.

This scheme must satisfy three constraints.
Correctness: The master must be able to recover the desired

products AB, i.e., H(AB | YR) = 0, or equivalently AB =
dR(YR), for some R.

Security & Strong Security: The servers must remain
oblivious to A,B, even if X of them collude. Formally,
∀X ⊂ [S], |X | ≤ X , I(A,B; ÃX , B̃X ,MX ) = 0.

In this paper, strong security is also considered. It re-
quires that the information transmitted among servers is in-
dependent of A,B and all of the shares Ã[S], B̃[S], i.e.,
I(A,B, Ã[S], B̃[S];M) = 0.

Privacy: The master must not gain any additional infor-
mation about A,B, beyond the required product. Precisely,
I(A,B;Y1, Y2, · · · , YS | AB) = 0.

We say that (f, g,h, d) form an SMBMM code if it satisfies
these three constraints. An SMBMM code is said to be r-
recoverable if the master is able to recover the desired products
from the answers obtained from any r servers. In particular, an
SMBMM code (f, g,h, d) is r-recoverable if for any R ⊂ [S],
|R| = r, and for any realization of A, B, we have AB =
dR(YR). Define the recovery threshold R of an SMBMM code
(f, g,h, d) to be the minimum integer r such that the SMBMM
code is r-recoverable.

The communication cost is comprised of 3 parts: source
upload cost, server communication cost, and master down-

load cost. The (normalized) upload costs UA =
∑
s∈[S] |Ã

s|
Lλκ

and UB =
∑
s∈[S] |B̃

s|
Lκµ . Similarly, the (normalized) server

communication cost CC = |M|
Lλµ and download cost D =

maxR,R⊂[S],|R|=R

∑
s∈R |Ys|
Lλµ .

Next let us consider the complexity of encoding, decoding
and server computation. Define the (normalized) computa-
tional complexity at each server, Cs, to be the order of
the number of arithmetic operations required to compute
the function hs at each server, normalized by L. Similarly,
define the (normalized) encoding computational complexity
CeA for Ã[S] and CeB for B̃[S] as the order of the number
of arithmetic operations required to compute the functions
f and g, respectively, each normalized by L. Finally, define
the (normalized) decoding computational complexity Cd to be



Polynomial Sharing (PS [40]) GCSA-NA

Strong Security No Yes
Recovery Threshold (R) 2pmn+ 2X − 1 pmn(`+ 1)Kc + 2X − 1

Straggler Tolerance No (S = R) Yes. Tolerates S −R stragglers
Server Network Topology Complete Graph Any Connected Graph

Source Encoding
Complexity (CeA, CeB)

(
Õ
(
λκS log2 S

pm

)
, Õ
(
κµS log2 S

pn

)) (
Õ
(
λκS log2 S
Kcpm

)
, Õ
(
κµS log2 S
Kcpn

))
Source Upload Cost (UA, UB)

(
S
pm

, S
pn

) (
S

Kcpm
, S
Kcpn

)
Server Communication

Cost (CC)
S(S−1)
mn

S−1
`Kcmn

Server Computation
Complexity (Cs) O

(
λκµ
pmn

)
+O (λµ) + Õ

(
S log2 Sλµ

mn

)
O
(

λκµ
Kcpmn

)
+O

(
λµ

Kcmn

)
+ Õ

(
λµ log2 S
`Kcmn

)
+O

(
(S−1)λµ
mn

)
≈ O

(
λκµ
pmn

)
if κ
p
� S ≈ O

(
λκµ

Kcpmn

)
if κ
p
� S

Master Download
Cost (D) mn+X

mn
R

`Kcmn

Master Decoding
Complexity (Cd) Õ

(
λµ log2(mn+X)

)
Õ
(
λµp log2(R)

)
TABLE I: Performance comparison of Polynomial Sharing (PS) and GCSA with Noise Alignment (GCSA-NA).

the order of the number of arithmetic operations required to
compute dR(YR), maximized over R,R ⊂ [S], |R| = R, and
normalized by L.

III. MAIN RESULT

Our main result appears in the following theorem.

Theorem 1. For SMBMM over a field F with S servers, X-
security, and positive integers (`,Kc, p,m, n) such that m |
λ, p | κ, n | µ and L = `Kc ≤ |F| − S, the GCSA-NA
scheme presented in Section IV is a solution, and its recovery
threshold, cost, and complexity are listed in Table I.

A side-by-side comparison of the GCSA-NA solution
with polynomial sharing (PS) appears in Table I. GCSA-
NA schemes are strongly secure, i.e., even if all inter-server
communication is leaked it does not compromise the security
of input data. In GCSA-NA the inter-server network graph
can be any connected graph. This is not possible with PS.
For example, if the inter-server network graph is a star graph,
then the hub server can decode AB by monitoring all the
inter-server communication in a PS scheme, violating the
security constraint. Unlike the PS scheme, in GCSA-NA, all
inter-server communication can take place during off-peak
hours, even before the input data is generated, giving GCSA-
NA a significant latency advantage. Unlike PS where every
server must communicate with every server, i.e., S(S − 1)
such inter-server communications must take place, GCSA-NA
only requires S − 1 inter-server communications to propagate
structured noise terms across all servers. This improvement
is shown numerically in Fig. 2a. The server computation
complexity is also lower for the GCSA-NA scheme than the
PS scheme. This is because in PS, each server needs to
multiply the two shares received from the sources, calculate
the shares for every other server and sum up all the shares
from every other server. However, in GCSA-NA, each server
only needs to multiply the two shares received from the
sources and add noise (which can be precomputed during off-
peak hours). Note that when restricted to batch size 1, i.e.,
with ` = Kc = 1, GCSA-NA has the same recovery threshold
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Fig. 2: λ = κ = µ, p = m = n. (a) Server communication cost
vs. partition size, L = 1 and X = 5. (b) Server communication
cost vs. batch size, p = 2 and X = 5.

as PS. The GCSA-NA scheme naturally allows robustness to
stragglers, which is particularly important for massive matrix
multiplications. Now consider batch processing, i.e., batch size
L > 1, e.g., with L = Kc, ` = 1. PS can be applied to batch
processing by repeating the scheme L times. Fig. 2b shows
that the normalized server communication cost of GCSA-NA
decreases as L increases and is significantly less than that
in PS. For the same number of servers S, the upload cost
of GCSA-NA is smaller by a factor of 1/Kc compared to
PS. GCSA-NA does have higher download cost and decoding
complexity than PS by approximately a factor of p, which
depends on how the matrices are partitioned. If p is a small
value, e.g., p = 1, then the costs are quite similar. The
improvement in download cost and decoding complexity of
PS by a factor of 1/p comes at the penalty of increased
inter-server communication cost by a factor of S. But since
S ≥ R ≥ 2pmn + 2X − 1 ≥ p, and typically S � p, the
improvement is dominated by the penalty, so that overall the
communication cost of PS is still significantly higher.

IV. GCSA-NA CODES

A. Toy Example

Let us consider a toy example with parameters λ = κ =
µ,m = n = 1, p = 2, l = 1,Kc = 2, X = 1 and
S = R. Suppose matrices A,B ∈ Fλ×λ, and we wish to



multiply matrix A = [A1 A2] with matrix B =
[
BT

1 BT
2

]T
to compute the product AB = A1B1 + A2B2, where
A1,A2 ∈ Fλ×λ2 ,B1,B2 ∈ Fλ

2×λ. For this toy example we
summarize both the Polynomial Sharing approach [40], [43],
[44], and our GCSA-NA approach.

1) Polynomial Sharing Solution: Polynomial sharing is
based on EP code [5]. The given partitioning corresponds to
EP code construction for m = n = 1, p = 2, and we have

P = A1 + αA2, Q = αB1 + B2.

To satisfy X = 1 security, PS includes noise with each
share, i.e., Ã = P+α2ZA, B̃ = Q+α2ZB , where α1, · · · , αS
are distinct elements, and α, Ã, B̃ are generic variables that
should be replaced with αs, Ãs, B̃s for Server s. Each server
computes the product of the shares that it receives,

ÃB̃ = A1B2 + α(A1B1 + A2B2) + α2(A2B1 + A1Z
B

+ ZAB2) + α3(A2Z
B + ZAB1) + α4ZAZB .

To secure inputs from the master, PS requires that every
server sends to the master only the desired term A1B1 +
A2B2 by using secret sharing scheme among servers. Since
degα(ÃB̃) = 4, A1B1 + A2B2 can be calculated from 5
distinct ÃB̃ according to the Lagrange interpolation rules.
In particular, there exist 5 constants r1, · · · , r5, such that
A1B1+A2B2 =

∑
s∈[5] rsÃ

sB̃s. Consider Server s, it sends
Ms→j = rsÃ

sB̃s + αjZs to server j, where Z1, · · · ,Z5

are i.i.d. uniform noise matrices. After Server s collects all
the shares Mj→s, it sums them up Ys =

∑
j∈[5]Mj→s =

A1B1 + A2B2 + αs
∑
j∈[5] Zj , and sends Ys to the master.

Note that after receiving Mj→s for all j ∈ [5], Server s still
gains no information about the input data, which guarantees
the security. However, it does not satisfy strong security,
because AB can be decoded based on Mj→s for all j, s ∈ [5].

The master can decode the desired AB after collecting 2
responses from servers.1 Note that PS needs at least S = R =
5 servers, since 5 distinct ÃB̃ are required to obtain Ys.

2) GCSA-NA Solution: GCSA codes [39] can handle batch
processing, therefore let us consider batch size 2 (` = 1,Kc =
2). Denote the second instance by A′,B′. Using CSA code,

P = A1 + (f − α)A2, Q = (f − α)B1 + B2,

P ′ = A′1 + (f ′ − α)A′2, Q′ = (f ′ − α)B′1 + B′2,

and the shares are constructed as follows,

Ã = ∆

(
P

(f − α)2
+

P ′

(f ′ − α)2

)
, B̃ =

Q

(f − α)2
+

Q′

(f ′ − α)2
,

where ∆ = (f − α)2(f ′ − α)2. f, f ′, α1, · · · , αS are distinct
elements, and α, Ã, B̃ are generic variables that should be
replaced with αs, Ãs, B̃s for Server s. Each server computes
the product of the shares that it receives, i.e.,

ÃB̃ =
c0PQ

(f − α)2
+
c1PQ

f − α +
c′0P

′Q′

(f ′ − α)2
+
c′1P

′Q′

f ′ − α
+ I0 + αI1 + α2I2

1In [44], for arbitrary polynomials, Ms→j = rsÃsB̃s + α2
jZs because

Ys is forced to be casted in the form of entangled polynomial sharing.

=
c0A1B2

(f − α)2
+
c0A1B1 + c0A2B2 + c1A1B2

f − α +
c′0A

′
1B
′
2

(f ′ − α)2

+
c′0A

′
1B
′
1 + c′0A

′
2B
′
2 + c′1A

′
1B
′
2

f ′ − α + I0 + αI1 + α2I2,

where I0, I1, I2 are combinations of PQ,P ′Q′, PQ′, P ′Q and
c0, c1, c

′
0, c
′
1 are constants. This is the original GCSA code

[39], and we need 7 responses to recover the desired product.
Next, let us modify the scheme to make it X = 1 secure

by including noise with each share, i.e.,

Ã = ∆

(
P

(f − α)2
+

P ′

(f ′ − α)2
+ ZA

)
,

B̃ =
Q

(f − α)2
+

Q′

(f ′ − α)2
+ ZB ,

ÃB̃ =
c0PQ

(f − α)2
+
c1PQ

f − α +
c′0P

′Q′

(f ′ − α)2
+
c′1P

′Q′

f ′ − α +

4∑
i=0

αiIi.

Note that as a result of the added noise terms, the recovery
threshold is now increased to 9. Also note that the term I4
contains only contributions from ∆ZAZB , i.e., this term leaks
no information about A,B matrices.

If the servers directly return their computed values of ÃB̃
to the master, then besides the result of the computation some
additional information about the input matrices A,B may be
leaked by the terms(

c0

(f − α)2
+

c1

f − α

)
A1B2 +

(
c′0

(f ′ − α)2
+

c′1
f ′ − α

)
A

′
1B

′
2 +

3∑
i=0

α
i
Ii,

which can be secured by the addition of aligned noise terms

Z̃ =

(
c0

(f − α)2
+

c1

f − α

)
Z +

(
c′0

(f ′ − α)2
+

c′1
f ′ − α

)
Z

′
+

3∑
i=0

α
i
Zi

at each server so that the answer returned by each server to
the master is ÃB̃ + Z̃. Here Z,Z′,Z0,Z1,Z2,Z3 are i.i.d.
uniform noise matrices, that can all be privately generated by
one server, who can then share their aligned form Z̃ with
all other servers. This sharing of Z̃ is the only inter-server
communication needed in the GCSA-NA scheme.

B. General Construction of GCSA-NA
1) Partitioning: L = `Kc instances of A and B matrices

are split into ` groups. ∀l ∈ [`],∀k ∈ [Kc], denote

Al,k = A(Kc(l−1)+k), Bl,k = B(Kc(l−1)+k).

Further, each Al,k is partitioned into m × p blocks and each
matrix Bl,k is partitioned into p × n blocks, where Al,k

i,j ∈
F
λ
m×

κ
p ,Bl,k

j,k ∈ F
κ
p×

µ
n , i ∈ [m], j ∈ [p], k ∈ [n].

Let f1,1, f1,2, · · · , f`,Kc , α1, α2, · · · , αS be (S+L) distinct
elements from the field F. For convenience, define

DE = max(pm, pmn− pm+ p)− 1,

∆l,Kc
s =

∏

k∈[Kc]

(fl,k − αs)pmn,∀l ∈ [`],∀s ∈ [S],

E = {p+ p(m′ − 1) + pm(n′′ − 1) | m′ ∈ [m], n′′ ∈ [n]} .
∀l ∈ [`],∀k ∈ [Kc], define cl,k,i, i ∈ {0, 1, · · · , pmn(Kc−1)}
to be the coefficients satisfying

Ψl,k(α) =
∏

k′∈[Kc]\{k}

(α+ fl,k′ − fl,k)pmn =

pmn(Kc−1)∑
i=0

cl,k,iα
i,

(1)



i.e., they are the coefficients of the polynomial Ψl,k(α),
which is defined by its roots. Note that all the coefficients
αs, fl,k, cl,k,i are globally known.

2) Sharing: Firstly, each source encodes each Al,k and
Bl,k with Entangled Polynomial code. For all l ∈ [`], k ∈ [Kc],

P l,ks =
∑

m′∈[m]

∑
p′∈[p]

Al,k
m′,p′(fl,k − αs)

p′−1+p(m′−1),

Ql,ks =
∑
p′′∈[p]

∑
n′′∈[n]

Bl,k
p′′,n′′(fl,k − αs)p−p

′′+pm(n′′−1).

Each source generates `X independent random matrices, i.e.,
ZI =

{
ZI1,1, · · · ,ZI1,X ,ZI2,1, · · · ,ZI`,X

}
, I ∈ {A,B}. For

all s ∈ [S], the shares of matrices A and B at the sth server
are constructed as follows.

Ãs = (Ãs1, Ã
s
2, . . . , Ã

s
`), B̃

s = (B̃s1 , B̃
s
2 , . . . , B̃

s
` ),

Ãsl = ∆l,Kc
s

 ∑
k∈[Kc]

P l,ks
(fl,k − αs)pmn

+
∑
x∈[X]

αx−1
s ZAl,x

 ,

B̃sl =
∑

k∈[Kc]

Ql,ks
(fl,k − αs)pmn

+
∑
x∈[X]

αx−1
s ZBl,x.

for all l ∈ [`]. Then Ãs, B̃s is sent to Server s, ∀s ∈ [S].
3) Computation and Communication: One of the servers

generates a set of λ
m × µ

n independent matrices, de-
noted as Zserver, which contains pmn(Kc − 1) + X +
DE + `Kc(p − 1)mn random matrices and `Kcmn zero
matrices. In particular, Zserver = {Zserver1 ,Zserver2 },
where Zserver1 = {Z′i | i ∈ [pmn(Kc − 1) +X +DE ]}, and
Zserver2 =

{
Z′′l,k,i | l ∈ [`], k ∈ [Kc], i ∈ [pmn]

}
. Here,

Z′′l,k,i =

{
0, if i ∈ E
Z′′′l,k,i, otherwise,

∀l ∈ [`], ∀k ∈ [Kc].

Without loss of generality, assume the 1st server generates
Zserver, encodes them into

M̃s =
∑

t∈[pmn(Kc−1)+X+DE ]

αt−1
s Z′t

+
∑
l∈[`]

∑
k∈[Kc]

pmn−1∑
i=0

∑i
i′=0 cl,k.i−i′Z

′′
l,k,i′+1

(fl,k − αs)pmn−i
,

and sends M̃s to server s, s ∈ [S]\{1}, where cl,k.i is defined
in (1). The answer returned by the sth server to the master is
constructed as Ys =

∑
l∈[`] Ã

s
l B̃

s
l + M̃s.

4) Reconstruction: From any R answers, the master de-
codes AB.

5) Analysis: The proof of recovery threshold is identical
to GCSA codes because the noise-alignment preserves the
structure of both desired symbols and interference. Strong
security is guaranteed because inter-server communication
only involves Zserver matrices. Security is guaranteed by
the inclusion of ZA,ZB matrices into the shares sent to the
servers by the source nodes. Privacy is guaranteed due to the
aligned noise that is added to the answers by the servers.

Consider the communication cost. The source upload cost
UA = S

Kcpm
, UB = S

Kcpn
. The server communication cost

CC = S−1
`Kcmn

. Note that the master is able to recover Lmn

desired symbols from R downloaded symbols, the master
download cost is D = R

Lmn = pmn(`+1)Kc+2X−1
`Kcmn

. Thus the
desired costs are achievable.

Now let us consider the computation complexity. Note
that the source encoding procedure can be regarded as prod-
ucts of confluent Cauchy matrices by vectors [39]. By fast
algorithms [45], the encoding complexity of (CeA, CeB) =(
Õ
(
λκS log2 S
Kcpm

)
, Õ
(
κµS log2 S
Kcpn

))
is achievable. For the

server computation complexity, each server multiplies the
` pairs of shares Ãsl , B̃

s
l , l ∈ [`], and returns the sum of

these ` products and structured noise M̃s. With straightfor-
ward matrix multiplication algorithms, each of the ` matrix
products has a computation complexity of O

(
λκµ
pmn

)
for a

total of O
(
`λκµ
pmn

)
. The complexity of summation over the

products and noise is O
(
`λµ
mn

)
. To construct the aligned

noise, one server needs to encode the noise, whose complexity
is Õ

(
λµS log2 S

mn

)
by fast algorithms [45]. Normalized by

the number of servers, it is Õ
(
λµ log2 S
mn

)
. Consider these

3 procedures, upon normalization by L = `Kc, it yields a
complexity of O

(
λκµ

Kcpmn

)
+O

(
λµ

Kcmn

)
+ Õ

(
λµ log2 S
`Kcmn

)
per

server. Now let us consider the master decoding complexity.
Note that the decoding procedure is identical to GCSA codes,
so by fast algorithms [45], [46], the complexity of decoding
is at most Õ(λµp log2R). This completes the proof.

Remark: When L = ` = Kc = 1, S = R, by setting
f1,1 = 0, our construction of shares of Ãs and B̃s is indeed
equivalent to the construction of shares in the PS code [40].

Remark: As explained in our full paper [47], noise align-
ment can also be applied to the scheme proposed in [48] .

V. CONCLUSION

For the problem of multiplication of two matrices, the class
of GCSA codes is expanded by including noise-alignment,
so that the resulting GCSA-NA code strictly generalizes PS
[40] and outperforms it in several key aspects. However, while
converse proofs remain unavailable, the fundamental limits of
the SMBMM problem are open.
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