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Abstract—Minimizing the repair bandwidth, i.e., the amount
of information from the helper nodes needed for recovering the
content of one failed node in an erasure-coded distributed storage
system, has been the focus of many works in the literature. We
investigate another important performance metric, namely the
I/O cost, which specifies the amount of information that needs
to be read by the helper nodes during the repair process of one
failed node. We analyze the I/O costs of a few known repair
schemes for Reed-Solomon codes of various lengths, in contrast
to the previous works in this direction, which only studied the
I/O costs in repairing full-length Reed-Solomon codes.

I. INTRODUCTION

Reed-Solomon (RS) codes, although invented back in the
sixties [1], still play a crucial role in major distributed storage
systems (DSSs), including Google’s Colossus, Quantcast File
System, Facebook’s f4, Yahoo Object Store, Baidu’s Atlas,
and Backblaze’s Vaults (see [2, Tab. I]). The ubiquity of RS
codes stems from their numerous advantages, such as optimal
storage overhead, widest range of code parameters, and simple
implementations. In the recently released version 3.0.0 of the
Hadoop Distributed File System [3], the default erasure coding
policy is based on a RS code.

There has been a considerable effort by the research commu-
nity to optimize the repair bandwidth of RS codes [4]–[11].
Here, the repair bandwidth of a repair scheme refers to the
amount of data to be transmitted from the helper nodes to the
replacement node during the repair process that recovers the
lost content of one failed node in a distributed storage system
deploying the erasure code. Several extensions to the case of
multiple erasures were also studied [2], [11]–[14]. The optimal
repair bandwidth of RS codes is generally unknown, except for
some full-length RS codes [5], [6], [8] and for RS codes with
exponential large sub-packetizations [10], [11]. Constructions
of RS codes and repair schemes that achieve a trade-off
between the repair bandwidth and the sub-packetization were
also investigated [15]–[17].

The I/O cost, which measures the total amount of data
being read from the physical disks located at the helper nodes
during the repair process of a failed node, is another important
performance metric in repairing erasure codes. In the very first
work along this line of research [18], the authors showed that
known repair schemes of some families of full-length Reed-
Solomon codes incur a trivial I/O cost, i.e., the entire file needs
to be read from the system. Conversely, they also pointed out
that for a particular family of RS codes with length n = 2`

and two parities over F2` , such a high I/O cost is necessary for
achieving the optimal repair bandwidth. It was then a natural
question to ask whether a trivial I/O cost is always required,
or more generally, what is the lowest I/O cost possible. This
question was answered for a family of RS codes of length
n = 2` and two parities over F2` in the subsequent work [19],
in which the authors constructed repair schemes that incur an
optimal I/O cost of (n− 1)`− 2`−1 bits.

In this work, we first consider two-parity codes and q = 2.
We generalize the construction for full-lengh RS codes [19] to

RS codes of length n = 2m, m ≤ `, and obtain the I/O cost of
(n− 1)`− 2m−1 bits. When m | `, we also provide a “lifting”
transformation that transforms a repair scheme for a RS code
of length qm over Fqm with I/O cost I into a repair scheme
for a RS code of the same length qm over the larger field Fq`
with I/O cost `

mI . Thus we obtain an improved I/O cost of
(n − 1)` − `

m2m−1 bits. There is still a gap with our newly
established lower bound of (n−1)`−(`−m+1)2m−1 bits and it
remains an open problem to construct repair schemes achieving
optimal I/Os for these RS codes. Second, we consider short-
length codes with arbitrary number of parities and field size.
We explicitly determine the I/O costs of two existing repair
schemes for short-length RS codes established in [10], [16],
[17].

II. PRELIMINARIES

Let [n] denote the set {1, 2, . . . , n}. Let F = Fq be the finite
field of q elements, for some prime power q. Let E = Fq` be
an extension field of F , where ` ≥ 1, and let E∗ = E\{0}. We
refer to the elements of E as symbols and the elements of F as
sub-symbols. The field E may also be viewed as a vector space
of dimension ` over F , i.e. E ∼= F `, and hence each symbol
in E may be represented as a vector of length ` over F . More
specifically, suppose B = {βi}`i=1 is a basis of E over F , then
any element α ∈ E can be written as α =

∑`
i=1 αiβi. The

unique vector φB(α) = (α1, . . . , α`) ∈ F ` is called the vector
representation of α w.r.t. the basis B.

The (field) trace of a symbol α ∈ E over F is defined
to be TrE/F (α) =

∑`−1
i=0 α

|F |i (the subscript E/F is often
omitted). The support of a vector u = (u1, . . . , u`), denoted
supp(u), is the set {j : uj 6= 0}. The (Hamming) weight of u,
denoted wt(u), is |supp(u)|. The support of a set of vectors U
is supp(U)

4
= ∪u∈U supp(u). A linear [n, k] code C over E is

an E-subspace of En of dimension k. Each element of a code
is referred to as a codeword. The dual of a code C, denoted C⊥,
is the orthogonal complement of C in En and has dimension
r = n− k. Elements of C⊥ are called dual codewords.
Definition 1. Let E[x] denote the ring of polynomials over
a finite field E. The Reed-Solomon code RSE(A, k) ⊆ En

of dimension k with evaluation points A = {αj}nj=1 ⊆ E is
defined as

RSE(A, k) =
{(
f(α1), . . . , f(αn)

)
: f ∈ E[x],deg(f) < k

}
.

The RS code is full length if n = |E|. When A forms an F -
subspace of E, the dual of the RS code RSE(A, k) is another
RS code RSE(A, n− k) (see Section IV-A).

Trace repair framework. First, note that each symbol in E
can be recovered from ` independent traces. More precisely,
given a basis {βi}`i=1 of E over F , any α ∈ E can be
uniquely determined given the values of Tr(αβi) for i ∈ [`],
i.e. α =

∑`
i=1 Tr(αβi)β

′
i, where {β′i}`i=1 is the dual (trace-

orthogonal) basis of {βi}`i=1 (see, e.g., [20, Ch. 2, Def. 2.30]).
Let C be an [n, k] linear code over E and C⊥ be its dual. If

c = (c1, . . . , cn) ∈ C and g = (g1, . . . , gn) ∈ C⊥ then c · g



=
∑n
j=1 cjgj = 0. Note that when A is an F -subspace of E

and C = RSE(A, k), g is a codeword of RSE(A, n − k) and
hence corresponds to a polynomial g(x) of degree less than
n−k. Suppose cj∗ is erased and needs to be recovered. In the
trace repair framework, depending on j∗, we choose a set of `
dual codewords g(1), . . . , g(`) such that dimF

(
{g(i)
j∗ }`i=1

)
= `.

Since trace is linear, we obtain the following ` equations

Tr
(
g

(i)
j∗ cj∗

)
= −

∑
j 6=j∗

Tr
(
g

(i)
j cj

)
, i ∈ [`]. (1)

In order to recover cj∗ , one needs to retrieve sufficient infor-
mation from {cj}j 6=j∗ to compute the right-hand sides of (1).
We define, for every j ∈ [n],

Sj→j∗
4
= spanF

({
g

(1)
j , . . . , g

(`)
j

})
. (2)

Then for each j 6= j∗, to determine Tr(g
(i)
j cj) for all

i ∈ [`], it suffices to retrieve dimF (Sj→j∗) sub-symbols (in
F ) only. Indeed, suppose {g(it)

j }st=1 is an F -basis of Sj→j∗ ,
then by retrieving just s traces Tr(g

(i1)
j cj), . . . ,Tr(g

(is)
j cj) of

cj , all other traces Tr(g
(i)
j cj) can be computed as F -linear

combinations of those s traces without any knowledge of c.
Finally, since {g(i)

j∗ }`i=1 is F -linearly independent, cj∗ can be
recovered from its ` corresponding traces on the left-hand side
of (1). We refer to such a scheme as a repair scheme based
on {g(i)}`i=1. It was known that this type of repair schemes
includes every possible linear repair scheme for RS codes [5].

Lemma 1 (Guruswami-Wootters [5]). Suppose E = Fq` ,
F = Fq , C is an [n, k] linear code over E and C⊥ is its
dual. The repair scheme for cj∗ based on ` dual codewords
g(1), . . . , g(`), where dimF

(
Sj∗→j∗

)
= `, incurs a repair

bandwidth of
∑
j 6=j∗ dimF (Sj→j∗) sub-symbols in F , where

Sj→j∗ is defined as in (2).

I/O Cost of a Repair Scheme Let B = {βi}`i=1 be an F -
basis of E. Then each element α =

∑`
i=1 αiβi ∈ E can be

represented by a vector φ(α) = (α1, . . . , α`) ∈ F ` as defined
earlier. We assume throughout this work that every node uses
a fixed (but probably different) basis to represent and store the
finite field elements. Another underlying assumption is that
each sub-symbol αi of α can be read from the storage disk
separately without accessing other sub-symbols. We first define
the I/O cost of a function and then proceed to describe the I/O
cost of a repair scheme.

Definition 2 ( [18]). The (read) I/O cost of a function f(·)
w.r.t. a basis B is the minimum number of sub-symbols of
α ∈ E needed for the computation of f(α). The I/O cost of a
set of functions F is the minimum number of sub-symbols of
α needed for the computation of {f(α) : f ∈ F}.

Lemma 2 ( [18]). The following statements hold.
(a) The I/O cost of the trace functional Trγ(·), defined by

Trγ(α)
4
= Tr(γα), w.r.t. B is wt

(
wγ,B

)
, where

wγ,B
4
=
(
Tr(γβ1), . . . ,Tr(γβ`)

)
∈ F `. (3)

(b) The I/O cost of the set of trace functionals {Trγ(·) : γ ∈
Γ} w.r.t. B is | ∪γ∈Γ supp(wγ,B)|.

The I/O cost of the repair scheme for cj∗ based on a set
of dual codewords {g(i)}`i=1 is the minimum number of sub-
symbols of cj’s, j 6= j∗, needed in the computation of the
right-hand side of (1). Note that each node may use a fixed
but different basis Bj , j ∈ [n], to represent the finite field
elements. The formal definition is given below.
Definition 3. The I/O cost of the repair scheme for cj∗ based
on a set of dual codewords {g(i)}`i=1 w.r.t. a set of bases

{Bj}j 6=j∗ is the sum of the I/O costs of the sets of trace
functionals Fj =

{
Trg

(i)
j (·)

}`
i=1

w.r.t. Bj , j ∈ [n] \ {j∗}.
Lemma 3 follows directly from Lemma 2 and Definition 3.

Lemma 3. The I/O cost of the repair scheme for cj∗ based on
a set of dual codewords {g(i)}`i=1 w.r.t. a set of bases {Bj}j 6=j∗
is
∑
j∈[n]\{j∗} nz(Wj), where nz(Wj) specifies the number of

nonzero columns in the `× ` I/O matrix Wj defined as

Wj
4
=


w

g
(1)
j ,Bj

w
g
(2)
j ,Bj

...

w
g
(`)
j ,Bj

=


Tr(g

(1)
j β1,j)· · ·Tr(g(1)j βi,j)· · ·Tr(g(1)j β`,j)

Tr(g
(2)
j β1,j)· · ·Tr(g(2)j βi,j)· · ·Tr(g(2)j β`,j)

...
. . .

...
. . .

...
Tr(g

(`)
j β1,j)· · ·Tr(g(`)j βi,j)· · ·Tr(g(`)j β`,j)

 ,

where Bj = {βi,j}`i=1. In this repair scheme the node storing
cj must read the i-th sub-symbol of cj if and only if the i-th
column of Wj is nonzero. Thus, nz(Wj) specifies the I/O cost
incurred at the node storing cj .

Lemma 3 can be understood as follows. If cj = f(αj) is
read in full, ` sub-symbols will need to be accessed. However,
it is possible that fewer than ` sub-symbols of cj need to be
read. Each zero column of Wj indicates a sub-symbol in the
vector representation of cj that does not need to be read.

III. ON THE I/O COST FOR [2m, 2m − 2]2` RS CODES

In this section we consider [2m, 2m − 2]2` RS codes and
assume that the nodes use a common F -basis of E. We first
establish a lower bound on the I/O cost, thus generalizing [19,
Thm. 1]. Then we present one construction generalizing [19,
Cnstr. 1], and one based on a lifting transformation.

Theorem 1. For a Reed-Solomon code RSF
2`

(Sm, 2m − 2)
where Sm is an m-dimensional F2-subspace of F2` , the I/O
cost (in bits) of an arbitrary linear repair scheme R always
satisfies the following inequality.

ic(R) ≥ (n− 1)`− (`−m+ 1)2m−1. (4)

We first prove this theorem and then provide two repair
schemes. Although not achieving the lower bound, they may
provide a hint for constructing an I/O-optimal one.

As r = 2 and Sm is an m-dimensional subspace of F2` , a
dual codeword of Cm = RSF

2`
(Sm, 2m − 2) can be obtained

by evaluating a polynomial of degree at most one at all the
elements of Sm. A linear repair scheme, therefore, is based on a
set of ` polynomials gi(x) = aix+bi, ai, bi ∈ F2` , i ∈ [`]. Set
A = {ai}`i=1 and B = {bi}`i=1. We say the repair scheme is
defined by A and B. Moreover, by generalizing [18, Lem. 8] to
the case when the evaluation points form a subspace, it suffices
to consider repairing c1 = f(0), the first codeword component
corresponding to the evaluation point α1 = 0. As a repair
scheme for c1, it is required that rankF2

({gi(0)}`i=1) = `. In
other words, B must be an F2-basis of F2` . We henceforth set
rA

4
= rankF2

(A) and Aγ +B
4
= {aiγ + bi}`i=1.

It will later become clear in the proof of Theorem 1 that the
set of “good” helpers w.r.t. a fixed basis element β = βi ∈ B,
defined in Lemma 4, consists of the helpers where one bit of
I/O can be saved in the repair scheme defined by A and B.

Lemma 4. Let Sm be an m-dimensional F2-subspace of F2` .
Suppose A = {ai}`i=1 ⊂ F2` , B = {bi}`i=1 is an F2-basis of
F2` , and β ∈ F∗2` . We define GmA,B,β

4
= Sm ∩GA,B,β where

GA,B,β
4
= {γ ∈ F2` : Tr((aiγ + bi)β) = 0, ∀i ∈ [`]} . (5)

Then GmA,B,β, which is called the set of “good” helpers w.r.t.
β, has size at most 2min{m−1,`−rA}.



Proof. According to [19, Lem. 4], GA,B,β is the solution set
of a non-homogeneous system of linear equations where the
coefficient matrix has F2-rank rA. Hence, it has size zero or
2`−rA . Therefore, |GmA,B,β| ≤ 2`−rA . It remains to show that
|GmA,B,β| ≤ 2m−1.

As GA,B,β is an affine F2-subspace of F2` , we can write
GA,B,β = g∗ + G where G is an (` − rA)-dimensional F2-
subspace of F2` and g∗ /∈ G. We aim to show that |Sm ∩
(g∗ + G)| ≤ 2m−1. Suppose, for the sake of contradiction,
that there are 2m−1 + 1 distinct elements s1, . . . , s2m−1+1 in
Sm ∩ (g∗ + G). Set ti = s1 − si+1, for i ∈ [2m−1]. Then
ti ∈ Sm ∩G. As G∩ (g∗+G) = ∅, the sets {si}2

m−1+1
i=1 and

{ti}2
m−1

i=1 are disjoint and both belong to Sm. This leads to a
contradiction because |Sm| = 2m < (2m−1 + 1) + 2m−1. �

As we shall see in the proof of Theorem 1, the set of “good”
basis elements defined as in Lemma 5 determines how many
βi ∈ B can give rise to the saving of at least one bit in I/O in
a repair scheme defined by A and B.
Lemma 5. Let Sm be an m-dimensional F2-subspace of F2` .
Given A = {ai}`i=1 ⊂ F2` and B = {bi}`i=1 an F2-basis of
F2` , we define the set of “good” basis elements as

GmA,B
4
=
{
β ∈ F∗2` : |GmA,B,β| > 0

}
, (6)

where GmA,B,β is defined as in Lem. 4. Then rankF2
(GmA,B)≤rA.

Proof. If we define GA,B
4
=
{
β ∈ F∗2` : |GA,B,β| > 0

}
, where

GA,B,β is defined as in Lemma 4, then according to [19,
Lem. 7], rankF2(GA,B) ≤ rA. Note that GA,B was defined
slightly different in [19, Lem. 7], however, the two definitions
are equivalent, as explained by the first sentence in the proof
of that lemma. As GmA,B,β = Sm ∩ GA,B,β ⊆ GA,B,β, we
have rankF2

(GmA,B) ≤ rankF2
(GA,B) ≤ rA, as desired. �

We are now ready to prove Theorem 1. Its proof generalizes
the proof of [19, Thm. 1].
Proof of Theorem 1. Consider a scheme RA,B repairing
the first codeword component c1 = f(0) of Cm =
RSF

2`
(Sm, 2m − 2), defined by A = {ai}`i=1 and B =

{bi}`i=1, where B is an F2-basis of F2` . The corresponding
dual codewords are obtained by evaluating the polynomials
gi(x) = aix+ bi, i ∈ [`] at all γ ∈ Sm. Set S∗m

4
= Sm \ {0}.

By Lemma 3, the I/O cost of RA,B w.r.t. a fixed basis B is

icB(RA,B) =
∑
γ∈S∗m

nz(Wγ) = (n− 1)`−
∑
γ∈S∗m

z(Wγ),

where nz(Wγ) and z(Wγ) denote the counts of nonzero
columns and zero columns, respectively, in the ` × ` matrix
Wγ whose rows are waiγ+bi,B, i ∈ [`], given as follows

Tr((a1γ + b1)β1)· · ·Tr((a1γ + b1)βi)· · ·Tr((a1γ + b1)β`)
Tr((a2γ + b2)β1)· · ·Tr((a2γ + b2)βi)· · ·Tr((a2γ + b2)β`)

...
. . .

...
. . .

...
Tr((a`γ + b`)β1) · · ·Tr((a`γ + b`)βi) · · ·Tr((a`γ + b`)β`)

 .

Each zero column of Wj indicates a bit in the vector repre-
sentation of cj that does not need to be read, therefore, leads
to a saving of one bit in I/O at the j-th node. The more zero
columns, the larger the saving, and hence the lower the I/O
cost. Thus, we are interested in maximizing the total number
of zero columns in all Wj , j ∈ [n]\{j∗}.

Instead of finding z(Wγ) and sum that up over all γ ∈ F∗2m ,
we first fix an index i and count the number of zero i-
th columns of Wγ when γ varies over F∗2m , and then sum
that up over all i ∈ [`]. By Lemma 4, for each βi ∈ B,
the number of zero i-th columns in Wγ , γ ∈ F∗2m , is
|GmA,B,βi

| ≤ 2min{m−1,`−rA}. The set GmA,B,βi
consists of

those “good” helpers γ where the i-th column of Wγ is

zero, corresponding to a saving of one bit in I/O when cγ
is accessed. If |GmA,B,βi

| > 0, βi is a “good” basis element.
The set of “good” βi is denoted by GmA,B as in Lemma 5.
Furthermore, as rankF2

(GmA,B) ≤ rA, the basis B contains at
most rA “good” βi. Clearly, if βi is not “good”, then there
does not exist any γ ∈ F2` such that the i-th column of Wγ

is zero. Thus,

icB(RA,B) ≥ (n− 1)`− max
0≤rA≤`

{rA2min{m−1,`−rA}},

where the term rA2min{m−1,`−rA} corresponds to the maxi-
mum possible reduction/saving in I/O if rankF2

(A) = rA. The
factor rA accounts for the maximum number of “good” βi ∈ B
while 2min{m−1,`−rA} accounts for the maximum saving in
I/O w.r.t. each of such “good” βi. It can be easily verified that
rA = ` −m + 1 minimizes the right-hand side of the above
inequality. That concludes the proof. �

According to the proof of Theorem 1, we should choose
A of rank ` −m + 1 to achieve the I/O cost specified in the
lower bound. However, it seems challenging to design a repair
scheme in that case. The following construction generalizes
Construction I in [19] to RS codes of length 2m over F2` and
uses a set A of rank one. For a set K ⊆ F2` and an element
β ∈ F∗2` , we use the notation K/β for the set {κ/β : κ ∈ K}.

Construction I. Let B = {βi}`i=1 be an F2-basis of F2`

and fix an arbitrary element β ∈ B. Let K be the kernel of
TrF

2`
/F2

(·) and {hi}`−1
i=1 be an F2-basis of K.

Step 1 Select an arbitrary a ∈ F2` satisfying aSm 6⊆ K/β.
Step 2 Set A = {a,a, . . . ,a}.
Step 3 Select an arbitrary b1 = b ∈ F2` satisfying b /∈ K/β.
Step 4 Set B = {bi}`i=1, where bi = b+hi−1, for 2 ≤ i ≤ `.
The output of this construction is the repair scheme for c1 =
f(0) of the code RSF

2`
(Sm, 2m − 2) defined by A and B.

Repair schemes with the same I/O cost for other cj can be
obtained by modifying this repair scheme (by generalizing [18,
Lem. 8] in a straightforward way to the case of subspace).
Theorem 2. For every 1 ≤ m ≤ `, the repair scheme
in Construction I, which repairs c1 = f(0) of the code
RSF

2`
(Sm, 2m − 2) where Sm is an m-dimensional subspace

of F2` , incurs an I/O cost of (n− 1)`− 2m−1 bits.

Proof. Suppose β = βi∗ , for some i∗ ∈ [`]. We aim to show
that |GmA,B,β| = 2m−1, which implies that there are precisely
2m−1 elements γ ∈ Sm satisfying Tr((aiγ + bi)βi∗) = 0, for
all i ∈ [`]. Following the proof of Theorem 1, this means there
are precisely 2m−1 elements γ ∈ Sm where the i∗-th column
in the corresponding matrix Wγ is zero. This implies a saving
of 2m−1 bits in the I/O cost. Therefore, the I/O cost of the
repair scheme in Construction I is (n− 1)`− 2m−1.

It remains to prove that |GmA,B,β| = 2m−1. Note that if
aγ + b ∈ K/β then aiγ + bi = aγ + b + hi−1 ∈ K/β,
2 ≤ i ≤ `. Therefore, we can write

GA,B,β = {γ ∈ F2` : aγ + b ∈ K/β} =
K

aβ
+
b

a
.

Therefore, GmA,B,β = Sm ∩
(
K
aβ + b

a

)
. By Step 3, b

a /∈ K
aβ .

Hence, F2` = K
aβ ∪

(
K
aβ + b

a

)
. According to Step 1, Sm 6⊆ K

aβ ,
which then implies that there exists s ∈ Sm ∩

(
K
aβ + b

a

)
. We

then have s+ (Sm ∩ K
aβ ) ⊆ GmA,B,β = Sm ∩

(
K
aβ + b

a

)
. This

implies that |GmA,B,β| ≥ |Sm ∩ K
aβ |. Since

2m = |Sm| =
∣∣∣∣Sm ∩ ( Kaβ +

b

a

)∣∣∣∣+

∣∣∣∣Sm ∩ K

aβ

∣∣∣∣ ,
we deduce that |GmA,B,β| = |Sm ∩

(
K
aβ + b

a

)
| ≥ 2m−1. By

Lemma 4, we conclude that |GmA,B,β| = 2m−1. �



Next, we propose another construction based on Proposi-
tion 1, which transforms a repair scheme for a full-length code
over Fqm into a repair scheme for the code of the same length
n = qm but over a larger field Fq` ⊃ Fqm . The proposition
applies to arbitrary number of parities and arbitrary q.

Proposition 1 (Lifting transformation). Let Rm be a repair
scheme of Cm = RSFqm

(A, k) where A = Fqm . If m | `
then there exists a repair scheme R` of C` = RSF

q`
(A, k) so

that ic(R`) = `
m ic(Rm), where ic(·) denotes the I/O cost of a

repair scheme w.r.t. an appropriately selected set of bases.
Proof. Suppose Rm repairs cj∗ of the codeword c ∈ Cm and
is based on the set of dual codewords {g(i)}mi=1 obtained by
evaluating the polynomials {g(i)(x)}mi=1 of degree less than k
at the points of A. Moreover, suppose Bm = {βi}mi=1 is the
common Fq-basis of Fqm used by every node in Rm.

Let {τt}`/mt=1 be an Fqm -basis of Fq` and {ηt}`/mt=1 its dual
(trace-orthogonal) basis. Consider the scheme R` that repairs
cj∗ of the codeword c ∈ C` based on the set of dual
codewords {τtg(i)}t∈[`/m],i∈[m]. Note that τtg(i) is obtained
by evaluating the polynomial τtg(i)(x) of degree less than k
on A and is, therefore, a dual codeword of RSF

q`
(A, k). Let

B` = {ηtβi}t∈[`/m],i∈[m] be the common basis used by every
node in R`. Note that since rankq({g(i)

j∗ }mi=1) = m, we have
rankq({τtg(i)

j∗ }t∈[`/m],i∈[m]) = `, and hence, R` is indeed a
repair scheme for cj∗ .

We subsequently show that to repair cj∗ , the I/O cost
incurred at the node storing cj , j 6= j∗, w.r.t. B`, is `/m
times more than the I/O cost incurred at the node storing cj
when repairing cj∗ w.r.t. Bm. To this end, let Wm

j and W `
j

denote the I/O matrices corresponding to cj and cj , respec-
tively. The rows and columns of Wm

j correspond to the sets
{g(i)}mi=1 and {βi}mi=1, respectively, and its typical (i, i′)-entry
is TrFqm/Fq

(g
(i)
j βi′). The rows and columns ofW `

j correspond
to the sets {τtg(i)}t∈[`/m],i∈[m] and {ηtβi}t∈[`/m],i∈[m], re-
spectively, and its typical

(
(t, i), (t′, i′)

)
-entry is

TrF
q`
/Fq

(
τtg

(i)
j ηt′βi′

)
= TrFqm/Fq

(
TrF

q`
/Fqm

(
τtg

(i)
j ηt′βi′

))
= TrFqm/Fq

(
g

(i)
j βi′TrFq`

/Fqm

(
τtηt′

))
=

{
TrFqm/Fq

(
g

(i)
j βi′

)
, if t = t′,

0, if t 6= t′,

because g(i)
j ,βi′ ∈ Fqm and {τt}`/mt=1 and {ηt}`/mt=1 are dual

bases of Fq` over Fqm . Therefore, the ` × `
m submatrix of

W `
j consisting of columns indexed by the set {(t′, i′)}`/mt′=1

can be obtained by taking the Kronecker product of the identity
matrix of order `/m and the i′-th column of Wm

j . Therefore,
in Lemma 3’s notation, nz(W `

j ) = `
mnz(Wm

j ), which implies
that ic(R`) = `

m ic(Rm). �

When m | `, the lifting transformation provided in Proposi-
tion 1 yields a lower I/O cost than the one in Construction I.
However, a specific basis must be used.

Corollary 1. If m | ` then there exists a repair scheme of the
code RSF

2`
(A, 2m − 2) where A = F2m ⊂ F2` with an I/O

cost of (n− 1)`− `
m2m−1 bits.

Proof. As shown in [19], there exists a repair scheme Rm of
Cm = RSF2m

(A, 2m − 2) where A = F2m with an I/O cost
of (2m − 1)m− 2m−1. By Proposition 1, there exists a repair
scheme R` of C` = RSF

2`
(A, 2m − 2) with the I/O cost

ic(R`)=
`

m

(
(2m−1)m−2m−1

)
=(n−1)`− `

m
2m−1. �

IV. ON THE I/O COSTS OF OTHER FAMILIES OF RS CODES

In this section we consider arbitrary number of parities.
We show that with a careful selection of the basis at each
node, known repair schemes for two families of RS codes
can achieve low I/O costs. For the first family, the I/O cost
equals the repair bandwidth. The second family achieves the
optimal repair bandwidth, and we show that the I/O cost is at
most twice the bandwidth. We henceforth assume that different
nodes may use different bases but known to all other nodes.
We use a different but equivalent way to compute the I/O cost.

A. Another Formulation of the I/O Cost

The dual of RSE(A, k) where A is not necessarily a
subspace is a Generalized Reed-Solomon (GRS) code, given
by
{(
µαg(α)

)
α∈A : g ∈ E[x],deg(g) < n− k

}
, where µα is

the (nonzero) column multiplier corresponding to the evalua-
tion point α ∈ A. Moreover, µα = 1/

∏
α′∈A\{α}(α − α′)

[21, p. 167], which can be different in general. When A is
a subspace of E, µα = 1/

∏
α′∈A∗ α

′ and are the same for
every α ∈ A, which is the case in the previous sections.

If E = Fq` and F = Fq then each repair scheme for cα∗ =
f(α∗) is based on a set of ` polynomials gi(x) ∈ E[x], i ∈ [`],
deg(gi)<r=n−k, and the corresponding repair equations are

TrE/F
(
µα∗gi(α

∗)f(α∗)
)

= −
∑

α∈A\{α∗}

TrE/F
(
µαgi(α)f(α)

)
.

Let Bα = {βα,i}`i=1 be the F -basis of E used by the
node storing f(α). Note that this basis should be fixed for
α and independent of the failed node. By Lemma 2 (c), the
computation of TrE/F

(
µαgi(α)f(α)

)
incurs an I/O cost equal

to the Hamming weight of the vector wµαgi(α),Bα , which is

(TrE/F (gi(α)µαβα,1), . . . ,TrE/F (gi(α)µαβα,`)).

Let B′α = {β′α,i}`i=1 be the dual (trace-orthogonal) basis of
µαBα = {µαβα,i}`i=1. Then, the I/O cost of each of the
trace functionals on the RHS of the repair equations above is
the Hamming weight of φB′α(gi(α)), the vector representation
of gi(α) w.r.t. the basis B′α. Therefore, the I/O cost incurred
at the node storing f(α) is equal to the number of elements
in B′α required to linearly generate g1(α), . . . , g`(α) over Fq .
We henceforth use this formulation of the I/O cost.

B. Two-Coset Codes

In this subsection, we slightly modify the construction
in [17, Thm. 2] to obtain repair schemes with the I/O costs
as low as the repair bandwidths established in their work.

Suppose m | ` and β and γ are the primitive elements of Fq`
and Fqm , respectively. Consider an even n ≤ 2(qm − 1) and
k > 0 so that `/m ≤ r = n− k. For 0 < m1 < m2 satisfying
m2 −m1 = qsm (the reason to have this will be clear later),
we consider the so-called two-coset code RSF

q`
(A, k) where A

consists of n/2 points from the coset βm1F∗qm and n/2 points
from the coset βm2F∗qm of F∗qm in F∗q` . As β is a primitive
element of Fq` , these two cosets are disjoint.

Suppose that the node storing cα = f(α) uses an Fq-basis
Bα so that B′α={γt1βt2 : 0≤t1≤ m− 1, 0≤t2≤`/m− 1},
where Bα and B′α are defined in Section IV-A. Note that even
if B′α does not depend on α, the column multiplier µα does,
and so does the basis Bα used by the node. We consider the
repair scheme Rα∗ for cα∗ based on the set of polynomials

gα∗,(t1,t2)(x) =

{
γt1
(

x
βm2

)t2
, if α∗ ∈ βm1F∗qm ,

γt1
(

x
βm1

)t2
, if α∗ ∈ βm2F∗qm ,

for 0 ≤ t1 ≤ m− 1 and 0 ≤ t2 ≤ `/m− 1.



We now analyze the I/O cost of Rα∗ . Without loss of gener-
ality, we assume that α∗ ∈ βm2F∗qm . First, for α ∈ βm1F∗qm ,
i.e., α = βm1γt0 for some 0 ≤ t0 ≤ qm − 2, we have
gα∗,(t1,t2)(α) = γt1+t0t2 ∈ F∗qm , for every t1, t2. Therefore,
gα∗,(t1,t2)(α) can always be generated as linear combinations
of the m elements {γ0,γ1, . . . ,γm−1} ⊂ B′α. Thus, the I/O
cost incurred at the node storing cα if α ∈ βm1F∗qm is at
most m. Next, suppose that α = βm2γt0 ∈ βm2F∗qm . Then,
gα∗,(t1,t2)(α) = β(m2−m1)t2γt1+t0t2 . As {βt2}`/m−1

t2=0 is an
Fqm -basis of Fq` , {β(m2−m1)t2}`/m−1

t2=0 = {βqsmt2}`/m−1
t2=0 is

also an Fqm -basis of Fq` (cf. [17, Lem. 2]). As γt0t2 ∈ Fqm ,
this implies that {β(m2−m1)t2γt0t2}`/m−1

t2=0 is also an Fqm -basis
of Fq` . Moreover, since {γt1}m−1

t1=0 is an Fq-basis of Fqm , the
set {gα∗,(t1,t2)(α) : 0 ≤ t1 ≤ m − 1, 0 ≤ t2 ≤ `/m − 1} =
{β(m2−m1)t2γt0t2γt1 : 0≤t1≤m− 1, 0≤t2≤`/m− 1} forms
an Fq-basis of Fq` . Hence, the I/O cost incurred at the node
storing cα if α ∈ βm2F∗qm is `. Summing up the two cases,

ic(Rα∗) ≤ (n/2)m+ (n/2− 1)`,

which is the same as the repair bandwidth in [16, Thm. 2].

C. Tamo-Ye-Barg Codes

We analyze the I/O cost of a slightly modified construction
in [10], whose repair bandwidth matches the cut-set bound
of regenerating codes. Let p1 < p2 < · · · < pn be n prime
numbers satisfying r | (pj−1), j ∈ [n], where r 4= n−k (note
that here we only consider the repair schemes where d = n−1
helpers participate). Let αj be an element of order pj over
Fq , so that adjoining αj to Fq results in Fqpj = Fq(αj), for
every j ∈ [n]. Set A = {αj}nj=1 to be the set of n (distinct)
evaluation points of the code. Let β be an element of order r
over Fqp1p2···pn . The code RSF

q`
(A, k) is defined over Fq` =

Fq(α1, . . . ,αn,β) where ` = r
∏n
j=1 pj .

Assume that the failed node stores cj∗ = f(αj∗) for f ∈
Fq` [x], deg(f) < k. We consider the repair scheme Rj∗ based
on a set of ` polynomials {ηj∗,txw−1 : t ∈ [`/r], w ∈ [r]},
which are of degrees at most r−1. The coefficients ηj∗,t ∈ Fq`
are constructed as in [10] so that the set {ηj∗,tαw−1

j∗ : t ∈
[`/r], w ∈ [r]} forms an Fq-basis of Fq` , which then qualifies
Rj∗ as a repair scheme for cj∗ . Note that while in [10],
the repair scheme for cj∗ is considered over the base field
F
q
∏

j 6=j∗ pj , we go further down to Fq instead and hence new
factors will be introduced to reflect that change.

We define {ηj∗,t}`/rt=1 as the set{
βuαu+vr

j∗

∏
j 6=j∗
α
mj

j : 0≤u≤r − 1, 0≤v≤ pj
∗ − 1

r
− 1, 0≤mj

≤pj − 1
}⋃{( r−1∑

s=0

βs
)
α
pj∗−1
j∗

∏
j 6=j∗

α
mj

j : 0≤mj≤pj − 1
}
.

As the first and the second sets in the union have sizes
`

rpj∗
(pj∗ − 1) and `

rpj∗
, respectively, the union has size

`
r for a fixed j∗, as claimed. Compared to [10], the set
{
∏
j 6=j∗ α

mj

j : 0≤mj≤pj − 1} includes our newly introduced
factors and serves as an Fq-basis for F

q
∏

j 6=j∗ pj . The helper
node storing cj′=f(αj′), j′ 6=j∗, chooses a basis Bαj′ so that

B′αj′
=
{
βu

n∏
j=1

α
mj

j : 0 ≤ u ≤ r − 1, 0 ≤ mj ≤ pj − 1
}
.

Similar to the two-coset construction, even if B′αj′
does not

depend on αj′ , the bases of the nodes can be different due to
the different column multipliers. As discussed in Section IV-A,
the I/O cost incurred at this node is equal to the number

of elements in B′αj′
required to generate {ηj∗,tαw−1

j′ : t ∈
[`/r], w ∈ [r]}. Note that as αj′ is of order pj′ over Fq , all of
its powers can be represented as an Fq-linear combination of
{αmj′

j′ : 0 ≤ mj′ ≤ pj′ − 1}. Therefore, every element in the
set {ηj∗,tαw−1

j′ : t ∈ [`/r], w ∈ [r]} can be linearly generated
over Fq by the set{
βuαu+vr

j∗

∏
j 6=j∗
α
mj

j : 0≤u≤r − 1, 0≤v≤ pj
∗ − 1

r
− 1, 0≤mj

≤pj−1
}⋃{

βuα
pj∗−1
j∗

∏
j 6=j∗

α
mj

j : 0≤u≤r−1, 0≤mj≤pj−1
}
.

Clearly, this is a subset of B′αj′
of cardinality pj∗+r−1

pj∗
`
r , which

is the I/O cost incurred at the node storing cj′ = f(αj′).
Therefore, the I/O cost in repairing cj∗ = f(αj∗) is

(
1 +

r−1
pj∗

) (n−1)`
r sub-symbols over Fq , where (n−1)`

r is the repair
bandwidth of this repair scheme. Since r ≤ pj∗ − 1 due to the
assumption that r | (pj∗ − 1), the I/O cost is at most twice the
(optimal) repair bandwidth for any cj∗ , and the average I/O
cost over the failed nodes is fairly close to the bandwidth.

REFERENCES

[1] I. S. Reed and G. Solomon, “Polynomial codes over certain finite fields,”
J. Soc. Ind. Appl. Math., vol. 8, no. 2, pp. 300–304, 1960.

[2] H. Dau, I. Duursma, H. M. Kiah, and O. Milenkovic, “Repairing Reed-
Solomon codes with multiple erasures,” IEEE Trans. Inform. Theory,
vol. 54, no. 10, pp. 6567–6582, 2018.

[3] “HDFS Erasure Coding,” https://hadoop.apache.org/docs/r3.0.0/
hadoop-project-dist/hadoop-hdfs/HDFSErasureCoding.html/.

[4] K. Shanmugam, D. S. Papailiopoulos, A. G. Dimakis, and G. Caire, “A
repair framework for scalar MDS codes,” IEEE J. Selected Areas Comm.
(JSAC), vol. 32, no. 5, pp. 998–1007, 2014.

[5] V. Guruswami and M. Wootters, “Repairing Reed-Solomon codes,” in
Proc. Annu. Symp. Theory Comput. (STOC), 2016.

[6] ——, “Repairing Reed-Solomon codes,” IEEE Trans. Inform. Theory,
vol. 63, no. 9, pp. 5684–5698, 2017.

[7] M. Ye and A. Barg, “Explicit constructions of MDS array codes and RS
codes with optimal repair bandwidth,” in Proc. IEEE Int. Symp. Inform.
Theory (ISIT), 2016, pp. 1202–1206.

[8] H. Dau and O. Milenkovic, “Optimal repair schemes for some families of
Reed-Solomon codes,” in Proc. IEEE Int. Symp. Inform. Theory (ISIT),
2017, pp. 346–350.

[9] I. Duursma and H. Dau, “Low bandwidth repair of the RS(10,4) Reed-
Solomon code,” in Proc. Inform. Theory Applicat. Workshop (ITA), 2017.

[10] I. Tamo, M. Ye, and A. Barg, “Optimal repair of Reed-Solomon
codes: Achieving the cut-set bound,” in Proc. 58th Annual IEEE Symp.
Foundations Computer Sci. (FOCS), 2017.

[11] ——, “The repair problem for Reed-Solomon codes: Optimal repair of
single and multiple erasures with almost optimal node size,” in IEEE
Trans. Inform. Theory, 2018, to appear.

[12] H. Dau, I. Duursma, H. M. Kiah, and O. Milenkovic, “Repairing Reed-
Solomon codes with two erasures,” in Proc. IEEE Int. Symp. Inform.
Theory (ISIT), 2017, pp. 351–355.

[13] B. Bartan and M. Wootters, “Repairing multiple failures for scalar MDS
codes,” in Proc. 55th Annual Allerton Conf. Comm Control Comput.
(Allerton), 2017.

[14] J. Mardia, B. Bartan, and M. Wootters, “Repairing multiple failures for
scalar MDS codes,” IEEE Trans. Inform. Theory, vol. 65, no. 5, pp.
2661–2672, 2018.

[15] A. Chowdhury and A. Vardy, “Improved schemes for asymptotically
optimal repair of MDS codes,” in Proc. 55th Annual Allerton Conf.
Comm Control Comput. (Allerton), 2017.

[16] W. Li, Z. Wang, and H. Jafarkhani, “A tradeoff between the sub-
packetization size and the repair bandwidth for Reed-Solomon code,”
in Proc. 55th Annual Allerton Conf. Comm. Control Comput. (Allerton),
2017, pp. 942–949.

[17] ——, “A tradeoff between the sub-packetization size and the repair
bandwidth for Reed-Solomon codes,” arXiv:1806.00496, 2018.

[18] H. Dau, I. Duursma, and H. Chu, “On the I/O costs of some repair
schemes for full-length Reed-Solomon codes,” in Proc. IEEE Int. Symp.
Inform. Theory (ISIT), 2018, pp. 1700–1704.

[19] H. Dau and E. Viterbo, “Repair schemes with optimal I/O costs for full-
length Reed-Solomon codes with two parities,” in Proc. IEEE Inform.
Theory Workshop (ITW), 2018, pp. 590–594.

[20] R. Lidl and H. Niederreiter, Introduction to Finite Fields and Their
Applications. Cambridge University Press, 1986.

[21] R. Roth, Introduction to Coding Theory. New York, NY, USA:
Cambridge University Press, 2006.


