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Abstract—Reed-Solomon (RS) codes are widely used in
distributed storage systems. In this paper, we study the repair
bandwidth and sub-packetization size of RS codes. The repair
bandwidth is defined as the amount of transmitted information
from surviving nodes to a failed node. The RS code can be
viewed as a polynomial over a finite field GF (q`) evaluated
at a set of points, where ` is called the sub-packetization
size. Smaller bandwidth reduces the network traffic in dis-
tributed storage, and smaller ` facilitates the implementation
of RS codes with lower complexity. Recently, Guruswami and
Wootters proposed a repair method for RS codes when the
evaluation points are the entire finite field. While the sub-
packization size can be arbitrarily small, the repair bandwidth
is higher than the minimum storage regenerating (MSR)
bound. Tamo, Ye and Barg achieved the MSR bound but
the sub-packetization size grows faster than the exponential
function of the number of the evaluation points. In this
work, we present code constructions and repair schemes that
extend these results to accommodate different sizes of the
evaluation points. In other words, we design schemes that
provide points in between. These schemes provide a flexible
tradeoff between the sub-packetization size and the repair
bandwidth. In addition, we generalize our schemes to manage
multiple failures.

I. INTRODUCTION

Erasure codes are ubiquitous in distributed storage sys-
tems because they can efficiently store data while protecting
against failures. Reed-Solomon (RS) code is one of the most
commonly used codes because it achieves the Singleton
bound [2] and has efficient encoding and decoding methods,
see, e.g., [3], [4]. Codes matching the Singleton bound
are called maximum distance separable (MDS) codes, and
they have the highest possible failure-correction capability
for a given redundancy level. In distributed storage, every
code word symbol corresponds to a storage node, and
communication costs between storage nodes need to be
considered when node failures are repaired. In this paper,
we study the repair bandwidth of RS codes, defined as the
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amount of transmission required to repair a single node
erasure, or failure, from all the remaining nodes (called
helper nodes).

For a given erasure code, when each node corresponds
to a single finite field symbol over F = GF (q`), we say
the code is scalar; when each node is a vector of finite field
symbols in B = GF (q) of length `, it is called a vector code
or an array code. In both cases, we say the sub-packetization
size of the code is `. Here q is a power of a prime number.
Shanmugam et al. [5] considered the repair of scalar codes
for the first time. Recently, Guruswami and Wootters [6]
proposed a repair scheme for RS codes. The key idea of
both papers is that: rather than directly using the helper
nodes as symbols over F to repair the failed node, one treats
them as vectors over the subfield B. Thus, a helper may
transmit less than ` symbols over B, resulting in a reduced
bandwidth. For an RS code with length n and dimension
k over the field F, denoted by RS(n, k), [6] achieves the
repair bandwidth of n−1 symbols over B. Moreover, when
n = q` (called the full-length RS code) and n− k = q`−1,
the scheme provides the optimal repair bandwidth. Dau and
Milenkovic [7] improved the scheme such that the repair
bandwidth is optimal for the full-length RS code and any
n− k = qs, 1 ≤ s ≤ logq(n− k).

For the full-length RS code, the schemes in [6] and [7] are
optimal for single erasure. However, the repair bandwidth of
these schemes still has a big gap from the minimum storage
regenerating (MSR) bound derived in [8]. In particular, for
an arbitrary MDS code, the repair bandwidth b, measured in
the number of symbols over GF (q), is lower bounded by

b ≥ `(n− 1)

n− k
. (1)

An MDS code satisfying the above bound is called an MSR
code. In fact, most known MSR codes are vector codes, see
[9], [10], [11], [12], [13], [14], [15]. For the repair of RS
codes, Ye and Barg proposed a scheme that asymptotically
approaches the MSR bound as n grows [16] when the sub-
packetization size is ` = (n−k)n. Tamo et al. [17] provided
an RS code repair scheme achieving the MSR bound when
the sub-packetization size is ` ≈ nn.

The repair problem for RS codes can also be generalized
to multiple erasures. In this case, the schemes in [18] and
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[19] work for the full-length code, [20] and [21] work for
centralized repair, and [22] proposed a scheme achieving the
multiple-erasure MSR bound.

Motivation: A flexible tradeoff between the sub-
packetization size and the repair bandwidth is an open
problem: Only the full-length RS code with high repair
bandwidth and the MSR-achieving RS code with large sub-
packetization are established. Our paper aims to provide
more points between the two extremes – the full-length code
and the MSR code. One straightforward method is to apply
the schemes of [6] and [7] to the case of ` > logq n with
fixed (n, k). However, the resulting normalized repair band-
width b

`(n−1) grows with `, contradictory to our intuition
that larger ` implies smaller normalized bandwidth.

The need for small repair bandwidth is motivated by
reducing the network traffic in distributed storage [8], and
the need for the small sub-packetization is due to the com-
plexity in field arithmetic operations, discussed below. It is
demonstrated that the time complexity of multiplications in
larger fields are much higher than that of smaller fields [23].
Moreover, multiplication in Galois fields are usually done by
pre-computed look-up tables and the growing field size has a
significant impact on the space complexity of multiplication
operations. Larger fields require huge memories for the look-
up table. For example, in GF (216), 8 GB are required for
the complete table, which is impractical in most current
systems [24]. Some logarithm tables and sub-tables are used
to alleviate the memory problems for large fields, while
increasing the time complexity at the same time [24], [25],
[26]. For example, in the Intel SIMD methods, multiplica-
tions over GF (216) need twice the amount of operations
as over GF (28), and multiplications over GF (232) need 4
times the amount of operations compared to GF (28), which
causes the multiplication speed to drop significantly when
the field size grows [25].

To illustrate the impact of the sub-packetization size on
the complexity, let us take encoding for example. To encode
a single parity check node, we need to do k multiplica-
tions and k additions over GF (q`). For a given systematic
RS(n, k) code over GF (q`), we can encode k` log2 q bits
of information by multiplications of (n − k)k` log2 q bits
and additions of (n− k)k` log2 q bits. So, when M bits are
encoded into RS(n, k) codes, we need M/(k` log2 q) copies
of the code and we need multiplications of M(n − k) bits
and additions of M(n−k) bits in GF (q`) in total. Although
the total amount of bits we need to multiply is independent
of `, the complexity over a larger field is higher in both
time and space. For a simulation of the RS code speed
using different field sizes on different platforms, we refer
the readers to [27]. The results suggest that RS codes have
faster implementation in both encoding and decoding for
smaller fields.

Besides the complexity, the small sub-packetization level
also has many advantages such as easy system implemen-

tation, great flexibility and bandwidth-efficient access to
missing small files [28], [29], which makes it important in
distributed storage applications.

As can be seen from the two extremes, a small sub-
packetization level also means higher costs in repair band-
width, and not many other codes are known besides the
extremes. For vector codes, Guruswami, Rawat [28] and Li,
Tang [30] provided small sub-packetization codes with small
repair bandwidth, but only for single erasure. Kralevska et al.
[31] also presented a tradeoff between the sub-packetization
level and the repair bandwidth for the proposed HashTag
codes implemented in Hadoop. For scalar codes, Chowdhury
and Vardy [32] extended Ye and Barg’s MSR scheme [16]
to a smaller sub-packetization size, but it only works for
certain redundancy r and single erasure.

Contributions: In this work, we first design three single-
erasure RS repair schemes, using the cosets of the multi-
plicative group of the finite field F. Note that the RS code
can be viewed as n evaluations of a polynomial over F.
The evaluation points of the three schemes are part of one
coset, of two cosets, and of multiple cosets, respectively, so
that the evaluation point size can vary from a very small
number to the whole field size. In the schemes designed in
this paper, we have a parameter a that can be tuned, and
provides a tradeoff between the sub-packetization size and
the repair bandwidth.
• For an RS(n, k) code, our first scheme achieves the

repair bandwidth `
a (n−1)(a−s) for some a, s such that

n < qa, r , n − k > qs and a divides `. Specifically,
for the RS(14, 10) code used in Facebook [33], we
achieve repair bandwidth of 52 bits with ` = 8, which
is 35% better than the naive repair scheme.

• Our second scheme reaches the repair bandwidth of
(n − 1) `+a2 for some a such that n ≤ 2(qa − 1), a
divides ` and `

r < a.
• The first realization of our third scheme attains the

repair bandwidth of `
r (n+1+(r−1)(qa−2)) when n ≤

(qa−1) logr `a . Another realization of the third scheme
attains the repair bandwidth of `

r (n−1+(r−1)(qa−2))
where ` ≈ a( n

qa−1 )
( n
qa−1 ). The second realization can

also be generalized to any d helpers, for k ≤ d ≤ n−1.
We provide characterizations of linear multiple-erasure re-
pair schemes, and propose two schemes for multiple era-
sures, where the evaluation points are in one coset and
in multiple cosets, respectively. Again, the parameter a is
tunable.
• We prove that any linear repair scheme for multiple

erasures in a scalar MDS code is equivalent to finding
a set of dual codewords satisfying certain rank con-
straints.

• For an RS(n, k) code with e < 1
a−s
√

logq n erasures,
our first scheme achieves the repair bandwidth e`

a (n−
e)(a−s) for some a, s such that n < qa, r = n−k > qs

and a divides `.
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• For an RS(n, k) code, our second scheme works for
e ≤ n − k erasures and n − e helpers. The repair
bandwidth depends on the location of the erasures and
in most cases, we achieve e`

d−k+e (n − e + (n − k +

e)(qa − 2)) where ` ≈ a( n
qa−1 )

( n
qa−1 ) and a divides `.

• We demonstrate that repairing multiple erasures simul-
taneously is advantageous compared to repairing single
erasures separately.

The comparison of our schemes, as well as the comparison
to previous works, are shown in Tables I and II, and are
discussed in more details in Sections III-D and IV-D.

The paper is organized as follows. In Section II, we
briefly review the linear repair of RS codes and provide the
preliminaries used in this paper. In Section III, we present
three RS repair schemes for single erasure. Then, we discuss
the repair schemes for multiple erasures in Section IV. In
Section V, we provide the conclusion.

Notation: Throughout this paper, for positive integer i,
we use [i] to denote the set {1, 2, . . . , i}. For integers a, b,
we use a | b to denote that a divides b. For real numbers
an, bn, which are functions of n, we use a ≈ b to denote
limn→∞

an
bn

= 1. For sets A ⊆ B, we use B/A to denote
the difference of A from B. For a finite field F, we denote
by F∗ = F/{0} the corresponding multiplicative group. We
write E ≤ F for E being a subfield of F. For element β ∈ F
and E as a subset of F, we denote βE = {βs,∀s ∈ E}.
AT denotes the transpose of the matrix A.

II. PRELIMINARIES

In this section, we review the linear repair scheme of RS
code in [6], and provide a basic lemma used in our proposed
schemes.

The Reed-Solomon code RS(A, k) over F = GF (q`)
of dimension k with n evaluation points A =
{α1, α2, . . . , αn} ⊆ F is defined as

RS(A, k) ={(f(α1), f(α2), . . . , f(αn)) :

f ∈ F[x],deg(f) ≤ k − 1},

where deg() denotes the degree of a polynomial, f(x) =
u0 + u1x + u2x

2 + · · · + uk−1x
k−1, and ui ∈ F, i =

0, 1, . . . , k − 1 are the messages. Every evaluation symbol
f(α), α ∈ A, is called a code word symbol or a stor-
age node. The sub-packetization size is defined as `, and
r , n− k denotes the number of parity symbols.

Assume e nodes fail, e ≤ n− k, and we want to recover
them. The number of helper nodes are denoted by d. The
amount of information transmitted from the helper nodes is
defined as the repair bandwidth b, measured in the number
of symbols over GF (q). All the remaining n− e = d nodes
are assumed to be the helper nodes unless stated otherwise.
We define the normalized repair bandwidth as b

`d , which is
the average fraction of information transmitted from each

helper. By [8], [34], the minimum storage regenerating
(MSR) bound for the bandwidth is

b ≥ e`d

d− k + e
. (2)

As mentioned before, codes achieving the MSR bound
require large sub-packetization sizes. In this section, we
focus on the single erasure case.

Assume B ≤ F, namely, B is a subfield of F. A linear
repair scheme requires some symbols of the subfield B to
be transmitted from each helper node [6]. If the symbols
from the same helper node are linearly dependent, the repair
bandwidth decreases. In particular, the scheme uses dual
code to compute the failed node and uses trace function to
obtain the transmitted subfield symbols, as detailed below.

Assume f(α∗) fails for some α∗ ∈ A. For any poly-
nomial p(x) ∈ F[x] of which the degree is smaller than
r, (υ1p(α1), υ2p(α2), . . . , υnp(αn)) is a dual codeword of
RS(A, k), where υi, i ∈ [n] are non-zero constants deter-
mined by the set A (see for example [2, Thm. 4 in Ch.10]).
We can thus repair the failed node f(α∗) from

υα∗p(α
∗)f(α∗) = −

n∑
i=1,αi 6=α∗

υip(αi)f(αi) (3)

The summation on the right side means that we add all the
i elements from i = 1 to i = n except when αi 6= α∗.

The trace function from F onto B is defined as

trF/B(β) = β + βq + · · ·+ βq
`−1

, (4)

where β ∈ F, B = GF (q) is called the base field, and q is
a power of a prime number. It is a linear mapping from F
to B and satisfies

trF/B(αβ) = αtrF/B(β) (5)

for all α ∈ B.
We define the rank rankB({γ1, γ2, ..., γi}) to be the

cardinality of a maximal subset of {γ1, γ2, ..., γi} that is
linearly independent over B. For example, for B = GF (2)
and α /∈ B, rankB({1, α, 1 + α}) = 2 because the subset
{1, α} is the maximal subset that is linearly independent
over B and the cardinality of the subset is 2.

Assume we use polynomials pj(x), j ∈ [`] to generate `
different dual codewords, called repair polynomials. Com-
bining the trace function and the dual code, we have

trF/B(υα∗pj(α
∗)f(α∗))

=−
n∑

i=1,αi 6=α∗
trF/B(υipj(αi)f(αi)). (6)

In a repair scheme, the helper f(αi) transmits

{trF/B(υipj(αi)f(αi)) : j ∈ [`]}. (7)
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TABLE I
Comparison of different schemes for single erasure. When a = `, our scheme in one coset is the scheme in [6], [7]. When a = 1, our schemes in

multiple cosets is the schemes in [16], [17].

repair bandwidth code length restrictions
Schemes in [6], [7] (n− 1)(`− s) n ≤ q` qs ≤ r

Scheme in [16] < `
r
(n+ 1) n = logr `

Scheme in [17] `
r
(n− 1) nn ≈ `

Our scheme in
one coset ≤ `

a
(n− 1)(a− s) n ≤ (qa − 1) qs ≤ r, a|`

Our scheme in
two cosets < (n− 1) `+a

2
n ≤ 2(qa − 1) `

r
≤ a, a|`

Our scheme in
multiple cosets 1 < `

r
(n+ 1 + (r − 1)(qa − 2)) n ≤ (qa − 1)m

`/a = rm

for some integer m
Our scheme in

multiple cosets 2
`
r
(n− 1 + (r − 1)(qa − 2)) n ≤ (qa − 1)m

`/a ≈ mm

for some integer m

TABLE II
Comparison of different schemes for multiple erasures. When a = ` and s = ` our scheme in one coset is the scheme 1 in [19]. When a = 1, our

schemes in multiple cosets is the scheme in [22].

repair bandwidth code length restrictions
Scheme 1 in [19] ≤ (n− e)e− e(e−1)(q−1)

2
n ≤ q` q`−1 ≤ r, e <

√
logq n

Scheme 2 in [19] ≤ min
e′≥e

((n− e′)(`− blogq(n−k+e′−1
2e′−1

)c)) n ≤ q`

Scheme in [22] ed`
d−k+e

nn ≈ `

Our scheme for multiple erasures
in one coset ≤ e`

a
(n− e)(a− s) n ≤ (qa − 1) qs ≤ r, a|`, e < 1

a−s

√
logq n

Our scheme for multiple erasures
in multiple cosets

e`
n−k

(n− e+ (n− k + e)(qa − 2)) n ≤ (qa − 1)m
`/a ≈ mm

for some integer m

Suppose {υα∗p1(α∗), υα∗p2(α∗), . . . , υα∗p`(α∗)} is a basis
for F over B, and assume {µ1, µ2, . . . , µ`} is its dual basis.
Then, f(α∗) can be repaired by

f(α∗) =
∑̀
j=1

µjtrF/B(υα∗pj(α
∗)f(α∗)). (8)

Since υα∗ is a non-zero constant, we equivalently suppose
that {p1(α∗), . . . , p`(α∗)} is a basis.

In fact, by [6] any linear repair scheme of RS code for the
failed node f(α∗) is equivalent to choosing pj(x), j ∈ [`],
with degree smaller than r, such that {p1(α∗), . . . , p`(α∗)}
forms a basis for F over B. We call this the full rank
condition:

rankB({p1(α∗), p2(α∗), . . . , p`(α∗)}) = `. (9)

The repair bandwidth can be calculated from (7) and by
noting that vif(αi) is a constant:

b =
∑

α∈A,α 6=α∗
rankB({p1(α), p2(α), . . . , p`(α)}). (10)

We call this the repair bandwidth condition.
The goal of a good RS code construction and its repair

scheme is to choose appropriate evaluation points A and
polynomials pj(x), j ∈ [`], that can reduce the repair
bandwidth in (10) while satisfying (9).

The following lemma is due to the structure of the
multiplicative group of F, which will be used for finding

the evaluation points in the code constructions in this paper.
Similar statements can be found in [3, Ch. 2.6].

Lemma 1. Assume E ≤ F = GF (q`), then F∗ can be par-
titioned to t , q`−1

|E|−1 cosets: {E∗, βE∗, β2E∗, . . . , βt−1E∗},
where β is a primitive element of F.

Proof: The q` − 1 elements in F∗ are
{1, β, β2, . . . , βq

`−2} and E∗ ⊆ F∗. Assume that t is
the smallest nonzero number that satisfies βt ∈ E∗,
then we know that βk ∈ E∗ if and only if t|k. Also,
βk1 6= βk2 when k1 6= k2 and k1, k2 < q` − 2.
Since there are only |E| − 1 nonzero distinct elements
in E∗ and βq

`−1 = 1, we have t = q`−1
|E|−1 and

the t cosets are E∗ = {1, βt, β2t, . . . , β(|E|−2)t},
βE∗ = {β, βt+1, β2t+1, . . . , β(|E|−2)t+1}, . . . , βt−1E∗ =
{βt−1, β2t−1, β3t−1, . . . , β(|E|−1)t−1}.

III. REED-SOLOMON REPAIR SCHEMES FOR SINGLE
ERASURE

In this section, we present our schemes in which the eval-
uation points are part of one coset, two cosets and multiple
cosets for a single erasure. From these constructions, we
achieve several different points on the tradeoff between the
sub-packetization size and the normalized repair bandwidth.
The main ideas of the constructions are:

(i) In all our schemes, we take an original RS code, and
construct a new code over a larger finite field. Thus, the
sub-packetization size ` is increased.
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(ii) For the schemes using one and two cosets, the code
parameters n, k are kept the same as the original code.
Hence, for given n, r = n− k, the sub-packetization size `
increases, but we show that the normalized repair bandwidth
remains the same.

(iii) For the scheme using multiple cosets, the code length
n is increased and the redundancy r is fixed. Moreover, the
code length n grows faster than the sub-packetization size `.
Therefore, for fixed n, r, the sub-packetization ` decreases,
and we show that the normalized repair bandwidth is only
slightly larger than the original code.

A. Schemes in one coset
Assume E = GF (qa) is a subfield of F = GF (q`) and

B = GF (q) is the base field, where q is a prime number.
The evaluation points of the code over F that we construct
are part of one coset in Lemma 1.

We first present the following lemma about the basis.

Lemma 2. Assume {ξ1, ξ2, . . . , ξ`} is a basis for F =
GF (q`) over B = GF (q), then {ξq

s

1 , ξ
qs

2 , . . . , ξ
qs

` }, s ∈ [`]
is also a basis.

Proof: Assume {ξq
s

1 , ξ
qs

2 , . . . , ξ
qs

` }, s ∈ [`] is not a basis
for F over B, then there exist nonzero (α1, α2, . . . , α`), αi ∈
B, i ∈ [`], that satisfy

α1ξ
qs

1 + α2ξ
qs

2 + · · ·+ α`ξ
qs

`

=0

=(α1ξ1 + α2ξ2 + · · ·+ α`ξ`)
qs , (11)

which is in contradiction to the assumption that
{ξ1, ξ2, . . . , ξ`} is a basis for F over B.

The following theorem shows the repair scheme using one
coset for the evaluation points.

Theorem 1. There exists an RS(n, k) code over F =
GF (q`) with repair bandwidth b ≤ `

a (n−1)(a−s) symbols
over B = GF (q), where q is a prime number and a, s satisfy
n < qa, qs ≤ n− k, a|`.

Proof: Assume a field F = GF (q`) is extended from
E = GF (qa), a | `, and β is a primitive element of F. We
focus on the code RS(A, k) of dimension k over F with
evaluation points A = {α1, α2, . . . , αn} ⊆ βmE∗ for some
0 ≤ m < q`−1

qa−1 , which is one of the cosets in Lemma 1.
The base field is B = GF (q) and (6) is used to repair the
failed node f(α∗).
Construction I: Inspired by [6], for s = a− 1, we choose

pj(x) =
trE/B(ξj(

x
βm − α∗

βm ))
x
βm − α∗

βm

, j ∈ [a], (12)

where {ξ1, ξ2, . . . , ξa} is a basis for E over B. The degree
of pj(x) is smaller than r since qs ≤ r. When x = α∗, by
(4) we have

pj(α
∗) = ξj . (13)

So, the polynomials satisfy

rankB({p1(α∗), p2(α∗), . . . , pa(α∗)}) = a. (14)

When x 6= α∗, since trE/B(ξj( x
βm− α∗

βm )) ∈ B, and x
βm− α∗

βm

is a constant independent of j, we have

rankB({p1(x), p2(x), . . . , pa(x)}) = 1. (15)

Let {η1, η2, η3, . . . , η`/a} be a basis for F over E, the `
repair polynomials are chosen as

{η1pj(x), η2pj(x), . . . , η`/apj(x) : j ∈ [a]}. (16)

Since pj(x) ∈ E, we can conclude that

rankB({η1pj(α∗), η2pj(α∗), . . . , η`/apj(α∗) : j ∈ [a]})

=
`

a
rankB({p1(α∗), p2(α∗), . . . , pa(α∗)}) = ` (17)

satisfies the full rank condition, and for x 6= α∗

rankB({η1pj(x), η2pj(x), . . . , η`/apj(x) : j ∈ [a]})

=
`

a
rankB({p1(x), p2(x), . . . , pa(x)}) =

`

a
. (18)

From (10) we can calculate the repair bandwidth

b =
`

a
(n− 1). (19)

Construction II: For s ≤ a− 1, inspired by [7], we choose

pj(x) = ξj

qs−1∏
i=1

(
x

βm
−
(
α∗

βm
− w−1i ξj

))
, j ∈ [a], (20)

where {ξ1, ξ2, . . . , ξa} is a basis for E over B, and W =
{w0 = 0, w1, w2, . . . , wqs−1} is an s-dimensional subspace
in E, s < a, qs ≤ r. It is easy to check that the degree of
pj(x) is smaller than r since qs ≤ r. When x = α∗, we
have

pj(α
∗) = ξq

s

j

qs−1∏
i=1

w−1i . (21)

Since
qs−1∏
i=1

w−1i is a constant, from Lemma 2 we have

rankB({p1(α∗), p2(α∗), . . . , pa(α∗)}) = a. (22)

For x 6= α∗, set x′ = α∗

βm − x
βm ∈ E, we have

pj(x) = ξj

qs−1∏
i=1

(
x

βm
−
(
α∗

βm
− w−1i ξj

))

= ξj

qs−1∏
i=1

(w−1i ξj − x′)

= ξj

qs−1∏
i=1

(w−1i x′)

qs−1∏
i=1

(ξj/x
′ − wi)

= (x′)q
s
qs−1∏
i=1

(w−1i )

qs−1∏
i=0

(ξj/x
′ − wi). (23)
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By [35, p. 4], g(y) =
qs−1∏
i=0

(y − wi) is a linear mapping

from E to itself with dimension a − s over B. Since

(x′)q
s
qs−1∏
i=1

(w−1i ) is a constant independent of j, we have

rankB({p1(x), p2(x), . . . , pa(x)}) ≤ a− s. (24)

Let {η1, η2, η3, . . . , η`/a} be a basis for F over E,
then the ` polynomials are chosen as {η1pj(x),
η2pj(x), . . . , η`/apj(x), j ∈ [a]}. From (21) and (23)
we know that pj(x) ∈ E, so we can conclude that

rankB({η1pj(α∗), η2pj(α∗), . . . , η`/apj(α∗) : j ∈ [a]})

=
`

a
rankB({p1(α∗), p2(α∗), . . . , pa(α∗)}) = ` (25)

satisfies (9), and for x 6= α∗

rankB({η1pj(x), η2pj(x), . . . , η`/apj(x) : j ∈ [a]})

=
`

a
rankB({p1(x), p2(x), . . . , pa(x)}) ≤

`

a
(a− s). (26)

Now from (10) we can calculate the repair bandwidth

b ≤ `

a
(n− 1)(a− s). (27)

Combining (19) and (27) will complete the proof of Theo-
rem 1.

Rather than directly using the schemes in [6] and [7],
the polynomials (12) and (20) that we use are similar to
[6] and [7], respectively, but are mappings from E to B.
Moreover, we multiply each polynomial with the basis for
F over E to satisfy the full rank condition. In this case,
our scheme significantly reduces the repair bandwidth when
the code length remains the same. Our evaluation points are
in a coset rather than the entire field F as in [6] and [7].
It should be noted that a here can be an arbitrary number
that divides ` and when a = `, our schemes are exactly the
same as those in [6] and [7]. Note that the normalized repair
bandwidth b

`(n−1) decreases as a decreases. Therefore, our
scheme outperforms those in [6] and [7] when applied to
the case of ` > logq n.

Example 1. Assume q = 2, ` = 9, a = 3 and E =
{0, 1, α, α2, . . . , α6}. Let A = E∗, n = 7, k = 5
so r = n − k = 2. Choose s = log2 r = 1 and
W = {0, 1} in Construction II. Then, we have pj(x) =
ξj(x − α∗ + ξj). Let {ξ1, ξ2, ξ3} be {1, α, α2}. It is easy
to check that rankB({p1(α∗), p2(α∗), p3(α∗)}) = 3 and
rankB({p1(x), p2(x), p3(x)}) = 2 for x 6= α∗. Therefore
the repair bandwidth is b = 36 bits as suggested in Theorem
1. For the same (n, k, `), the repair bandwidth in [7] is 48
bits. For another example, consider RS(14, 10) code used
in Facebook [33], we have repair bandwidth of 52 bits for
` = 8, while [7] requires 60 bits and the naive scheme
requires 80 bits.

Remark 1. The schemes in [6] and [7] can also be used in
an RS code over E with repair bandwidth (n−1)(a−s), and

with `/a copies of the code. Thus, they can also reach the
repair bandwidth of `

a (n−1)(a−s). It should be noted that
by doing so, the code is a vector code, however our scheme
constructs a scalar code. To the best of our knowledge, this
is the first example of such a scalar code in the literature.

B. Schemes in two cosets

Now we discuss our scheme when the evaluation points
are chosen from two cosets. In this scheme, we choose the
polynomials that have full rank when evaluated at the coset
containing the failed node, and rank 1 when evaluated at the
other coset.

Theorem 2. There exists an RS(n, k) code over F =
GF (q`) with repair bandwidth b < (n − 1) `+a2 symbols
over B = GF (q), where q is a prime number and a satisfies
n ≤ 2(qa − 1), a|`, `

a ≤ n− k.

Proof: Assume a field F = GF (q`) is extended from
E = GF (qa) and β is the primitive element of F. We focus
on the code RS(A, k) over F of dimension k with evaluation
points A consisting of n/2 points from βm1E∗ and n/2

points from βm2E∗, 0 ≤ m1 < m2 ≤ q`−1
qa−1 and m2−m1 =

qs, s ∈ {0, 1, . . . , `a}.
In this case we view E as the base field and repair the

failed node f(α∗) by

trF/E(υα∗pj(α
∗)f(α∗))

=−
n∑

i=1,αi 6=α∗
trF/E(υipj(αi)f(αi)). (28)

Inspired by [6, Theorem 10], for j ∈ [ `a ], we choose

pj(x) =

{
( x
βm2

)j−1, if α∗ ∈ βm1E∗,
( x
βm1

)j−1, if α∗ ∈ βm2E∗.
(29)

The degree of pj(x) is smaller than r when `
a ≤ r. Then,

we check the rank in each case.
When α∗ ∈ βm2E∗, if x = βm1γ ∈ βm1E∗, for some

γ ∈ E∗,

pj(x) =

(
x

βm1

)j−1
= γj−1, (30)

so

rankE({p1(x), p2(x), . . . , p `
a
(x)}) = 1. (31)

If x = βm2γ ∈ βm2E∗, for some γ ∈ E∗,

pj(x) =

(
x

βm1

)j−1
= (βm2−m1)j−1γj−1. (32)

Since m2 − m1 = qs and {1, β, β2, . . . , β
`
a−1} is the

polynomial basis for F over E, from Lemma 2 we know
that

rankE({p1(x), p2(x), . . . , p `
a
(x)}) = `

a
. (33)
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When α∗ ∈ βm1E∗, if x = βm1γ ∈ βm1E∗, for some
γ ∈ E∗,

pj(x) =

(
x

βm2

)j−1
= (βm1−m2)j−1γj−1

= (βm2−m1)1−
`
a (βm2−m1)

`
a−jγj−1. (34)

Since (βm2−m1)1−
`
a is a constant, from Lemma 2 we know

that

rankE({p1(x), p2(x), . . . , p `
a
(x)}) = `

a
. (35)

If x = βm2γ ∈ βm2E∗, for some γ ∈ E∗,

pj(x) =

(
x

βm2

)j−1
= γj−1, (36)

so

rankE({p1(x), p2(x), . . . , p `
a
(x)}) = 1. (37)

Therefore, {pj(α∗), j ∈ [ `a ]} has full rank over E, for any
evaluation point α∗ ∈ A. For x from the coset containing
α∗, the polynomials have rank `/a, and for x from the
other coset, the polynomials have rank 1. Then, the repair
bandwidth in symbols over B can be calculated from (10)
as

b =
`

a
(
n

2
− 1) logq |E|+

n

2
logq |E|

= (n− 1)
`+ a

2
− `− a

2

< (n− 1)
`+ a

2
. (38)

Thus, the proof is completed.

Example 2. Take the RS(14, 11) code over F = GF (212)
for example. Let β be the primitive element in F, a = 4,
s = `/a = 3 and A = E∗ ∪ βE∗. Assume α∗ ∈ βE∗, then
{pj(x), j ∈ [3]} is the set {1, x, x2}. It is easy to check that
when x ∈ βE∗ the polynomials have full rank and when x ∈
E∗ the polynomials have rank 1. The total repair bandwidth
is 100 bits. For the same (n, k, `), the repair bandwidth of
our scheme in one coset is 117 bits. For the scheme in
[6], which only works for `/a = 2, we can only choose
a = 6 and get the repair bandwidth of 114 bits for the same
(n, k, `).

C. Schemes in multiple cosets

In the schemes in this subsection, we extend an original
code to a new code over a larger field and the evaluation
points are chosen from multiple cosets in Lemma 1 to
increase the code length. The construction ensures that
for fixed n, the sub-packetization size is smaller than the
original code. If the original code satisfies several conditions
to be discussed soon, the repair bandwidth in the new
code is only slightly larger than that of the original code.

Particularly, if the original code is an MSR code, then we
can get the new code in a much smaller sub-packetization
level with a small extra repair bandwidth. Also, if the
original code works for any number of helpers and multiple
erasures, the new code works for any number of helpers
and multiple erasures, too. We discuss multiple erasures in
Section IV.

We first prove a lemma regarding the ranks over different
base fields, and then describe the new code.

Lemma 3. Let B = GF (q),F′ = GF (q`
′
),E = GF (qa),

F = GF (q`), ` = a`′. a and `′ are relatively prime and
q can be any power of a prime number. For any set of
{γ1, γ2, ..., γ`′} ⊆ F′ ≤ F, we have

rankE({γ1, γ2, ..., γ`′})
=rankB({γ1, γ2, ..., γ`′}). (39)

Proof: Assume rankB({γ1, γ2, ..., γ`′}) = c and with-
out loss of generality, {γ1, γ2, ..., γc} are linearly indepen-
dent over B. Then, we can construct {γ′c+1, γ

′
c+2, ..., γ

′
`′} ⊆

F′ to make {γ1, γ2, ..., γc, γ′c+1, γ
′
c+2, ..., γ

′
`′} form a basis

for F′ over B.
Assume we get F by adjoining β to B. Then, from

[36, Theorem 1.86] we know that {1, β, β2, ..., β`
′−1} is

a basis for both F over E, and F′ over B. So, any sym-
bol y ∈ F can be presented as a linear combination of
{1, β, β2, ..., β`

′−1} with some coefficients in E. Also, we
know that there is an invertible linear transformation with
coefficients in B between {γ1, γ2, ..., γc, γ′c+1, γ

′
c+2, ..., γ

′
`′}

and {1, β, β2, ..., β`
′−1}, because they are a basis for F′ over

B. Combined with the fact that {1, β, β2, ..., β`
′−1} is also a

basis for F over E, we can conclude that any symbol y ∈ F
can be represented as

y = x1γ1 + x2γ2 + ...+ xcγc + xc+1γ
′
c+1 + ...+ x`γ

′
`′

(40)

with some coefficients xi ∈ E, which means that
{γ1, γ2, ..., γc, γ′c+1, γ

′
c+2, ..., γ

′
`′} is also a basis for F over

E. Then, we have that {γ1, γ2, ..., γc} are linearly indepen-
dent over E,

rankE({γ1, γ2, ..., γ`′})
≥c
=rankB({γ1, γ2, ..., γ`′}). (41)

Since B ≤ E, we also have

rankE({γ1, γ2, ..., γ`′})
≤rankB({γ1, γ2, ..., γ`′}). (42)

The proof is completed.

Theorem 3. Assume there exists a RS(n′, k′) code E ′

over F′ = GF (q`
′
) with evaluation points set A′. The

evaluation points are linearly independent over B = GF (q).
The repair bandwidth is b′ and the repair polynomials are
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p′j(x). Then, we can construct a new RS(n, k) code E over
F = GF (q`), ` = a`′ with n = (qa − 1)n′, k = n− n′ + k′

and repair bandwidth of b = ab′(qa−1)+(qa−2)` symbols
over B = GF (q) if we can find new repair polynomials
pj(x) ∈ F[x], j ∈ [`′], with degrees less than n − k that
satisfy

rankE({p1(x), p2(x), . . . , p`′(x)})
=rankB({p′1(α), p′2(α), . . . , p′`′(α)}) (43)

for all α ∈ A′, x ∈ αE∗, where E = GF (qa).

Proof: We first prove the case when a and `′ are
necessarily relatively prime using Lemma 3, the case when
a and `′ are not relatively prime are proved in Ap-
pendix A. Assume the evaluation points of E ′ are A′ =
{α1, α2, . . . , αn′}, then from Lemma 3 we know that they
are also linearly independent over E, so there does not exist
γi, γj ∈ E∗ that satisfy αiγi = αjγj , which implies that
{α1E∗, α2E∗, . . . , αn′E∗} are distinct cosets. Then, we can
extend the evaluation points to be

A = {α1E∗, α2E∗, . . . , αn′E∗}. (44)

and n = (qa − 1)n′. We keep the same redundancy r =
n′ − k′ for the new code so k = n− r.

For the new code E , we use pj(x) ∈ F[x], j ∈ [`′] to
repair the failed node f(α∗)

trF/E(υα∗pj(α
∗)f(α∗))

=−
∑

α∈A,α 6=α∗
trF/E(υαpj(α)f(α)). (45)

Assume the failed node is f(α∗) and α∗ ∈ αiE∗. Then,
for the node x ∈ αiE∗, because the original code satisfies
the full rank condition, we have

rankE({p1(x), p2(x), . . . , p`′(x)})
=rankB({p′1(αi), p′2(αi), . . . , p′`′(αi)}) = `′, (46)

then we can recover the failed node with pj(x), and each
helper in the coset containing the failed node transmits `′

symbols over E.
For a helper in the other cosets, x ∈ αεE∗, ε 6= i, by (43),

rankE({p1(x), p2(x), . . . , p`′(x)})
=rankB({p′1(αε), p′2(αε), . . . , p′`′(αε)}), (47)

then every helper in these cosets transmits b′

n′−1 symbols in
E on average.

The repair bandwidth of the new code can be calculated
from the repair bandwidth condition (10) as

b =
b′

n′ − 1
· (n′ − 1)|E∗| · a+ (|E∗| − 1)`′ · a

= ab′(qa − 1) + (qa − 2)` (48)

which completes the proof.
Note that the calculation in (48) and (38) are similar in the

sense that a helper in the coset containing the failure naively

transmits the entire stored information, and the other helpers
use the bandwidth that is the same as the original code.

As a special case of Theorem 3, when b′ = `′

r (n
′ − 1)

matching the MSR bound (1), we get

b =
`

r
(n− 1) +

`

r
(r − 1)(qa − 2), (49)

where the second term is the extra bandwidth compared to
the MSR bound.

Next, we apply Theorem 3 to the near-MSR code [16]
and the MSR code [17]. The first realization of the scheme
in multiple cosets is inspired by [16].

Theorem 4. There exists an RS(n, k) code over F =
GF (q`) of which n = (qa − 1) logr

`
a and a|`, such that

the repair bandwidth satisfies b < `
n−k [n + 1 + (n − k −

1)(qa−2)], measured in symbols over B = GF (q) for some
prime number q.

Proof: We first prove the case when a and `′ are
relatively prime using Lemma 3, the case when a and `′

are not necessarily relatively prime are proved in Appendix
A. We use the code in [16] as the original code. The
original code is defined in F′ = GF (q`

′
) and `′ = rn

′
. The

evaluation points are A′ = {β, βr, βr2 , . . . , βrn
′−1} where

β is a primitive element of F′.
In the original code, for c = 0, 1, 2, . . . , `′ − 1, we write

its r-ary expansion as c = (cn′cn′−1 . . . c1), where 0 ≤ ci ≤
r − 1 is the i-th digit from the right. Assuming the failed
node is f(βr

i−1

), the repair polynomials are chosen to be

p′j(x) = βcxs, ci = 0, s = 0, 1, 2, . . . , r − 1, x ∈ F′. (50)

Here c varies from 0 to `′−1 given that ci = 0, and s varies
from 0 to r − 1. So, we have `′ polynomials in total. The
subscript j is indexed by c and s, and by a small abuse of
the notation, we write j ∈ [`′].

In the new code, let us define E = GF (qa) of which
a and `′ are relatively prime. Adjoining β to E, we get
F = GF (q`), ` = a`′. The new evaluation points are
A = {βE∗, βrE∗, βr2E∗, . . . , βrn

′−1E∗}. Since A′ is part
of the polynomial basis for F′ over B, we know that
{β, βr, βr2 , . . . , βrn

′−1} are linearly independent over B.
Hence, we can apply Lemma 3 and the cosets are distinct,
resulting in n = |A| = (qa − 1) logr

`
a .

In our new code, let us assume the failed node is f(α∗)
and α∗ ∈ βri−1

C, and we choose the polynomial pj(x) with
the same form as p′j(x),

pj(x) = βcxs, ci = 0, s = 0, 1, 2, . . . , r − 1, x ∈ F. (51)

For nodes corresponding to x = βr
t

γ ∈ βrtE∗, for some
γ ∈ E∗, we know that

pj(x) = βcxs = βc(γβr
t

)s = γsp′j(β
rt). (52)
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Since p′j(β
rt) ∈ F′, from Lemma 3, we have

rankE({γsp′1(βr
t

), γsp′2(β
rt), . . . , γsp′`′(β

rt)})
=rankE({p′1(βr

t

), p′2(β
rt), . . . , p′`′(β

rt)})
=rankB({p′1(βr

t

), p′2(β
rt), . . . , p′`′(β

rt)}), (53)

which satisfies (43). Since the repair bandwidth of the
original code is b′ < (n′+1) `

′

r , from (48) we can calculate
the repair bandwidth as

b = ab′(qa − 1) + (qa − 2)`

<
`

r
[n+ 1 + (r − 1)(qa − 2)], (54)

where the second term is the extra bandwidth compared to
the original code.

Example 3. We take an RS(4, 2) code in GF (216) as
the original code and extend it with a = 3, |E∗| = 7 to
an RS(28, 26) code in GF (248) with normalized repair
bandwidth of b

(n−1)` < 0.65. The RS(28, 26) code in [16]
achieves the normalized repair bandwidth of b

(n−1)` < 0.54,
while it requires ` = 2.7 × 108. Our scheme has a much
smaller ` compared to the scheme in [16] while the repair
bandwidth is a bit larger.

In the above theorem, we extend [16] to a linearly larger
sub-packetization and an exponentially larger code length,
which means that for the same code length, we can have a
much smaller sub-packetization level.

Next, we show our second realization of the scheme in
multiple cosets, which is inspired by [17]. Different from
the previous constructions, this one allows any number of
helpers, k ≤ d ≤ n − 1. The sub-packetization size in the
original code of [17] satisfies `′ ≈ (n′)n

′
when n′ grows

to infinity, thus in our new code it satisfies ` ≈ a(n′)n′ for
some integer a.

Theorem 5. Let q be a prime number. There exists
an RS(n, k) code over F = GF (q`) of which ` =
asq1q2...q n

qa−1
, where qi is the i-th prime number that

satisfies s|(qi − 1), s = d − k + 1 and a is some integer.
d is the number of helpers, k ≤ d ≤ (n − 1). The average
repair bandwidth is b = d`

(n−1)(d−k+1) [n−1+(d−k)(qa−2)]
measured in symbols over B = GF (q).

Proof: We first prove the case when a and `′ are
relatively prime using Lemma 3, the case when a and `′

are not necessarily relatively prime are proved in Appendix
A. We use the code in [17] as the original code, where the
number of helpers is d′. We set n−k = n′−k′ and calculate
the repair bandwidth for d helpers from the original code
when d′ = d − k + k′. Let us define Fq(α) to be the field
obtained by adjoining α to the base field B. Similarly, we
define Fq(α1, α2, . . . , αn) for adjoining multiple elements.
Let αi be an element of order qi over B. The code is defined
in the field F′ = GF (q`

′
) = GF (qsq1q2...,qn′ ), which is the

degree-s extension of Fq(α1, α2, . . . , αn′). The evaluation
points are A′ = {α1, α2, . . . , αn′}.

Assuming the failed node is f(αi) and the helpers are
chosen from the set R′, |R′| = d′, the base field for repair
is F′i, defined as F′i , Fq(αj , j ∈ [n′], j 6= i). The repair
polynomials are {ηtp′j(αi), t ∈ [qi], j ∈ [s]}, where

p′j(x) = xj−1g′(x), j ∈ [s], x ∈ F′, (55)

g′(x) =
∏

α∈A/(R′∪{αi})

(x− α), x ∈ F′. (56)

and ηt ∈ F′, t ∈ [qi], are constructed in [17] such that
{ηtp′j(αi), t ∈ [qi], j ∈ [s]} forms the basis for F′ over
F′i. The repair is done using

trF′/F′i(υαi
ηtp
′
j(αi)f

′(αi))

=−
n′∑

ε=1,ε 6=i

trF′/F′i(υεηtp
′
j(αε)f

′(αε)). (57)

For x /∈ R′ ∪ {αi}, p′j(x) = 0, so no information is
transmitted. The original code reaches the MSR repair
bandwidth

b′ =
∑
ε∈R′

rankF′i({ηtp′j(αε) : t ∈ [qi], j ∈ [s]})

=
d′`′

d′ − k′ + 1
. (58)

In our new code, we define E = GF (qa) = Fq(αn+1)
where a and `′ are relatively prime, and αn+1 is an element
of order a over B. Adjoining the primitive element of
F′ to E, we get F = GF (q`), ` = a`′. The new code
is defined in F. We extend the evaluation points to be
A = {α1E∗, α2E∗, . . . , αn′E∗}. Since {α1, α2, ..., αn′} are
linearly independent over B, we can apply Lemma 3 and
the cosets are distinct. So, n = |A| = (qa − 1)n′.

Assuming the failed node is f(α∗) and α∗ ∈ αiE∗ and
the helpers are chosen from the set R, |R| = d, the base
field for repair is Fi, which is defined by Fi , Fq(αj , j ∈
[n+1], j 6= i), for i ∈ [n]. We define the repair polynomials
{ηtpj(x), t ∈ [qi], j ∈ [s]}, where

pj(x) = xj−1g(x), j ∈ [s], x ∈ F, (59)

g(x) =
∏

α∈A/(R∪{α∗})

(x− α), x ∈ F, (60)

and ηt is the same as that in the original code. Then, we
repair the failed node by

trF/Fi
(υα∗ηtpj(α

∗)f(α∗))

=−
∑

α∈A,α 6=α∗
trF/Fi

(υαηtpj(α)f(α)). (61)

For x ∈ αE∗, α ∈ A′, we have

pj(x) = γj−1αj−1g(x), j ∈ [s], (62)
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for some γ ∈ E∗. If x /∈ R ∪ {α∗}, since g(x) = 0, no
information is transmitted from node x. Next, we consider
all other nodes.

For x = αγ, α ∈ A′, since g(x) is a constant independent
of j, γ ∈ E ⊆ Fi and ηt, αi ∈ F′, from Lemma 3 we have

rankFi
({ηtp1(x), ηtp2(x), . . . , ηtps(x) : t ∈ [qi]})

=rankFi
({ηt, ηtγα, . . . , ηtγs−1αs−1 : t ∈ [qi]})

=rankFi
({ηt, ηtα, . . . , ηtαs−1 : t ∈ [qi]})

=rankF′i({ηt, ηtα, . . . , ηtαs−1 : t ∈ [qi]})
=rankF′i({ηtp′1(α), ηtp′2(α), . . . , ηtp′s(α) : t ∈ [qi]}),

(63)

which satisfies (43).
When k ≤ d < n − 1, assuming the helpers are

randomly chosen from all the remaining nodes, the average
repair bandwidth for different choices of the helpers can be
calculated as

b = d

[
b′a

d′
· n− 1− (qa − 2)

n− 1
+ `′a · q

a − 2

n− 1

]
(64)

=
d`

d− k + 1
+

d

n− 1

`

d− k + 1
(d− k)(qa − 2). (65)

Here in (64) the second term corresponds to the helpers
in the failed node coset, the first term corresponds to the
helpers in the other cosets, and in (65) we used d′ − k′ =
d− k.

In the case of d = n−1, the repair bandwidth of the code
in Theorem 5 can be directly calculated from (48) as

b = ab′(qa − 1) + (qa − 2)`

=
`

r
(n− 1) +

`

r
(r − 1)(qa − 2)]. (66)

In (65) and (66), the second term is the extra repair band-
width compared to the original code.

In Theorems 4 and 5, we constructed our schemes by
extending previous schemes. However, it should be noted
that since we only used the properties of the polynomials
p′j(x), we have no restrictions on the dimensions k′ of the
original codes. So, in some special cases, even if k′ is
negative and the original codes do not exist, our theorems
still hold. Thus, we can provide more feasible points of
(n, k) using our schemes. This is illustrated in the example
below.

Example 4. Let us take the RS(12, 8) code as an example.
We set q = 2, s = 4, q1 = 5, q2 = 9, q3 = 13 and a = 7.
Then, `′ = 2340 and ` = 16380. Assuming the failed node
is f(α∗) and α∗ ∈ α1C, then we repair it in F1 and set
the polynomials in (59). We can easily check that when
x ∈ α1C, rankF1

({ηtp1(x), ηtp2(x), . . . , ηtps(x) : t ∈
[5]}) = 20 and when x in other cosets, rankF1

({ηtp1(x),
ηtp2(x), . . . , ηtps(x) : t ∈ [5]}) = 5. Therefore, we
transmit 100 symbols in F1, which can be normalized to

b
(n−1)` = 0.4545. Compared with the scheme in [17], which

need ` = 2.4 × 1019 and b
(n−1)` = 0.25, we provide a

tradeoff between ` and b.
It should be noted that in this example, the RS(12, 8)

code needs to be extended from an RS(3,−1) code, which
does not exist. However, since we only used the properties
of the polynomials p′j(x) and pj(x), the new RS(12, 8) code
still works.

D. Numerical evaluations and discussions

In this subsection, we compare the existing and the
proposed schemes. Table I shows the repair bandwidth and
the code length of each scheme. For the comparison, we first
show in Figures 1 and 2 the performance of each scheme
when the sub-packetization changes, given (n, k) = (12, 10)
and (12, 8), respectively. We only consider n − 1 helpers.
Two single points (log2(`) = 53.5, b

(n−1)` = 0.50) in
RS(12, 10) codes and (log2(`) = 64.4, b

(n−1)` = 0.25) in
RS(12, 8) codes are not shown in the figures, they can be
achieved by both our second realization in multiple cosets
and [17]. We make the following observations.
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n=12,k=10

Scheme in one coset

Scheme in two cosets

Scheme in multiple cosets 1

Scheme in multiple cosets 2

Full-length code Scheme by Ye and Barg

Fig. 1. Comparison of 3 schemes, q = 2, n = 12, k = 10, r = 2, x-
axis is the log scale sub-packetization size, y-axis is the normalized repair
bandwidth.

1) For a fixed (n, k), we compare the normalized repair
bandwidth b/[(n − 1)`] in different sub-packetization
sizes. In our schemes in multiple cosets, we have a
parameter a to adjust the sub-packetization size. From
Theorems 4 and 5 we know that for the two schemes,
` = a · r

n
qa−1 and ` ≈ a · ( n

qa−1 )
( n
qa−1 ), respectively,

which means that increasing a will decrease the sub-
packetization `. In our schemes in one coset and two
cosets, the parameter a is determined by code length
n, and will not be changed by increasing `, neither will
the normalized repair bandwidth. When q = 2, a = 1,
the two schemes in multiple cosets coincides with [16]
and [17], respectively.
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Fig. 2. Comparison of 3 schemes, q = 2, n = 12, k = 8, r = 4, x-
axis is the log scale sub-packetization size, y-axis is the normalized repair
bandwidth. The scheme by Chowdhury and Vardy is in [32], the scheme
by Ye and Barg is in [16], and the full-length code is in [6] and [7].

2) The scheme in [32] also achieves one tradeoff point in
Figure 2, which can be viewed as a special case of our
scheme in multiple coset 1.

3) For fixed n, k, our schemes are better than the full-
length code in [6] and [7] for all `, except when ` = 4,
for which our scheme in one coset is identical to the
full-length code.

4) While the repair bandwidth of the full-length code
grows with `, our schemes in one coset and two
cosets have a constant normalized bandwidth, and our
schemes in multiple cosets have a decreasing normal-
ized bandwidth with `.

5) For small `: the schemes in one coset and two cosets are
better than those in multiple cosets; when n = 12, k =
10, 4 ≤ ` ≤ 48, the scheme in two cosets provides the
lowest bandwidth; when n = 12, k = 8, 4 ≤ ` ≤ 768,
one can show that the scheme in one coset has the
smallest bandwidth.

6) For large `: the first realization in multiple cosets
has better performance than the second realization in
multiple cosets, but our second realization works for
any number of helpers.

IV. REED-SOLOMON REPAIR SCHEMES FOR MULTIPLE
ERASURES

In this section, we first present two definitions of the
repair schemes for multiple erasures in a MDS code: linear
repair scheme definition and dual code repair definition.
We prove the equivalence of the two definitions. Then, we
present two schemes for repairing multiple erasures in Reed-
Solomon codes, where the evaluation points are in one coset
and multiple cosets, respectively.

A. Definitions of the multiple-erasure repair

Let us assume a scalar MDS code E over F = GF (q`)
has dimension k and code length n. Let a codeword
be (C1, C2, ...Cn). Without loss of generality, we assume
{C1, C2, ..., Ce} are failed, e ≤ n− k, and we repair them
in the base field B = GF (q), where q can be any power of a
prime number. We also assume that we use all the remaining
d = n − e nodes as helpers. The following definitions are
inspired by [5] for single erasure.

Definition 1. A linear exact repair scheme for multiple
erasures consists of the following.

1) A set of queries Qt ⊆ F for each helper Ct, e + 1 ≤
t ≤ n. The helper Ct replies with {γCt, γ ∈ Qt}.

2) For each failed node Ci, i ∈ [e], a linear repair scheme
that computes

Ci =
∑̀
m=1

λimµim, (67)

where {µi1, µi2, ..., µi`} is a basis for F over B and
coefficients λim ∈ B are B-linear combinations of the
replies

λim =

n∑
t=e+1

∑
γ∈Qt

βimγt · trF/B(γCt), (68)

with the coefficients βimγt ∈ B. The repair bandwidth
is

b =
∑̀
t=e+1

rankB(Qt). (69)

In the following definition, we consider e` dual codewords
of E , and index them by i ∈ [e], j ∈ [`], denoted as
(C ′ij1, C

′
ij2, . . . , C

′
ijn). Since they are dual codwords, we

know that
∑n
t=1 CtC

′
ijt = 0.

Definition 2. A dual code scheme uses a set of dual
codewords {(C ′ij1, C ′ij2, . . . , C ′ijn) : i ∈ [e], j ∈ [`]} that
satisfies:

1) The full rank condition: Vectors

Vij = (C ′ij1, C
′
ij2, ..., C

′
ije), i ∈ [e], j ∈ [`], (70)

are linearly independent over B.
2) The repair bandwidth condition:

b =

n∑
t=e+1

rankB({C ′ijt : i ∈ [e], j ∈ [`]}). (71)

We repair nodes [e] from the linearly independent equa-
tions
e∑
v=1

trF/B(C
′
ijvCv) = −

n∑
t=e+1

trF/B(C
′
ijtCt), i ∈ [e], j ∈ [`].

(72)
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Here we use the same condition names as the single
erasure case, but in this section, they are defined for multiple
erasures.

Theorem 6. Definitions 1 and 2 are equivalent.

The equivalence of Definitions 1 and 2 follows similarly
as arguments in [6], except that we need to first solve e
failed nodes simultaneously and then find out the form of
each individual failure (67). The detailed proof of Theorem
6 is shown in Appendix B, part of which uses Lemma 4 in
Section IV-B.

Remark 2. In this paper, we focus on repairing RS code
and apply Theorem 6 to RS code. From [2, Thm. 4 in
Ch. 10] we know that with the polynomial pij(x) ∈
F[x] for which the degrees are smaller than n − k,
(υ1pij(α1), υ2pij(α2), . . . , υnpij(αn)) is the dual codeword
of RS(n, k), where υi, i ∈ [n] are non-zero constants
determined by the evaluation points set A. So, in RS code,
Definition 2 reduces to finding polynomials pij(x) with
degrees smaller than n− k. In what follows we use pij(αt)
to replace the dual codeword symbol C ′ijt in Definition 2 for
RS code. One can easily show that the constants υi, i ∈ [n]
do not affect the ranks in the full rank condition and the
repair bandwidth condition.

B. Multiple-erasure repair in one coset

There are several studies about the multiple erasures for
full-length RS codes [18] and [19]. Inspired by these works,
we propose our scheme for multiple erasures in one coset.

From Theorem 6, we know that finding the repair scheme
for multiple erasures in RS code is equivalent to finding
dual codewords (or polynomials) that satisfy the full rank
condition and repair bandwidth condition. Given a basis
{ξ1, ξ2, ..., ξ`} for F over B, we define some matrices as
below. They are used to help us check the two rank condi-
tions according to Lemmas 4 and 5, whose proofs are shown
in Appendices C and D, respectively. Let the evaluation
points of an RS code over F be A = {α1, . . . , αn}. Let
pij(x), i ∈ [e], j ∈ [`], be polynomials over F, and B a
subfield of F. Define

Sit =


trF/B(ξ1pi1(αt)) · · · trF/B(ξ`pi1(αt))
trF/B(ξ1pi2(αt)) · · · trF/B(ξ`pi2(αt))

...
. . .

...
trF/B(ξ1pi`(αt)) · · · trF/B(ξ`pi`(αt))

 , (73)

S ,


S11 S12 · · · S1e

S21 S22 · · · S2e

...
...

. . .
...

Se1 Se2 · · · See

 . (74)

Lemma 4. The following two statements are equivalent:
1) Vectors Vij = (pij(α1), pij(α2), . . . , pij(αe)), i ∈

[e], j ∈ [`] are linearly independent over B.

2) Matrix S in (74) has full rank.

Lemma 5. For t ∈ [n], consider Sit in (73),

rank(


S1t

S2t

...
Set

) = rankB({pij(αt) : i ∈ [e], j ∈ [`]}). (75)

Theorem 7. Let q be a prime number. There exists an
RS(n, k) code over F = GF (q`) of which n < qa, qs ≤ r
and a|`, such that the repair bandwidth for e erasures is
b ≤ e`

a (n − e)(a − s) measured in symbols over B, for e
satisfying a ≥ e(e−1)

2 (a− s)2.

Proof: We define the code over the field F = GF (q`)
extended by E = GF (qa), where β is the primitive
element of F. The evaluation points are chosen to be
A = {α1, α2, . . . , αn} ⊆ E∗, which is one of the cosets in
Lemma 1. Without loss of generality, we assume the e failed
nodes are {α1, α2, . . . , αe}. The base field is B = GF (q).
Construction III: We first consider the special case when
s = a− 1. In this case, inspired by [19, Proposition 1], we
choose the polynomials

pij(x) =
δitrE/B(

µj

δi
(x− αi))

x− αi
, i ∈ [e], j ∈ [a], (76)

where {µ1, µ2, . . . , µa} is the basis for E over B, and
δi ∈ E, i ∈ [e], are coefficients to be determined. From
[19, Theorem 3], we know that for a > e(e−1)

2 , there exists
δi, i ∈ [e] such that pij(x) satisfy the full rank condition: the
vectors Vij = (pij(α1), pij(α2), . . . , pij(αe)), i ∈ [e], j ∈
[a] are linearly independent over B and the repair bandwidth
condition:

n∑
t=e+1

rankB({pij(αt) : i ∈ [e], j ∈ [a]})

=(n− e)e− e(e− 1)(q − 1)

2
. (77)

Then, let {η1, η2, . . . , η`/a} be a set of basis for F over
E; we have the e` polynomials as {ηwpij(x) : w ∈
[`/a], i ∈ [e], j ∈ [a]}. Since {η1, η2, . . . , η`/a} are linearly
independent over E and for any bijw ∈ B, bijwpij(x) ∈ E,
we have∑

i,j,w

bijwηwVij = 0 ⇐⇒
∑
i,j

bijwVij = 0,∀w ∈ [
`

a
].

(78)

Also, we know that there does not exist nonzero bijw ∈ B
that satisfies

∑
i,j bijwVij = 0, so we have that vectors

{ηwVij , w ∈ [`/a], i ∈ [e], j ∈ [a]} are also linearly
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independent over B. So, from Definition 2, we know that
we can recover the failed nodes and the repair bandwidth is

b =rankB({η1pij(x), . . . , η`/apij(x) : i ∈ [e], j ∈ [a]})

=
`

a
rankB({pij(x), i ∈ [e], j ∈ [a]})

=
`

a

[
(n− e)e− e(e− 1)(q − 1)

2

]
. (79)

Construction IV: For s ≤ a− 1, consider the polynomials

pij(x) = δq
s−1
i µj

qs−1∏
ε=1

(
x−

(
αi − w−1ε

µj
δi

))
, j ∈ [a],

(80)
where {µ1, µ2, . . . , µa} is the basis for E over B, W =
{w0 = 0, w1, w2, . . . , wqs−1} is an s-dimensional subspace
in E, s < a, qs ≤ r, and δi ∈ E, i ∈ [e], are coefficients to
be determined.

When x = αi, we have

pij(αi) = µq
s

j

qs−1∏
ε=1

w−1ε . (81)

Since
qs−1∏
ε=1

w−1ε is a constant, from Lemma 2 we have

rankB({pi1(αi), pi2(αi), . . . , pia(αi)}) = a. (82)

For x 6= αi, set x′ = αi − x, we have

pij(x) = δq
s−1
i µj

qs−1∏
ε=1

(
w−1ε

µj
δi
− x′

)

= δq
s−1
i µj

qs−1∏
ε=1

(w−1ε x′)

qs−1∏
ε=1

(
µj
δix′
− wε

)

= (δix
′)q

s
qs−1∏
ε=1

(w−1ε )

qs−1∏
ε=0

(
µj
δix′
− wε

)
. (83)

By [35, p. 4], g(y) =
qs−1∏
ε=0

(y − wε) is a linear mapping

from E to itself with dimension a − s over B. Since

(δix
′)q

s
qs−1∏
ε=1

(w−1ε ) is a constant independent of j, we have

rankB({pi1(x), pi2(x), . . . , pia(x)}) ≤ a− s, (84)

which means that pij(x) can be written as

pij(x) = δq
s

i

a−s∑
v=1

ρjvλv, (85)

where {λ1, λ2, ..., λa−s} are linearly independent over B,
ρjv ∈ B, and they are determined by δi, µj and x− αi.

From Lemma 4, we know that if the matrix S in (74) has
full rank, then we can recover the e erasures. It is difficult
to directly discuss the rank of the matrix, but assume that
the polynomials above satisfy the following two conditions:

1) Sii, i ∈ [e] are identity matrices.
2) For any fixed i ∈ [e],

Sit · Sty = 000`×`, i > t, y > t. (86)

Then, it is easy to see that through Gaussian elimination, we
can transform the matrix ST to an upper triangular block
matrix, which has identity matrices in the diagonal. Hence,
S has full rank.

Here, we choose {ξ1, ξ2, ..., ξ`} to be the dual basis of

{µq
s

1

qs−1∏
ε=1

w−1ε , µq
s

2

qs−1∏
ε=1

w−1ε , ..., µq
s

`

qs−1∏
ε=1

w−1ε }, so

trF/B(ξmpij(αi)) =

{
0,m 6= j,

1,m = j.
(87)

Therefore, Sii, i ∈ [e] are identity matrices. We set δ1 = 1,
and recursively choose δi after choosing {δ1, δ2, ..., δi−1} to
satisfy (86). Define δ′i = δq

s

i , and cmp to be the (m, p)-th
element in Sty for m, p ∈ [a]. (86) can be written as

a∑
m=1

cmptrF/B(ξmpij(αt))

=

a∑
m=1

cmp

a−s∑
v=1

bjvtrF/B(ξmδ
′
iλv)

=0,∀j ∈ [a], (88)

where λv, v ∈ [a−s], are determined by δi, µj and αt−αi.
Equation (88) is satisfied if

a∑
m=1

cmptrF/B(ξmδ
′
iλv) = 0, v ∈ [a− s], p ∈ [a]. (89)

As a special case of Lemma 5, we have

rank(Sty) = rankB({ptj(αy), j ∈ [`]}). (90)

Then, from (84) we know that the rank of Sty is at most
a − s, which means in (89) we only need to consider p
corresponding to the independent a− s columns of Sty . So,
(89) is equivalent to (a−s)2 linear requirements. For δ′i ∈ E,
we can view it as a unknowns over B, and we have

(2e− i)(i− 1)

2
(a− s)2 ≤ e(e− 1)

2
(a− s)2 (91)

linear requirements over B according to (86). Also knowing
δ′i, we can solve δi = δi

q` = δ′i
q`−s

. Therefore, we can
find appropriate {δ1, δ2, . . . , δe} to make matrix S full rank
when

a ≥ e(e− 1)

2
(a− s)2. (92)

Then, let {η1, η2, . . . , η`/a} be a basis for F over E,
we have the e` polynomials as {ηwpij(x), w ∈ [`/a], i ∈
[e], j ∈ [a]}. Similar to Construction III, we know that
vectors {ηwVij , w ∈ [`/a], i ∈ [e], j ∈ [a]} are linearly
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independent over B. Therefore, we can recover the failed
nodes and the repair bandwidth is

b =rankB({η1pij(x), . . . , η`/apij(x) : i ∈ [e], j ∈ [a]})

=
`

a
rankB({pij(x) : i ∈ [e], j ∈ [a]})

≤e`
a
(n− e)(a− s). (93)

Thus, the proof is completed.
In our scheme, we have constructions for arbitrary a, s,

such that a | `, s ≤ a − 1, while the existing schemes in
[18] and [19] mainly considered the special case ` = a. It
should be noted that the scheme in [19] can also be used
in the case of s = a − 1 over E with repair bandwidth
(n − e)e − e(e−1)(q−1)

2 . And, with `/a copies of the code,
it can also reach the same repair bandwidth of our scheme.
However, by doing so, the code is a vector code, but our
scheme constructs a scalar code.

C. Multiple-erasure repair in multiple cosets

Recall that the scheme in Theorem 5 for a single erasure is
a small sub-packetization code with small repair bandwidth
for any number of helpers. When there are e erasures and
d helpers, e ≤ n − k, k ≤ d ≤ n − e, we can recover the
erasures one by one using the d helpers. However, inspired
by [22], the repaired nodes can be viewed as additional
helpers and thus we can reduce the total repair bandwidth.
Finally, for every helper, the transmitted information for
different failed nodes has some overlap, resulting in a further
bandwidth reduction.

The approach we take is similar to that of Section III-C.
We take an original code and extend it to a new code with
evaluation points as in (44). If a helper is in the same
coset as any failed node, it transmits naively its entire data;
otherwise, it transmits the same amount as the scheme in
the original code. After the extension, the new construction
decreases the sub-packetization size for fixed n, and the
bandwidth is only slightly larger than the original code.

The location of the e erasures are described by hi, i ∈ [e],
where 0 ≤ hi ≤ e, h1 ≥ h2 ≥ ... ≥ he,

∑e
i=1 hi = e.

We assume the erasures are located in h1 cosets, and after
removing one erasure in each coset, the remaining erasures
are located in h2 cosets. Then, for the remaining erasures,
removing one in each coset, we get the rest of erasures in h3
cosets, and so on. Figure 3 also shows the erasure locations
described above.

In our scheme, we first repair h1 failures, one from each
of the h1 cosets. Then, for 2 ≤ i ≤ e, we repeat the
following: After repairing h1, h2, ..., hi−1 failures, we view
these repaired nodes as helpers and repair next hi failures,
one from each of the hi cosets.

The repair bandwidth of the scheme is showed in the
following theorem.

Fig. 3. Location of the erasures. e erasures are located in h1 cosets. For
i ∈ [e], we set 0 ≤ hi ≤ e, h1 ≥ h2 ≥ ... ≥ he and

∑e
i=1 hi = e.

Theorem 8. Let q be a prime number. There exists
an RS(n, k) code over F = GF (q`) for which ` =
asq1q2...q n

qa−1
, where qi is the i-th prime number that

satisfies s|(qi − 1), s = (n − k)! and a is an integer. For
e erasures and d helpers, e ≤ n − k, k ≤ d ≤ n − e, the
average repair bandwidth measured in symbols over B is

b ≤ d`

(n− e)

[
(h1(q

a − 1)− e)

+(n− h1(qa − 1))

e∑
i=1

hi

d− k +
∑i
v=1 hv

]
, (94)

where hi, i ∈ [e] are the parameters that define the location
of erasures in Fig. 3.

Proof: We first prove the case when a and `′ are
relatively prime using Lemma 3, the case when a and `′

are not necessarily relatively prime are proved in Appendix
A. We use the code in [22] as the original code. Let
Fq(α) be the field obtained by adjoining α to the base
field B = GF (q). Similarly let Fq(α1, α2, . . . , αn) be the
field for adjoining multiple elements. Let αi be an element
of order qi over B and h be the number of erasures in
the original code. The original code is defined in the field
F′ = GF (q`

′
) = GF (qsq1q2...qn′ ), which is the degree-s

of extension of Fq(α1, α2, . . . αn′). The evaluation points
are A′ = {α1, α2, . . . αn′}. The subfield F′[h] is defined as
F′[h] = Fq(αj , j = h+ 1, h+ 2, . . . , n′), and F′i is defined
as Fq(αj , j 6= i, j ∈ [n′]).

In the original code, we assume without loss of generality
that there are h failed nodes f ′(α1), f ′(α2), . . . , f

′(αh).
Consider the polynomials for failed node f ′(αi), 1 ≤ i ≤ h,
as

p′ij(x) = xj−1g′i(x), j ∈ [si], x ∈ F′, (95)
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where

g′i(x) =
∏

α∈A′/(R′∪{αi,αi+1,...αh})

(x− α), x ∈ F′, (96)

for R′ ⊆ A′, |R′| = d′ being the set of helpers. The set
of repair polynomials are {ηitp′ij(x), i ∈ [h], j ∈ [si], t ∈
[ sqisi ]}, where ηit ∈ F′ are constructed in [22] to ensure that
{ηitp′i1(αi), ηitp′i2(αi), . . . , ηitp′isi(αi)} forms the basis for
F′ over F′i.

Then, the failed nodes are repaired one by one from

trF′/F′i(υαi
ηitp

′
ij(αi)f

′(αi))

=−
n∑

ε=1,ε 6=i

trF′/F′i(υεηitp
′
ij(αε)f

′(αε)). (97)

For x /∈ R′ ∪ {αi, αi+1, . . . αh}, p′ij(x) = 0 and no
information is transmitted. Once f ′(αi) is recovered, it is
viewed as a new helper for the failures i+ 1, i+ 2, . . . , h.

Since F′[h] ≤ F′i, the information transmitted from the
helper αε can be represented as

trF′/F′i(υεηitp
′
ij(αε)f

′(αε))

=trF′/F′i

ξ′im q′i∑
m=1

trF′i/F′[h]
(υεηitξimp

′
ij(αε)f

′(αε))


=

q′i∑
m=1

ξ′imtrF′/F′[h]
(υεηitξimp

′
ij(αε)f

′(αε)), (98)

where q′i = q1q2...qh
qi

, {ξi1, ξi2, . . . , ξiq′i} and
{ξ′i1, ξ′i2, . . . , ξ′iq′i} are the dual basis for F′i over F′[h]. We
used the fact that trF′/F′i(trF′i/F′[h]

(·)) = trF′/F′[h]
(·), for

F′[h] ≤ F′i ≤ F′.
The original code satisfies the full rank condition for every

i ∈ [h], and each helper αε transmits [22]

rankF′[h]

(
{ηitξimp′ij(αε) :

i ∈ [h], j ∈ [si], t ∈ [
sqi
si

],m ∈ [q′i]}
)

=rankF′[h]

(
{ηitξim : i ∈ [h], t ∈ [

sqi
si

],m ∈ [q′i]}
)

=
h`′

(d′ − k′ + h)
∏n′

v=h+1 pv
(99)

symbols over F′[h], which achieves the MSR bound.
In our new code, we extend the field to F = GF (q`), ` =

a`′, by adjoining an order-a element αn+1 to F. We set
d− k = d′ − k′. The new evaluation points consist of A =
{α1E∗, α2E∗, . . . , α′nE∗},E = GF (qa) = Fq(αn+1). The
subfield F[h] is defined by adjoining αn+1 to F′[h], and Fi
is defined as Fq(αj , j 6= i, j ∈ [n+ 1]).

Assume first that each coset contains at most one fail-
ure, and there are h failures in total. We assume with-
out loss of generality that the evaluation points of the h

failed nodes are in {α1E∗, α2E∗, . . . , αhE∗}, and they are
α1γ1, α2γ2, . . . , αhγh for some γw ∈ E, w ∈ [h]. Let the set
of helpers be R ⊆ A, |R| = d. We define the polynomials

pij(x) = xj−1gi(x), j ∈ [si], x ∈ F, (100)

where

gi(x) =
∏

α∈A/{R∪{αiγi,αi+1γi+1,...αhγh}}

(x− α), x ∈ F.

(101)

The set of repair polynomials are {ηitpij(x), i ∈ [h], j ∈
[si], t ∈ [ sqisi ]}, where ηit ∈ F′ are the same as the original
construction. We use field Fi as the base field for the repair.

trF/Fi
(υαiγiηitpij(αiγi)f(αiγi))

=−
∑

α∈A,α 6=αiγi

trF/Fi
(υαηitpij(α)f(α)). (102)

If x ∈ R ∪ {αiγi, αi+1γi+1, . . . αhγh}, pij(x) = 0 and
no information is transmitted. Next, we consider all other
nodes.

If x = αiγ for some γ ∈ E∗, we have

pij(x) = γj−1αj−1i gi(x). (103)

Since ηit, αi ∈ F′ and gi(x) is a constant independent of
j, we have

rankFi({ηitpi1(x), . . . , ηitpisi(x) : t ∈ [
sqi
si

]})

=rankFi
({ηit, . . . , ηitαs−1i : t ∈ [

sqi
si

]})

=rankF′i({ηitp
′
i1(αi), . . . , ηitp

′
isi(αi) : t ∈ [

sqi
si

]}) (104)

which indicates the full rank. Note that the last equation
follows from Lemma 3. As a result we can recover the failed
nodes and each helper in the cosets containing the failed
nodes transmit ` symbols in B.

For x = αεγ, ε > h, since F[h] is a subfield of Fi
and from Lemma 3 we know that {ξi1, ξi2, . . . , ξiq′i} and
{ξ′i1, ξ′i2, . . . , ξ′iq′i} are also the dual basis for Fi over F[h],
then, similar to (98), we have

trF/Fi
(υαηitpij(x)f(x))

=

q′i∑
m=1

ξ′imtrF/F[h]
(υεηitξimpij(x)f(x)). (105)



16

Using the fact that gi(x) is a constant independent of j,
x ∈ F[h] and ηitξim ∈ F′, from Lemma 3 we know that

rankF[h]

(
{ηitξimpij(x) :

i ∈ [h], j ∈ [si], t ∈ [
sqi
si

],m ∈ [q′i]}
)

=rankF[h]

(
{ηitξim : i ∈ [h], t ∈ [

sqi
si

],m ∈ [q′i]}
)

=rankF′[h]

(
{ηitξim : i ∈ [h], t ∈ [

sqi
si

],m ∈ [q′i]}
)

=rankF′[h]

(
{ηitξimp′ij(αε) :

i ∈ [h], j ∈ [si], t ∈ [
sqi
si

],m ∈ [q′i]}
)

=
h`′

(d− k + h)
∏n′

v=h+1 qv
, (106)

where the last equality follows from (99) and d′−k′ = d−k.
So, each helper in the other cosets transmits h`

d−k+h symbols
over B.

Using the above results, we calculate the repair bandwidth
in two steps.
Step 1. We first repair h1 failures, one from each of the h1
cosets. From (104), we know that in the h1 cosets containing
the failed nodes, we transmit ` symbols over B. By (106),
for each helper in other cosets, we transmit h1`

d−k+h1
symbols

over B.
Step 2. For 2 ≤ i ≤ e, repeat the following. After
repairing h1, h2, ..., hi−1 failures, these nodes can be viewed
as helpers for repairing next hi failures, one from each of the

hi cosets. So, we have d+
i−1∑
v=1

hv helpers for the hi failures.

For the helpers in the h1 cosets containing the failed nodes,
we already transmit ` symbols over B in Step 1 and no more
information needs to be transmitted. For each helper in other
cosets, we transmit hi`

d−k+
∑i

v=1 hv
symbols over B.

Thus, we can repair all the failed nodes. The repair
bandwidth can be calculated as (94).

Suppose that e failures are to be recovered. Compared
to the naive strategy which always uses d helpers to repair
the failures one by one, our scheme gets a smaller repair
bandwidth since the recovered failures are viewed as new
helpers and we take advantage of the overlapped symbols
for repairing different failures similar to [22].

In the case when n � e(qa − 1), or when we arrange
nodes with correlated failures in different cosets, we can
assume that all the erasures are in different cosets, h1 =
e, h2 = h3 = ... = he = 0. For example, if correlated
failures tend to appear in the same rack in a data center, we
can assign each node in the rack to a different coset. Under
such conditions, we simplify the repair bandwidth as

b ≤ d

n− e
e`

d− k + e
(n− e+ (d− k)(qa − 2)). (107)

Indeed, one can examine the expression of (94). With the
constraint that

∑e
i=1 hi = e, the first term h1(q

a − 1) −
e) is an increasing function of h1 and the second term
(n−h1(qa−1))

∑e
i=1

hi

d−k+
∑i

v=1 hv
is a decreasing function

of h1. Under the assumption that n is large, the second
term dominates, and increasing h1 reduces the total repair
bandwidth b. Namely, h1 = e corresponds to the lowest
bandwidth for large code length.

In particular, when d = n− e, h1 = e, we have

b =
e`

n− k
(n− e) + e`

n− k
(n− k − e)(qa − 2), (108)

where the second term is the extra repair bandwidth com-
pared with the MSR bound.

D. Numerical evaluations and discussions

In this subsection, we compare our schemes for multiple
erasures with previous results, including separate repair and
schemes in [19] and [22].

We first demonstrate that repairing multiple erasures si-
multaneously can save repair bandwidth compared to repair-
ing erasures separately. Let us assume e failures happen one
by one, and the rest of n− 1 nodes are available as helpers
initially when the first failure occurs. We can either repair
each failure separately using n − 1 helpers, or wait for e
failures and repair all of them simultaneously with n − e
helpers. Table III shows the comparison. For our scheme
in one coset, separate repair needs a repair bandwidth of
e`
a (n−1)(a−s) symbols in B, simultaneous a repair requires

bandwidth of e`
a (n− e)(a− s). For our scheme in multiple

cosets, we can repair the failures separately by n−1 helpers
with the bandwidth of e`

n−k [n − 1 + (n − k − 1)(qa − 2)],
and with simultaneous repair we can achieve the bandwidth
of e`

n−k [n − e + (n − k − e)(qa − 2)]. One can see that in
both constructions, simultaneous repair outperforms separate
repair.

Nest we compare our scheme for multiple erasures with
the existing schemes. Figure 4 shows the normalized repair
bandwidth for different schemes when n = 16, k = 8, e =
2, q = 2. Table IV shows the comparison when n = 64, k =
32, e = 2, q = 2. We make the following observations:

1) For fixed (n, k) and our scheme with multiple cosets,
we use the paremeter a to adjust the sub-packetization
size. From Theorem 8, we know that ` ≈ a ·
( n
qa−1 )

( n
qa−1 ), which means that increasing a will de-

crease the sub-packetization `. In our schemes with one
coset and two cosets, the parameter a is determined by
the code length n, so increasing ` will not change a
or the normalized repair bandwidth. When q = 2, our
code with a = 1 coincides with that of [22].
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TABLE III
Repair bandwidth of different schemes for e erasures.

repair bandwidth number of helpers
Single-erasure repair

in one coset (separate repair)
e`
a
(n− 1)(a− s) n− 1

Multiple-erasure repair
in one coset (simultaneous repair)

e`
a
(n− e)(a− s) n− e

Single-erasure repair
in multiple cosets (separate repair)

e`
n−k

[n− 1 + (n− k − 1)(qa − 2)] n− 1

Multiple-erasure repair
in multiple cosets (simultaneous repair)

e`
n−k

[n− e+ (n− k − e)(qa − 2)] n− e

TABLE IV
Normalized repair bandwidth( b

(n−e)`
) for different schemes when n = 64, k = 32, e = 2, q = 2. ◦ can be also achieved by Scheme 1 in [19] and ∗ is

also achieved by [22].

` = 6 ` = 7 ` = 8 ` = 9 ... ` = 3.6× 106 ` = 3.3× 1011 ` = 3.9× 10115

Normalized bandwidth
for Scheme 1 in [19] 0.42 0.50 0.52 0.52 ... 0.52 0.52 0.52

Normalized bandwidth
for our scheme in one coset 0.49◦ 0.49 0.49 0.49 ... 0.49 0.49 0.49

Normalized bandwidth
for our scheme in multiple cosets 0.52 0.48 0.0625∗
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Fig. 4. Comparison of the schemes, q = 2, n = 16, k = 8, e = 2, x-
axis is the log scale sub-packetization size, y-axis is the normalized repair
bandwidth. The scheme by Mardia, Bartan and Wootters is in [19], and the
scheme by Ye and Barg is in [22]

2) For small ` and full-length code (` = log2 n), the
scheme in [19] has the smallest normalized repair
bandwidth. (Our scheme in one coset also achieves the
same point as Scheme 1 in [19] when ` = log2 n.)

3) When ` grows larger (4 < ` < 2.1 × 107 in Figure 4,
6 < ` < 3.3 × 1011 in Table IV), our scheme in one
coset has the smallest repair bandwidth.

4) For extremely large ` (` ≥ 2.1× 107 in Figure 4, ` ≥
3.3× 1011 in Table IV), our scheme in multiple cosets
has the smallest repair bandwidth.

5) The scheme in [22] also achieves one point in both
Figure 4 and Table IV, which can be viewed as a special
case of our scheme in multiple cosets.

V. CONCLUSION

In this paper, we designed three Reed-Solomon code
repair schemes to provide a tradeoff between the sub-
packetization size and the repair bandwidth. Our schemes
choose the evaluation points of the Reed-Solomon code from
one, two, or multiple cosets of the multiplicative group of the
underlying finite field. For a single erasure, when the sub-
packetization size is large, the scheme in multiple cosets has
better performance, it approaches the MSR bound. When
sub-packetization size is small, the scheme in one coset
has advantages in repair bandwidth. The scheme in two
cosets has smaller repair bandwidth with certain parameters
in between the other two cases. For multiple erasures, our
scheme in one coset has constructions for arbitrary redun-
dancy n− k and our scheme in multiple cosets reduced the
sub-packetization size of an MSR code. The two schemes
together provided a set of tradeoff points and we observe
similar tradeoff characteristics as in the single erasure case.
In spite of several tradeoff points we provided in this paper,
the dependence of the sub-packetization size versus the
repair bandwidth is still an open question.

APPENDIX A
PROOF OF SCHEMES IN MULTIPLE COSETS FOR THE CASE

OF ARBITRARY a AND `′

In this section, we first introduce a lemma similar to
Lemma 3 that does not require a and `′ to be relatively
prime. By applying this lemma, our constructions in multiple
cosets for single and multiple erasures can be generalized
when a and `′ are arbitrary integers.

We note that a finite field F = GF (q`) is also a vector
space over GF (q). Let E be a subspace of F. Define the
subspace spanned by a set of elements {γ1, γ2, . . . , γi} ⊆
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F over E as spanE{γ1, γ2, . . . , γi} , {
∑i
j=1 bjγj : bj ∈

E}. The rank rankE({γ1, γ2, ..., γi}) is defined to be the
cardinality of a maximal subset of {γ1, γ2, ..., γi} that is
linearly independent over E.

Lemma 6. Let B = GF (q),F′ = GF (q`
′
), F =

GF (q`), ` = a`′, and q be any power of a prime number.
Define the subspace E = spanB{β1, β2, . . . , βa}, where
{β1, β2, . . . , βa} is a basis for F over F′. For any set of
{γ1, γ2, ..., γ`′} ⊆ F′ ≤ F, we have

rankE({γ1, γ2, ..., γ`′})
=rankB({γ1, γ2, ..., γ`′}). (109)

Proof: Assume rankB({γ1, γ2, ..., γ`′}) = c and with-
out loss of generality, {γ1, γ2, ..., γc} are linearly indepen-
dent over B. Then, we can construct {γ′c+1, γ

′
c+2, ..., γ

′
`′} ⊆

F′ to make {γ1, γ2, ..., γc, γ′c+1, γ
′
c+2, ..., γ

′
`′} form a basis

for F′ over B.
Since {β1, β2, . . . , βa} is the basis for F over F′, we

know that {βiγ1, βiγ2, ..., βiγc, βiγ′c+1,βiγ
′
c+2, ..., βiγ

′
`′ :

i ∈ [a]} is the basis for F over B. Then, we have
F = spanE{γ1, γ2, ..., γc, γ′c+1, γ

′
c+2, ..., γ

′
`′}, namely,

{γ1, γ2, ..., γc, γ′c+1, γ
′
c+2, ..., γ

′
`′} is a basis for F over E,

hence {γ1, γ2, ..., γc} are linearly independent over E,

rankE({γ1, γ2, ..., γ`′})
≥c
=rankB({γ1, γ2, ..., γ`′}). (110)

Since B ⊆ E, we also have

rankE({γ1, γ2, ..., γ`′})
≤rankB({γ1, γ2, ..., γ`′}). (111)

The proof is completed.
For the schemes in multiple cosets when a and `′

are not relatively prime, we just use the subspace E =
spanB{β1, β2, ..., βa} to replace the subfield GF (qa). We
denote by E∗ = E\{0} for the subspace E. The evaluation
points of the new code are {γE∗ : γ ∈ A′} where A′ ⊆ F′
is the set of evaluation points for the original code. In the
proofs, we use Lemma 6 instead of Lemma 3. For example,
from Lemma 6 we know that the new evaluation points are
all distinct if the elements in A′ are linearly independent
over B.

APPENDIX B
PROOF OF THEOREM 6

In this section, we prove the equivalence of Definitions 1
and 2. We first show that the dual code scheme in Definition
2 reduces to a linear repair scheme as in Definition 1 in
Lemma 7. Then, we show that Definition 1 reduces to
Definition 2 in Lemma 8 and Lemma 9.

Lemma 7. The dual code scheme can be reduced to the
linear repair scheme in Definition 1.

Proof: In the dual code scheme, we repair nodes [e]
from the linearly independent equations

e∑
v=1

trF/B(C
′
ijvCv) = −

n∑
t=e+1

trF/B(C
′
ijtCt), i ∈ [e], j ∈ [`].

(112)

Here, C ′ijt can be written as

C ′ijt =
∑̀
m=1

ξ′mtrF/B(ξmC
′
ijt), (113)

where {ξ1, ξ2, . . . , ξ`} and {ξ′1, ξ′2, . . . , ξ′`} are the dual basis
for F over B. Then, we can rewrite (112) in matrix form as

e∑
v=1

Siv


trF/B(ξ

′
1Cv)

trF/B(ξ
′
2Cv)

...
trF/B(ξ

′
`Cv)



= −
n∑

t=e+1

Sit


trF/B(ξ

′
1Cv)

trF/B(ξ
′
2Cv)

...
trF/B(ξ

′
`Cv)

 , i ∈ [e], (114)

where Sit ∈ B`×` is called the repair matrix defined as

Sit =


trF/B(ξ1C

′
i1t) · · · trF/B(ξ`C

′
i1t)

trF/B(ξ1C
′
i2t) · · · trF/B(ξ`C

′
i2t)

...
. . .

...
trF/B(ξ1C

′
i`t) · · · trF/B(ξ`C

′
i`t)

 , (115)

Let

Xw ,


trF/B(ξ

′
1Cw)

trF/B(ξ
′
2Cw)

...
trF/B(ξ

′
`Cw)

 , w ∈ [n]. (116)

We want to solve Xi, i ∈ [e], which can be used to recover
the e failed nodes C1, C2, . . . , Ce. Define matrix S as

S =


S11 S12 · · · S1e

S21 S22 · · · S2e

...
...

. . .
...

Se1 Se2 · · · See

 . (117)

Then, (114) can be represented as

S


X1

X2

...
Xe

 = −
n∑

t=e+1


S1t

S2t

...
Set

Xt. (118)
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Thus, from Lemma 4 we know that if the full rank condition
satisfies1, S has full rank so we can solve Xi, i ∈ [e]. Then,
Ci, i ∈ [e] can be repaired from

Ci =
∑̀
m=1

ξmtrF/B(ξ
′
mCi), (119)

Now, set µim = ξm, we get λim = trF/B(ξ
′
mCi), which

can be solved from (118). Note that the right side of (118)
is equal to the right side of (112), we get the queries Qt =
{C ′ijt, i ∈ [e], j ∈ [`]} and the coefficients βimγt come from
matrix S.

Then, we can get the repair bandwidth condition:

b =

n∑
t=e+1

rankB({C ′ijt : i ∈ [e], j ∈ [`]}) =
∑̀
t=e+1

rankB(Qt).

(120)

Lemma 8. A linear repair scheme in Definition 1 can be
represented in the form below:

µ′ijCi =

n∑
t=e+1

θijtCt, i ∈ [e], j ∈ [`], (121)

where {µ′i1, µ′i2, ..., µ′i`} is the dual basis of
{µi1, µi2, ..., µi`}, and θijt ∈ spanB(Qt),
e + 1 ≤ t ≤ n, i ∈ [e], j ∈ [`] are some coefficients
in F. The repair bandwidth is

b =

n∑
t=e+1

rankB({θijt : i ∈ [e], j ∈ [`]}). (122)

Proof: By (67) and (68) we have
n∑

t=e+1

∑
γ∈Qt

trF/B(βijγt · γCt) = λij = trF/B(µ
′
ijCi).

(123)

Set θijt =
∑
γ∈Qt

βijγt ·γ. Then, we have θijt ∈ spanB(Qt).
Hence,

n∑
t=e+1

trF/B(θijtCt)

=

n∑
t=e+1

trF/B(
∑
γ∈Qt

βijγt · γCt)

=trF/B(µ
′
ijCi). (124)

Equations (123) and (124) hold for all f ∈ F[x]. Since
the RS code is a linear code, they also hold for δm ·f ∈ F[x]

1We use Lemma 4 while in Lemma 4 we use the polynomials pij(x)
as part of the elements in the defined matrix Sit. However, in Lemma 4
we just view the polynomials pij(x) as a symbol, change them to the dual
codeword symbol C′ijt will not have effects on the results of the lemma.

for all δm ∈ F. In particular, let δm,m ∈ [`], be a basis for
F over B, Then,

trF/B(δm · µ′ijCi) = trF/B(δm ·
n∑

t=e+1

θijtCt),∀m ∈ [`],

(125)

which in turn implies that θijt also satisfies (121).
Note that the repair bandwidth (122) also satisfies

b =

n∑
t=e+1

rankB(θijt : i ∈ [e], j ∈ [`])

≤
n∑

t=e+1

rankB(Qt), (126)

since θijt ∈ spanB(Qt). However, for any linear scheme
L in Definition 1, if (126) holds with strict inequality, we
can improve the linear scheme L by setting Qt such that
spanB(Qt) = spanB({θijt, i ∈ [e], j ∈ [`]}), for all e+ 1 ≤
t ≤ n. Hence, the linear scheme L and the scheme in Lemma
8 have identical bandwidth.

Lemma 9. The scheme in Lemma 8 can be represented by
the dual code scheme in Definition 2.

Proof: By (121), (0, . . . , µ′ij , . . . , 0, θije+1, . . . , θijn) is
a dual codeword, where µ′ij is the i-th entry. Then, for j ∈
[`], we set C ′ijt such that C ′iji = −µ′ij , C ′ijv = 0, v ∈
[e], v 6= i and C ′ijt = θijt, e + 1 ≤ t ≤ n. The full rank
condition follows because {µ′i1, µ′i2, ..., µ′i`} is the basis for
F over B, and the repair bandwidth condition follows from
(126). Thus, we obtain the dual code scheme in Definition
2.

APPENDIX C
PROOF OF LEMMA 4

Proof: Vectors Vij , i ∈ [e], j ∈ [`] are linearly inde-
pendent over B is equivalent to that there is no nonzero
bij ∈ B, i ∈ [e], j ∈ [`] that satisfy∑

i,j

bijpij(αv) = 0,∀v ∈ [e]. (127)

Here, pij(x) can be written as

pij(x) =
∑̀
m=1

ξ′mtrF/B(ξmpij(x)), (128)

where {ξ1, ξ2, . . . , ξ`} and {ξ′1, ξ′2, . . . , ξ′`} are the dual basis
for F over B. So, it is equivalent to that there is no nonzero
bij ∈ B, i ∈ [e], j ∈ [`] that satisfy

∑
i,j

bij
∑̀
m=1

ξ′mtrF/B(ξmpij(αv)) = 0,∀v ∈ [e]. (129)
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Since {ξ′1, ξ′2, . . . , ξ′`} are linearly independent over B.
Therefore, there is no nonzero bij ∈ B, i ∈ [e], j ∈ [`]
that satisfy∑

i,j

bijtrF/B(ξmpij(αv)) = 0,∀v ∈ [e],m ∈ [`], (130)

which is equivalent to S has full rank.

APPENDIX D
PROOF OF LEMMA 5

Proof: Assume rankB({pij(αt), i ∈ [e], j ∈
[`]}) = c and {pij(αt), (i, j) ∈ I} are lin-
early independent over B, |I| = c. Define Sit(j)
as the vector for the j-th row in Sit: Sit(j) =
(trF/B(ξ1pij(αt)), trF/B(ξ2pij(αt)), ..., trF/B(ξ`pij(αt))).
We first prove {Sit(j), (i, j) ∈ I} are linearly independent
and then prove Si′t(j′), i′ ∈ [e], j′ ∈ [`], (i′, j′) /∈ I can be
represented as B-linear combinations of {Sit(j), (i, j) ∈ I}
.

If {Sit(j), (i, j) ∈ I} are linearly dependent over B, then
there exists some nonzero bij ∈ B, (i, j) ∈ I that satisfies∑

(i,j)∈I

bijSit(j) = 0, (131)

and we have∑
(i,j)∈I

bijtrF/B(ξmpij(αt)) = 0,∀m ∈ [`]. (132)

Multiplying the above equation by ξ′m and summing over
all m ∈ [`] result in∑

(i,j)∈I

∑̀
m=1

bijξ
′
mtrF/B(ξmpij(αt)) = 0. (133)

Then, from (128) we know that bij satisfies∑
(i,j)∈I

bijpij(αt) = 0, (134)

which is contradictory to the statement that
{pij(αt), (i, j) ∈ I} are linearly independent over B.
Therefore, {Sit(j), (i, j) ∈ I} are linearly independent over
B.

Let us assume pi′j′(αt), i′ ∈ [e], j′ ∈ [`], (i′, j′) /∈ I can
be represented as

pi′j′(αt) =
∑

(i,j)∈I

b′ijpij(αt), for some b′ij ∈ B. (135)

Then, for m ∈ [`],

trF/B(ξmpi′j′(αt)) = trF/B

ξm ∑
(i,j)∈I

b′ijpij(αt)


=
∑

(i,j)∈I

b′ijtrF/B(ξmpij(αt)),

(136)

which means that for i′ ∈ [e], j′ ∈ [`], (i′, j′) /∈ I ,

Si′t(j
′) =

∑
(i,j)∈I

b′ijSit(j) (137)

is the B-linear combination of {Sit(j), (i, j) ∈ I}.
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