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The Asymptotic Capacity of Private Search
Zhen Chen, Zhiying Wang, and Syed Ali Jafar

Abstract—The private search problem is introduced, where a
dataset comprised of L i.i.d. records is replicated across N non-
colluding servers, and a user wishes to search for all records that
match a privately chosen value, without revealing any informa-
tion about the chosen value to any individual server. Each record
contains P symbols, and each symbol takes values uniformly and
independently from an alphabet of size K. Considering the large
number of records in modern datasets, it is assumed that L is
much larger than the alphabet size K. The capacity of private
search is the maximum number of bits of desired information
that can be retrieved per bit of download. The asymptotic (large
K) capacity of private search is shown to be 1 − 1/N , even
when the scope of private search is further generalized to allow
OR search, AND search, NOT search and sequence search.
The results are based on the asymptotic behavior of a new
converse bound for private information retrieval with arbitrarily
dependent messages. The asymptotic behavior is also applicable
to T -colluding servers or (N,T )-MDS coded servers.

Index Terms—Private search, asymptotic capacity, private
information retrieval.

I. INTRODUCTION

Search is among the most frequent operations performed
on large online datasets. With privacy concerns increasingly
taking center stage in online interactions, a private search
functionality is highly desirable. As a basic formulation of
the information-theoretically private search problem, consider
a dataset that is replicated across N non-colluding servers.
There are L i.i.d. records in the dataset, each record is
comprised of P symbols, and each symbol is from an alphabet
of size K. A basic form of private search, called exact private
search, allows a user to privately choose one symbol from
the alphabet, and then search for all records that contain this
symbol, without revealing any information about the queried
symbol. Suppose the record length P is a constant, and
L � K � 1, i.e., the alphabet size K is large, but the
number of records in the dataset is much larger. This is not an
uncommon scenario. For example, consider datasets of DNA
sequences. When searching for a DNA pattern of length `
(e.g., ` = 10), the alphabet size is K = 4`, while current
DNA sequencing machines produce millions of records (called
reads) per run. Since the upload cost of private search can be
made independent of L while the download cost scales linearly
with L, the communication cost of private search for large L
is dominated by the download cost. The capacity of private
search is therefore defined as the maximum number of bits of
desired information that can be retrieved per bit of download.
Furthermore, since K � 1, the asymptotic capacity of private
search, i.e., the capacity for large K is of particular interest.
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Characterizing the asymptotic capacity of private search is our
main goal in this work.

Private search (PS) has been studied in computer science
for decades. One branch focuses on designing searchable
encryption schemes, which enable users to store encrypted
data at the servers and execute search over ciphertext domain
[2], [3]. Encryption preserves the user privacy computationally.
Various models of search functionality have been explored in
this framework, such as keyword search [2], [3], similarity
search [4], [5], OR and AND search [6], [7] and ranked
search [8]. Another branch allows servers to store unencrypted
data, and relies on private information retrieval (PIR) [9]
schemes to guarantee the privacy of the user’s query. Problems
investigated in this framework include keyword search [10],
streaming data search [11]–[13], and media search [14], [15].
Our work is along the latter line and tries to characterize the
asymptotic capacity of private search. Recall that in its original
form as introduced by Chor et al. in [9], the goal of PIR is to
allow a user to retrieve an arbitrary desired message out of µ
independent messages that are replicated across N distributed
and non-colluding servers, without revealing any information
about the identity of the desired message to any individual
server. The capacity of PIR is the maximum number of bits of
desired information that can be retrieved per bit of download,
and was shown in [16] to be

(
1 + 1

N + · · ·+ 1
Nµ−1

)−1
. The

capacity of many variants of PIR has since been characterized,
such as PIR with colluding servers [17], PIR with coded
servers [18]–[20], symmetric PIR [21], [22], PIR with side
information [23]–[26] and multi-message PIR [27].

Particularly relevant to this paper is the generalized form of
PIR introduced in [28], [29], known as the private computation
problem [28] or the private function retrieval problem [29]–
[31]. As its main result, [28] establishes the capacity of
PIR when the messages have arbitrary linear dependencies.
A supplementary result of [28] shows that even if non-
linear dependencies are allowed, the asymptotic capacity of
private computation approaches 1 − 1/N provided that the
message set includes an unbounded number of independent
messages. Some other types of private computations are also
investigated, i.e., private polynomial computation [32] which
allows polynomial relationships among messages, and private
inner product retrieval [33] which considers the inner product
of messages. Private search is a form of PIR with a specific
form of dependency among messages, that is not covered
by these prior works. This is because in private search the
dependencies among messages are neither linear nor of a
polynomial form, and no two messages are independent. To see
this clearly, consider exact search with alphabet set {A,B,C}
(which implies K = 3). Assume there are L = 4 records,
A,A,B,C, each of size P = 1. We search for all records
that match a queried symbol. Denote the retrieved message
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for a query by Wθ, for some θ ∈ [3], which is comprised
of 4 i.i.d. bits, i.e., Wθ = (Wθ(1),Wθ(2),Wθ(3),Wθ(4)),
such that Wθ(l) = 1 if the l-th record matches the queried
symbol, and Wθ(l) = 0 otherwise. For example, if A is
queried, the corresponding message W1 = (1, 1, 0, 0). If B
is queried, the corresponding message W2 = (0, 0, 1, 0). If
C is queried, the corresponding message W3 = (0, 0, 0, 1).
It is easily seen that any two messages, Wi,Wj , i 6= j, are
identically distributed but not independent, e.g., Wi(l) = 1
implies Wj(l) = 0. This dependency is neither linear nor in
a polynomial form. To approach the private search problem,
we first consider a broader generalization of PIR to include
messages with arbitrary dependencies (DPIR in short). Then
we consider private search as a special case of DPIR.

Since simple keyword search often yields far too coarse
results, almost all the search engines such as Google, Bing, Ya-
hoo, Linkedin and Facebook, and large database management
systems like MySQL and PostgreSQL support OR search,
AND search and NOT search. These searches allow a broader
range of search operations by connecting various pieces of
information with OR, AND or NOT operators to make the
search more precise. For example, instead of retrieving all
emails from “Alice”, a user might only want those emails from
Alice that are marked urgent and pertain to finance, in which
case what is needed is the ability to search on the conjunction
of the keywords, “Alice” and “urgent” and ”finance” [6]. In
other cases, it is desirable to search for symbols that appear in
consecutive positions in a record, e.g., to search for a phrase.
Therefore as natural generalizations of exact private search,
we also consider OR private search, AND private search, NOT
private search and sequence private search. OR private search
looks for all records which contain any of M symbols, AND
private search looks for all records which contain all of M
symbols, and NOT search looks for all records which do not
contain the chosen symbol. Finally, sequence private search
allows the user to search for all records that contain an M -
symbol long sequence.

Our main contributions are as follows.
• We start with a general non-asymptotic converse for de-

pendent private information retrieval or DPIR (Theorem
1). Converse here denotes a lower bound on the download
cost, or equivalently, an upper bound on the capacity.

• The converse combined with a general achievability result
for DPIR that was established in [28], leads us to a
sufficient condition under which the asymptotic capacity
of DPIR is characterized to be 1− 1/N (Theorem 3).

• The sufficient condition of Theorem 3 is shown to hold
for exact private search, thus establishing the asymptotic
capacity of private search as 1− 1/N (Theorem 4).

• We show that the sufficient condition of Theorem 3
also holds for OR search, AND search, NOT search
and sequence search, so that the asymptotic capacity for
these generalizations is also equal to 1− 1/N (Theorem
4). Remarkably, for OR search, the asymptotic capacity
characterization holds even when M itself grows with K.

• Finally, to illustrate the difficulty of finding general
asymptotic capacity results for DPIR, we consider an
example of OR private search with special restricted

search patterns. For this example, we show that either
the new converse bound is not tight, or the asymptotic
capacity is not 1− 1/N (Proposition 1). The asymptotic
capacity for this example remains open.

The paper is organized as follows. Section II presents the
problem statement. The download lower bound of DPIR and
the asymptotic capacity of various forms of private search are
characterized in Section III. Section IV presents the proofs of
the results. Section V concludes the paper with a discussion
of generalization of our settings, including extending Theorem
3 to T -colluding DPIR and MDS-coded DPIR, and the non-
asymptotic capacity of private search.

Notation: We use parentheses (a1, a2, . . . , an) to represent
a vector or a tuple (sequence) and braces {s1, s2, . . . , sN} to
represent a set. [z1 : z2] represents the set {z1, z1+1, · · · , z2},
for z1, z2 ∈ N, z1 < z2, [z] represents [1 : z] for z ∈ N. Let
W1,W2, . . . be random variables, and S = {s1, s2, . . . , sN}
be a subset of indices where s1 < s2 < · · · < sN . The random
vector (Ws1 ,Ws2 , . . . ,WsN ) is represented by WS . A ∼ B
means that random vectors A and B are identically distributed.
A function f(L) = o(L) means that limL→∞ f(L)/L = 0.
o(L) can be positive or negative. A function f(L) = O(L)
means that limL→∞ |f(L)| /L ≤ c, for some constant c > 0.

II. PROBLEM STATEMENT

A. Dependent private information retrieval (DPIR)

Consider µ ∈ N messages, Wm,m ∈ [µ], each comprised
of L symbols, Wm = (Wm(1),Wm(2), · · · ,Wm(L)). The
random vectors (W1(l),W2(l), · · · ,Wµ(l)), for all l ∈ [L], are
i.i.d., and have a distribution that is identical to the distribution
of the random vector (w1, w2, · · · , wµ). Namely, for different
l, the vectors (W1(l),W2(l), · · · ,Wµ(l)) are independent; but
for any particular l, the variables Wm(l),m ∈ [µ] have
dependencies defined by the joint distribution of wm,m ∈ [µ].

Example 1: For L = 2, µ = 3, let (w1, w2, w3) be a
binary random vector and the distribution be p(w1, w2, w3) =
1/3 for (w1, w2, w3) ∈ {(1, 0, 0), (0, 1, 0), (0, 0, 1)}, and
p(w1, w2, w3) = 0 for all other cases. One realization of the
messages can be:

W1 1 0
W2 0 0
W3 0 1

The first bit (column) and the second bit (column) of the
messages are independent. Within the first bit (column), only
one entry can be 1.

The amount of information carried by the m-th message,
m ∈ [µ], is

H(Wm) = LH(wm). (1)

We say that the DPIR problem is balanced if all messages
Wm,∀m ∈ [µ] carry the same amount of information,

H(W1) = H(W2) = · · · = H(Wµ) , LH(w), (2)

i.e. ∀m ∈ [µ], H(wm) = H(w).
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We note here that the random variable w may depend on
the number of messages µ, especially in the context of private
search, i.e., H(w) = H(w(µ)). For compact notation, we will
not explicitly show the dependence on µ.

The problem of DPIR is as follows. There are N servers and
each server stores all µ messages. A user privately generates
θ ∈ [µ] and wishes to retrieve Wθ while keeping θ private
from each server. Depending on θ, the user employs N queries
Q

[θ]
1 , · · · , Q[θ]

N and sends Q
[θ]
n to the n-th server. The n-th

server returns a response string A
[θ]
n which is a function of

Q
[θ]
n and W[µ], i.e.,

∀θ ∈ [µ],∀n ∈ [N ], H(A[θ]
n | Q[θ]

n ,W[µ]) = 0. (3)

From all the information that is now available to the user,
he must be able to decode the desired message Wθ, with
probability of error Pe → 0 as L → ∞. This is called the
“correctness” constraint. From Fano’s inequality, we have

[Correctness] H
(
Wθ | A[θ]

[N ], Q
[θ]
[N ]

)
= o(L). (4)

To protect the user’s privacy, θ must be indistinguishable from
θ′, from the perspective of each server, ∀θ, θ′ ∈ [µ], i.e.,

[Privacy] (Q[θ]
n , A

[θ]
n ,W[µ]) ∼ (Q[θ′]

n , A[θ′]
n ,W[µ]). (5)

The DPIR rate characterizes how many bits of desired
information are retrieved per downloaded bit, and is limited
by the worst case as,

R ,
minm∈[µ] LH(wm)

D
, (6)

where D is the expected total number of bits downloaded by
the user from all the servers. If the DPIR problem is balanced,
then the minimum over m may be ignored. The supremum of
achievable rates R is the capacity CDPIR(µ,N).

B. Private search

We first define exact search and OR search. Later we define
AND search, NOT search and sequence search. Examples of
different kinds of search are given in Table I.

1) Exact Search and OR Search: Consider a dataset ∆
comprised of L i.i.d. records: ∆ = (∆1,∆2, · · · ,∆L). Each
record ∆l, l ∈ [L], is a sequence of length P , where P is
constant, denoted by (δl1, δl2, · · · , δlP ), and each symbol δli
takes values uniformly and independently from the alphabet
set U = {U1, U2, · · · , UK}. The dataset is replicated across N
non-colluding servers.

For all l ∈ [L], δli ∈ U , i ∈ [P ],

P (∆l = (δl1, δl2, · · · , δlP )) =
1

KP
, (7)

H(∆) = LH(∆l) = L log2(KP ) = LP log2K bits. (8)

A user privately chooses a set (search pattern), S =
{Uθ1 , Uθ2 , · · · , UθM }, S ⊂ U , M < K, and searches for all
records in ∆ that contain at least one element of S. Note
that even though each record is of length P , given a search
pattern S the search result for a record is only a single bit,
indicating whether the P symbols in the record contain an
element in S or not. The overall search result for the dataset

is L (independent) bits. We refer to the M = 1 setting as exact
private search, and to the M > 1 setting as OR private search,
because the output of the search reveals the exact value of a
matching record if M = 1, but not if M > 1. In general,
for OR search we allow M to grow with K (either o(K) or
Ω(K)) in the asymptotic regime K →∞.

To view private search as a special case of DPIR, we treat
the result of each possible search pattern as one message. A
similar technique has been also used in the work of Fanti [15].
There are a total of µ =

(
K
M

)
search patterns. Let us arbitrarily

label them Sm,m ∈ [µ]. Correspondingly, there are a total of
µ messages. Label these messages Wm, so that ∀m ∈ [µ],

Wm = (Wm(1),Wm(2), · · · ,Wm(L)), (9)

and

Wm(l) =

{
1, if ∃i ∈ [M ], Uθi ∈ {δl1, · · · , δlP },
0, otherwise.

Note that each message is comprised of L i.i.d. bits. ∀l ∈
[L],

H(w) = H(Wm(l)) = H2

(
(K −M)P

KP

)
,∀m ∈ [µ], (10)

where the binary entropy function is defined as follows.

H2(p) = −p log2(p)− (1− p) log2(1− p), (11)

H2(0) = H2(1) = 0. The second equation in (10) is based on
the facts that for each record there are a total of KP possible
realizations and (K − M)P of those do not match. Fig. 1
shows the relationship between private search and DPIR. For
example, suppose there are L = 2 records of length P = 1,
the alphabet is U = {A,B,C} of size K = 3, and we do
exact search (M = 1). Let the records be ∆1 = A, ∆2 = C.
Then the µ = 3 messages are shown as in Example 1. See
Table I for additional examples.

2) AND Search: For AND private search, a set Sm =
{Uθ1 , Uθ2 , · · · , UθM } is chosen out of a total of µ =

(
K
M

)
possibilities. In general, M can be arbitrary. However, if
M > P the problem degenerates into a trivial case where
no record can contain all of the chosen symbols. Therefore,
we only consider the non-trivial case where 1 ≤M ≤ P . For
all m ∈ [µ], l ∈ [L], the lth bit of the corresponding message
Wm is defined as,

Wm(l) =

{
1, if ∀i ∈ [M ], Uθi ∈ {δl1, · · · , δlP },
0, otherwise.

The L-bits of each message are i.i.d., and ∀l ∈ [L],∀m ∈
[µ], H(w) = H(Wm(l)). See Table I for an example.

3) NOT Search: For NOT private search, a user privately
chooses a value Sm = {Uθ} out of µ = K possibilities. The
lth symbol of the corresponding message Wm is defined as

Wm(l) =

{
1, if Uθ /∈ {δl1, · · · , δlP },
0, otherwise.

The L bits of each message are i.i.d. and ∀l ∈ [L],∀m ∈
[µ], H(w) = H(Wm(l)). Essentially NOT search is the
complement of exact search. For example, in terms of the
same chosen symbol, if Wm(l) = 1 in exact search, then
Wm(l) = 0 in NOT search, and vice versa. See Table I for an
example.
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Fig. 1: Relationship between PS and DPIR. The i-th record (row) ∆i in PS corresponds to the i-th symbol (column) of each
message in DPIR. Different messages (rows) in DPIR correspond to different search patterns S.

TABLE I: Example of different types of private search. The
dataset contains L = 3 records (A, B, C), (A, C, B) and (B,
B, B). Each record contains P = 3 symbols.

Type Pattern (A, B, C) (A, C, B) (B, B, B) Wm

exact A 1 1 0 110
OR A or B 1 1 1 111

AND A and B 1 1 0 110
NOT not A 0 0 1 001

sequence (A, B) 1 0 0 100

4) Sequence Search: Sequence private search is similar
to AND search, the difference is that the order of symbols
matters in sequence search. Specifically, a sequence Sm =
(Uθ1 , Uθ2 , · · · , UθM ) is chosen, out of µ = KM possibilities.
For the same reason as AND search, we only consider the non-
trivial scenario where 1 ≤ M ≤ P . For all m ∈ [µ], l ∈ [L],
the lth symbol of the corresponding message Wm,

Wm(l) =

{
1, if Sm ∈ {(δli+1

, · · · , δli+M ), i ∈ [0 : P −M ]},
0, otherwise.

The L-bits of each message are i.i.d., and ∀l ∈ [L],∀m ∈
[µ], H(w) = H(Wm(l)). See Table I for an example.

Even though in our definitions of private search, we assume
that all search sets S (or search sequence S) of size M are
allowed, one can generalize the definition to restricted search
patterns. One example of such a setting is discussed in Section
III-E.

The queries and answers, privacy and correctness con-
straints, rate and capacity definitions for private search are
inherited from DPIR. The capacity of private search is de-
noted CPS(K,M,P,N), and the asymptotic capacity of private
search is denoted limK→∞ CPS(K,M,P,N).

III. RESULTS

We present the main results in this section. All proofs appear
in Section IV.

A. A General Converse for DPIR

The download cost (expected number of bits of download)
for DPIR is bounded as follows.

Theorem 1: For DPIR, denote by W1,W2, . . . ,Wµ an
arbitrary permutation of the µ messages. Then

D ≥ H(W1) +
H(W2|W1)

N
+
H(W3|W[1:2])

N2

+ · · ·+
H(Wµ|W[1:µ−1])

Nµ−1 . (12)

Note that the bound depends on the chosen permutation of
message indices, so finding the best bound from Theorem 1
requires a further optimization of the permutation. Substituting
(12) into (6), we obtain an equivalent bound on capacity. If
the messages are independent, we recover the converse bound
of [16]. However, Theorem 1 is more broadly useful since it
allows arbitrary dependencies. Also note that Theorem 1 is
not limited to balanced DPIR.

B. General Achievable Rate for DPIR [28]

A PIR achievable scheme for independent messages is also
a DPIR achievable scheme. We use the achievable PIR scheme
with µ → ∞ messages from [28, Theorem 2] (also see [9],
[21], [34]), from which we obtain the following lower bound
on the capacity of DPIR.

CDPIR(µ,N) ≥ lim
µ→∞

CDPIR(µ,N) ≥ lim
µ→∞

CPIR(µ,N)

=

(
1− 1

N

)
minm∈[µ]H(wm)

maxm∈[µ]H(wm)
. (13)
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Theorem 2: The capacity of DPIR satisfies

CDPIR(µ,N) ≥
(

1− 1

N

)
Hmin

Hmax
, (14)

where Hmin = minm∈[µ]H(wm) and Hmax =
maxm∈[µ]H(wm).

For balanced DPIR, this gives us 1−1/N as a lower bound
on capacity. As a simple example of the achievable scheme,
assume there are N = 2 servers and µ = 2 messages with
the size of 1 bit. A user wishes to retrieve W1. He generates
two binary random variables α and β independently, and sends
(α, β) to server 1 and (α+1, β) to server 2. Here “+” denotes
XOR. He downloads αW1 + βW2 and (α + 1)W1 + βW2

from server 1 and server 2, respectively, which allows him to
retrieve W1 privately. Therefore the total download is 2 bits,
and R = 1/2 = 1−1/N . This achievable scheme requires one
multiplication for each symbol of each message. In general,
for each server, the computation complexity is O(µL).

C. Asymptotic Optimality of Rate 1−1/N for Balanced DPIR

For balanced DPIR, as the number of messages µ → ∞,
the asymptotic behavior of (12) gives us the following suf-
ficient condition. Here we define Wk = 0 if k > µ, and
define a sequence function to be a sequence of functions
k1(µ), k2(µ), · · · , where every ki, i ≥ 1, is a mapping N→ N.
When it is clear from the context, we drop the variable µ and
simply use ki to denote ki(µ). But one should keep in mind
that ki depends on the number of messages µ.

Theorem 3: For balanced DPIR, if there exists an increasing
sequence ki ∈ N,∀i ∈ N, such that ∀l ∈ N,

lim
µ→∞

I
(
Wkl+1

;Wk[1:l]

)
LH(w)

= 0, (15)

then the asymptotic capacity is

lim
µ→∞

CDPIR(µ,N) = 1− 1

N
. (16)

Note since H(w) may depend on µ, the sufficient condition is
in general not equivalent to limµ→∞ I

(
Wkl+1

;Wk[1:l]

)
= 0.

In particular, (15) provides a measure of “weak” dependency
among the messages in the asymptotic regime, such that the
capacity of DPIR is 1−1/N . Intuitively, if we find an infinite
sequence of messages that have this weak dependency in
DPIR, we know the asymptotic capacity is 1− 1/N .

D. Asymptotic Capacity of Private Search

Theorem 4: The asymptotic capacity of private search is

lim
K→∞

CPS(K,M,P,N) = 1− 1

N
, (17)

for exact search (M = 1), NOT search (M = 1), OR search
(M > 1), AND search (1 ≤ M ≤ P ) and sequence private
search (1 ≤M ≤ P ). For OR search, M can even grow with
K, satisfying either M = o(K) or M = Ω(K).

Theorem 4 is proved by showing that the sufficient condition
(15) is satisfied for private search. Note that condition (15) is
explicitly proven to be true for balanced DPIR, and private
search indeed has balanced messages. Notably, for exact

private search, as K →∞, both I(Wkl+1
;Wk[1:l]) and H(w)

approach zero. The key to the asymptotic capacity result is
that I(Wkl+1

;Wk[1:l]) approaches zero much faster than H(w).
Furthermore, as shown in Fig. 2, convergence of capacity to
its asymptotic value is quite fast, and the larger the value of
N , the faster the convergence. For example, when the record
size P = 1 and the number of servers N = 5, the bound
(12) for K = 10 messages is already within 1% gap from the
asymptotic value.

Fig. 2: Normalized download lower bound of exact search
(P = 1) based on Theorem 1 versus alphabet size K. The
asymptotic value (1− 1/N)−1 is the upper bound.

E. Difficulty of Private Search over Restricted Search Patterns

Finding the capacity of DPIR with arbitrary dependency
structures is in general a difficult problem. The difficulty
remains even when the problem is limited to asymptotic
capacity. To highlight this aspect, we present an example
of approximate private search over restricted search patterns
where the asymptotic capacity remains an open problem.

Proposition 1: Consider OR private search, with P = 1 and
M = bK2 c, where the only search sets allowed are

Sk = {U〈k+1〉, U〈k+2〉, · · · , U〈k+M〉}, ∀k ∈ [K], (18)

and 〈m〉 , (m mod K) + 1. As K → ∞, either the bound
(12) is not tight, or limK→∞ CPS(K,M,P,N) 6= 1− 1

N .
Here privacy is required only within the µ = K choices of

search sets.

IV. PROOFS

A. Proof of Theorem 1

For the DPIR problem, the total download is bounded as,

D ≥ H
(
A

[1]
[N ] | Q

[1]
[N ]

)
(19)

(4)
= H

(
A

[1]
[N ],W1 | Q[1]

[N ]

)
+ o(L) (20)

= H
(
W1 | Q[1]

[N ]

)
+H

(
A

[1]
[N ] | Q

[1]
[N ],W1

)
+ o(L) (21)

≥ H (W1) +H
(
A

[1]
1 | Q

[1]
[N ],W1

)
+ o(L) (22)
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= H (W1) +H
(
A

[1]
1 | Q

[1]
1 ,W1

)
+ o(L) (23)

(5)
= H(W1) +H

(
A

[2]
1 | Q

[2]
1 ,W1

)
+ o(L) (24)

= H(W1) +H
(
A

[2]
1 | Q

[2]
[N ],W1

)
+ o(L), (25)

where (22) follows because the queries are independent of W1,
and A[1]

1 is an element of A[1]
[N ], and (23) follows from the fact

A
[1]
1 and Q[1]

[2:N ] are independent given Q[1]
1 . Similarly, for all

n ∈ [2 : N ] we have,

D ≥ H(W1) +H
(
A[2]
n | Q

[2]
[N ],W1

)
. (26)

Adding all of these N inequalities we obtain,

ND ≥ NH(W1) +H
(
A

[2]
[N ] | Q

[2]
[N ],W1

)
(27)

⇒ D ≥ H(W1) +
H
(
A

[2]
[N ] | Q

[2]
[N ],W1

)
N

. (28)

Proceeding recursively in a similar manner as (28), ∀m ∈ [2 :
µ− 1], we have

H
(
A

[m]
[N ] | Q

[m]
[N ],W1, · · · ,Wm−1

)
≥ H (Wm |W1, · · · ,Wm−1)

+
H
(
A

[m+1]
[N ] | Q[m+1]

[N ] ,W1, · · · ,Wm

)
N

(29)

and when m = µ,

H
(
A

[µ]
[N ] | Q

[µ]
[N ],W1, · · · ,Wµ−1

)
≥ H (Wµ |W1, · · · ,Wµ−1) .

(30)

Therefore,

D ≥ H(W1) +
H
(
A

[2]
[N ] | Q

[2]
[N ],W1

)
N

(31)

≥ H(W1) +
H(W2 |W1)

N
+
H
(
A

[3]
[N ] | Q

[3]
[N ],W[1:2]

)
N2

(32)
≥ · · ·

≥ H(W1) +
H(W2 |W1)

N
+
H(W3 |W[1:2])

N2

+ · · ·+
H(Wµ |W[1:µ−1])

Nµ−1 . (33)

B. Proof for Theorem 3

Define m such that km ≤ µ < km+1. Note that m is a
function of µ and as µ→∞, m→∞. Based on Theorem 1
and equations (1), (2),

D ≥ H(Wk1) +
H(Wk2 |Wk1)

N
+

+
H(Wk3 |Wk1 ,Wk2)

N2
+ · · ·+

H
(
Wkm |Wk[1:m−1]

)
Nm−1

= H(Wk1) +
H(Wk2)

N
+ · · ·+ H(Wkm)

Nm−1

− I(Wk2 ;Wk1)

N
− · · · −

I
(
Wkm ;Wk[1:m−1]

)
Nm−1

= (1 +
1

N
+

1

N2
+ · · ·+ 1

Nm−1 )LH(w)

− I(Wk2 ;Wk1)

N
− · · · −

I
(
Wkm ;Wk[1:m−1]

)
Nm−1 . (34)

Normalizing both sides by LH(w) we have

D

LH(w)
=

(
1 +

1

N
+

1

N2
+ · · ·+ 1

Nm−1

)
− I(Wk2 ;Wk1)

NLH(w)
− · · · −

I
(
Wkm ;Wk[1:m−1]

)
Nm−1LH(w)

. (35)

Applying limit µ→∞, the reciprocal of rate is bounded as

lim
µ→∞

D

LH(w)
≥

(
1− 1

N

)−1

− lim
µ→∞

m−1∑
l=1

I
(
Wkl+1 ;Wk[1:l]

)
LH(w)N l

.

Now, we need to show that

lim
µ→∞

m−1∑
l=1

I
(
Wkl+1

;Wk[1:l]

)
LH(w)N l

= 0. (36)

Equivalently, for every ε > 0 we will show that

lim
µ→∞

m−1∑
l=1

I
(
Wkl+1

;Wk[1:l]

)
LH(w)N l

≤ ε. (37)

Choose a finite l∗ such that

1

N l∗

(
1− 1

N

)−1
≤ ε. (38)

Note that l∗ depends only on N and ε. More importantly, it
is not a function of µ. Now partition the sum as follows

lim
µ→∞

m−1∑
l=1

I
(
Wkl+1

;Wk[1:l]

)
LH(w)N l

= lim
µ→∞

l∗−1∑
l=1

I
(
Wkl+1

;Wk[1:l]

)
LH(w)N l

+ lim
µ→∞

m−1∑
l=l∗

I
(
Wkl+1

;Wk[1:l]

)
LH(w)N l

.

(39)

The first term on the RHS of (39) is zero because it is a sum of
finitely many terms (l∗ is finite), each of which is zero because
(15) holds by assumption. For the second term in (39),

lim
µ→∞

m−1∑
l=l∗

I
(
Wkl+1

;Wk[1:l]

)
LH(w)N l

≤ lim
µ→∞

m−1∑
l=l∗

1

N l
(40)

≤ 1

N l∗
lim
µ→∞

m−1−l∗∑
l=0

1

N l
(41)

≤ 1

N l∗

(
1− 1

N

)−1
≤ ε. (42)

Thus, the reciprocal of rate is bounded as 1/R ≥ (1−1/N)−1,
i.e., the rate is bounded as R ≤ 1− 1/N . By Theorem 2 this
rate is achievable. Hence proved.

C. Proof of Theorem 4

We treat private search as a balanced DPIR problem. As
an application of Theorem 3, we show that (15) is satisfied.
Therefore the asymptotic capacity must be 1−1/N . Note that
for all the private search variations, the number of messages
µ → ∞ if and only if the alphabet size K → ∞. So in our
proofs we let K grow to infinity.
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In the following proofs, we consider a subset of the possible
messages, W1,W2, . . . ,Wf(µ), for some f(µ) ≤ µ that grows
with µ. We use the identity sequence functions ki = i for
1 ≤ i ≤ f(µ), and map i to some ki > µ for i > f(µ).
In other words, we only use the first f(µ) messages in our
proofs. Then (15) becomes

lim
µ→∞

I
(
Wl+1;W[1:l]

)
LH(w)

= 0 (43)

for all 1 ≤ l ≤ f(µ).
1) Exact private search: We start with the exact private

search problem (M = 1).
Firstly, consider the case where the record length P = 1,

note that

lim
K→∞

H(w) = lim
K→∞

H2

(
1

K

)
= 0. (44)

According to L′Hôpital′s rule,

lim
K→∞

H2

(
1

K−t

)
H2

(
1
K

) = 1, (45)

where t is a constant. The detailed proof of (45) is shown in
Appendix A.

Since ∀l ∈ [K],Wl(1), · · · ,Wl(L) are i.i.d., H(Wl) =
LH (Wl(η)), η can be any integer between 1 to L. Consider
the dependence among the messages,

H
(
Wl+1 |W[1:l]

)
L

= H
(
Wl+1(η) |W[1:l](η)

)
(46)

= Pr
(
W[1:l](η) = 0

)
·H
(
Wl+1(η) |W[1:l](η) = 0

)
+

l∑
i=1

Pr
(
Wi(η) = 1,W[1:l]\{i}(η) = 0

)
·H
(
Wl+1(η) |Wi(η) = 1,W[1:l]\{i}(η) = 0

)
(47)

=

(
1− l

K

)
H2

(
1

K − l

)
+

l∑
i=1

1

K
· 0 (48)

=

(
1− l

K

)
H2

(
1

K − l

)
, (49)

where Pr(e) is the probability of event e and bold 0 is the
zero vector. The above equalities are explained as below. The
only possible values for W[1:l](η) are either all zeros or 1 one
and l−1 zeros. Note that the probability Pr

(
W[1:l](η) = 0

)
=

1 − l/K. If Wi(η) = 0,∀i ∈ [l], then ∆η 6= U1, · · · , Ul
and ∆η can only take values from {Ul+1, Ul+2, · · · , UK},
each with probability 1/(K − l). Therefore, conditioning on
W[1:l](η) = 0, we have ∆η = Ul+1, i.e., Wl+1(η) = 1, with
probability 1/(K − l), and ∆η 6= Ul+1, i.e., Wl+1(η) = 0,
with probability 1− 1/(K − l). If W1(η) = 1, then ∆η = U1

and W2(η), · · · ,WK(η) must be equal to zero. Thus there is
at most one Wi(η) = 1 and each Wi(η) = 1 with probability
1/K . If any Wi(η) = 1, then H (Wj(η) |Wi(η)) = 0,∀j 6=
i.

Substituting µ = K into the LHS of (43), we have for any
fixed l ∈ N,

lim
K→∞

I(Wl+1;W1,W2, · · · ,Wl)

LH2

(
1
K

) (50)

= lim
K→∞

H(Wl+1)−H(Wl+1 |W[1:l])

LH2( 1
K )

(51)

= lim
K→∞

H2

(
1
K

)
−
(
1− l

K

)
H2

(
1

K−l

)
H2

(
1
K

) (52)

= 1− lim
K→∞

(
1− l

K

)
H2

(
1

K−l

)
H2

(
1
K

) = 1− 1 = 0. (53)

Here (53) follows from (45). Therefore, (43) is satisfied, and
based on Theorem 3, the asymptotic capacity is 1− 1/N .

Then consider the case where P > 1 is a constant, note that

lim
K→∞

H(w) = lim
K→∞

H2

(
(K − 1)P

KP

)
= 0. (54)

According to L′Hôpital′s rule,

lim
K→∞

H2

(
(K−t−1)P
(K−t)P

)
H2

(
(K−1)P
KP

) = 1, (55)

where t is a constant. The detailed proof of (55) is shown in
Appendix B. For any fixed l ∈ N, we denote by Ei the event
that i entries out of W1(η), · · · ,Wl(η) are 1, and the remaining
l − i entries are 0. Let its probability be τi = Pr(Ei). Since
each record size is P , there are at most P of Wi(η) equal to
1, hence 0 ≤ i ≤ min(P, l).

H(Wl+1 |Wl, · · · ,W1) (56)
= LH(Wl+1(η) |Wl(η), · · · ,W1(η)) (57)

=

min(P,l)∑
i=0

(
l

i

)
τiLH(Wl+1(η) | Ei) (58)

≥
(
l

0

)
τ0LH(Wl+1(η) | E0) (59)

= τ0LH(Wl+1(η) | E0). (60)

Note that

τ0 = Pr(E0) =
(K − l)P

KP
, (61)

and conditioned on E0, Wl+1(η) is 0 with probability (K −
l − 1)P /(K − l)P , thus

H(Wl+1(η) | E0) = H2

(
(K − l − 1)P

(K − l)P

)
. (62)

Therefore,

H(Wl+1 |Wl, · · · ,W1) ≥ τ0LH(Wl+1(η) | E0) (63)

=
L(K − l)P

KP
H2

(
(K − l − 1)P

(K − l)P

)
. (64)
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Substituting µ = K into the LHS of (43), we have

lim
K→∞

I(Wl+1;W1,W2, · · · ,Wl)

LH2

(
(K−1)P
KP

) (65)

= lim
K→∞

H(Wl+1)−H(Wl+1 |W[1:l])

LH2( (K−1)P
KP )

(66)

≤ lim
K→∞

H2( (K−1)P
KP )− (K−l)P

KP H2

(
(K−l−1)P
(K−l)P

)
H2( (K−1)P

KP )
(67)

= 1− lim
K→∞

(K−l)P
KP H2

(
(K−l−1)P
(K−l)P

)
H2( (K−1)P

KP )
= 1− 1 = 0. (68)

Here (68) follows from (55). Therefore, (43) is satisfied, and
based on Theorem 3, the asymptotic capacity is 1− 1/N .

In summary, for arbitrary constant P the asymptotic capac-
ity of exact private search is 1− 1/N .

2) NOT search: Since NOT search essentially is the com-
plement of exact search, the asymptotic capacity of NOT
search is 1− 1/N .

3) OR search: For OR search, first we show that any P > 1
OR search problems can be viewed as P = 1 OR search
problem. For example, suppose the alphabet set is {A,B,C},
i.e., K = 3 and record length P = 2. A user wishes to
search for A or B. It is equivalent to the problem that the
alphabet set is all ordered tuples consisting of {A,B,C}, i.e.
{AA,AB,AC,BA,BB,BC,CA,CB,CC} and the record
length is P ′ = 1. Notice that every character in the new
alphabet set is searched for with the same probability. The
user wishes to search for AA or AB or AC or BA or BB or
BC or CA or CB. In general, for OR search problem with
alphabet size K, record length P > 1 and search set size
M , it is equivalent to the OR search problem with alphabet
size K ′ = KP , record length P ′ = 1 and search set size
M ′ = K ′ − (K −M)P . Note that if M = o(K),

lim
K→∞

M ′

K ′
= lim
K→∞

KP − (K −M)P

KP
= 0, (69)

i.e. M ′ = o(K ′). Similarly, if M = Ω(K),M ′ = Ω(K ′).
Therefore in the following proof of OR private search, we
only consider the case P = 1.

Define γ , M/K < 1. When M = o(K), regard
each M -element set as one new symbol and consider mes-
sages corresponding to disjoint search patterns. For example,
suppose the alphabet set is {1, 2, · · · ,K}, M = 2, regard
{1, 2}, {1, 3}, {2, 3}, · · · as new symbols. Consider the mes-
sages corresponding to {1, 2}, {3, 4}, {5, 6}, · · ·. There are
K ′ = bK/2c such messages. As K → ∞, K ′ → ∞. Based
on the proof for the exact search setting, these messages
satisfy (15). Therefore the asymptotic capacity is 1 − 1/N .
For the general case, consider the K ′ = bK/Mc messages
corresponding to disjoint search patterns. Invoking Theorem 3
we conclude that the asymptotic capacity is 1− 1/N .

For M = Ω(K), by symmetry of the truth function,
searching for a given set is the same as searching for its
complement. The entropy H2(γ) = H2(1 − γ) and the
capacity as a function of γ, is symmetric around γ = 1/2.
Thus we only need to consider γ = M/K ≤ 1/2. Let us find

a sequence of dependent messages such that (43) is satisfied.
Choose W1 corresponding to S1 = {U1, U2, · · · , UM}. It
separates the alphabet set U into 2 parts: S1 of size γK, and
U\S1 of size (1 − γ)K. Note that γK = M is an integer.
Choose the second message W2 so that it is comprised of
bγMc elements of S1 and M − bγMc elements of U\S1.
Repeating this step we get a series of dependent messages,
as in Fig. 3.

U

W1

W2

W3

M

bγMc M − bγMc

bγbγMcc

bγM − γbγMcc

bγM − γbγMcc

M − 2bγM − γbγMcc − bγbγMcc

·
··

• • • • • • • • • • • • •
U1 U2 U3 · · · UK

Fig. 3: Partition of the alphabet to obtain a sequence of
dependent messages for OR search, M = Ω(K), P = 1.
Here γ = M/K. The alphabet U = {U1, U2, · · · , UK} is
represented on a straight line.

Note that

H(Wl) = LH2(γ), ∀l. (70)

Since γ ≤ 1/2, γM−1
M ≤ bγMc

M ≤ 1/2. In terms of func-
tion H2(x), γM−1

M and bγMcM are both in the monotonically
increasing range. When M−bγMc

K−M ≤ 1/2,

H(W2|W1)

= LH2

(
bγMc
M

)
M

K
+ LH2

(
M − bγMc
K −M

)
K −M
K

(71)

≥ LH2

(
γM − 1

M

)
M

K
+ LH2

(
γ(K −M)− 1

K −M

)
K −M
K

(72)

= LH2

(
γ2K − 1

γK

)
M

K
+ LH2

(
γ(1− γ)K − 1

(1− γ)K

)
K −M
K

.

(73)

Then we have

lim
K→∞

H(W2|W1) ≥ LH2(γ) = H(W1), (74)

⇒ lim
K→∞

H(W2|W1) = H(W1). (75)

When M−bγMc
K−M ≥ 1/2, M−bγMc

K−M and γ(K−M)−1
K−M are in

non-monotonic range, (72) is still true. Due to the symme-
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try, we only need to show M−bγMc
K−M is closer to 1/2 than

γ(K−M)−1
K−M . We have

M − bγMc
K −M

− 1

2

=
M − bγMc
K −M

− γ + γ − 1

2
(76)

=
M − bγMc
K −M

− M − γM
K −M

+ γ − 1

2
(77)

=
γM − bγMc
K −M

− 1

2
+ γ (78)

≤ 1

K −M
− 1

2
+ γ (79)

≤ 1

K −M
. (80)

And
1

2
− M − γM − 1

K −M

=
1

2
− M − γM − 1

K −M
+ γ − γ (81)

=
1

2
− M − γM − 1

K −M
+
M − γM
K −M

− γ (82)

=
1

2
+

1

K −M
+ γ (83)

≥ 1

K −M
. (84)

Combining (80) and (84), (72) is satisfied.
Since M = Ω(K), there exists a constant 0 < c < 1 such

that γ = M/K ≥ c for sufficiently large K. For a given K,
consider the search of only the restricted messages {Wl : l ≤
log1/c

√
K}. Note that the number of the restricted messages

goes to infinity as K →∞. Next we prove

lim
K→∞

H(Wl|W[l−1])

LH2(γ)
= 1, ∀l ≤ log1/c

√
K. (85)

According to our choice of the message Wl in Fig. 3, we
partition the alphabet into 2l parts at step l. Thus there are
2l−1 terms in H(Wl|W[l−1]). In particular, ∀i ∈ [2l−1], the
i-th term corresponds to the event that the record symbol is
in the i-th part, and we use ξi to denote its probability. To
bound the i-th term, let us use a binary number to represent
i − 1. Let the number of “1”s in the binary number be mi

and mi ∈ [l − 1]. For example, if l = 4 and i = 2, then
i − 1 = (001)2, and mi = 1. The size of the i-th part is
between γl−mi(1−γ)miK−l+1 and γl−mi(1−γ)miK+l−1.
Then the i-th term of H(Wl|W1, · · · ,Wl−1) is greater than or
equal to

LH2

(
γl−mi+1(1− γ)miK − l + 1

γl−mi(1− γ)miK + l − 1

)
· ξi (86)

= LH2

(
γ − l−1

γl−mi (1−γ)miK

1 + l−1
γl−mi (1−γ)miK

)
· ξi. (87)

When K →∞, ∀i ∈ [2l−1], l ≤ log1/c

√
K,

lim
K→∞

l − 1

γl−mi(1− γ)miK
≤ lim
K→∞

l − 1

γlK
= 0. (88)

Therefore,

lim
K→∞

LH2

(
γ − l−1

γl−mi (1−γ)miK

1 + l−1
γl−mi (1−γ)miK

)
= lim
K→∞

LH2(γ). (89)

Summing up all the terms, we obtain

lim
K→∞

H(Wl|W1, · · · ,Wl−1) ≥ lim
K→∞

LH2(γ), (90)

⇒ lim
K→∞

H(Wl|W1, · · · ,Wl−1) = lim
K→∞

H(Wl). (91)

Invoking Theorem 3 at this point, we conclude that the
asymptotic capacity is 1− 1/N .

4) AND private search: For AND search, the record size
P ≥M , otherwise no record matches. Similar to OR search,
we translate it to OR search with the record size P ′ = 1.
For example, consider the alphabet set is {A,B,C}, i.e.,
K = 3 and record length P = 2. A user wishes to
search for A and B. It is equivalent to the problem that the
alphabet set is all ordered tuples consisting of {A,B,C}, i.e.
{AA,AB,AC,BA,BB,BC,CA,CB,CC} and the record
length is P ′ = 1. The user wishes to search for AB or BA.

In general case, for AND search problem with alphabet
size K, search set size M and record length P ≥ M , it
is equivalent to the OR search problem with alphabet size
K ′ = KP , record length P ′ = 1 and search set size
M ′ = o(K ′). Here M ′ is the number of matching cases
for an AND search, which is a function of P,M,K, i.e.
M ′ = Γ(P,M,K). To show M ′ = o(K ′), we first calculate
the value of Γ(P,M,K). Notice the fact that there are two
cases where a P -symbol length record matches: 1) The first
P − 1 symbols already contain all of the M chosen symbols,
and 2) The first P − 1 symbols only contain M − 1 chosen
symbols. For the first case, the last symbol can be any one in
the alphabet while for the second case, the last symbol must
be the missing symbol and any one of the M symbols could
be missing. Thus, the value of Γ(P,M,K) can be calculated
by recursive equation

Γ(P,M,K) = KΓ(P − 1,M,K)

+MΓ(P − 1,M − 1,K − 1), (92)

with base cases

Γ(P, 1,K) = KP − (K − 1)P , (93)
Γ(M,M,K) = M ! . (94)

Recall that P and M are constants, which do not grow with
K. When K →∞, Γ(P, 1,K) = o(KP ) and Γ(M,M,K) =
O(1). Suppose Γ(P−1,M,K) = o(KP−1) and Γ(P−1,M−
1,K − 1) = o((K − 1)P−1),

Γ(P,M,K) = K · o
(
KP−1)+M · o

(
(K − 1)P−1

)
= o

(
KP

)
. (95)

Based on mathematical induction, ∀M and ∀P ≥M ,

Γ(P,M,K) = o(KP ) = o(K ′). (96)

Since the asymptotic capacity of OR search is 1 − 1/N , the
asymptotic capacity of AND search is 1− 1/N .
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5) Sequence private search: For sequence search, the non-
trival case is under the condition P ≥ M , otherwise no
record matches. Suppose the chosen sequence is the tuple
S = (Uθ1 , · · · , UθM ). Note that here Uθi and Uθj can be the
same symbol even through i 6= j. For sequence search, again
we translate it to OR search with the record size P ′ = 1.
Consider the same example where alphabet set is {A,B,C},
i.e., K = 3 and record length P = 2. A user wishes to search
for a sequence AB. It is equivalent to the problem that the
alphabet set is all ordered tuples consisting of {A,B,C}, i.e.
{AA,AB,AC,BA,BB,BC,CA,CB,CC} and the record
length is P ′ = 1. The user wishes to search for AB.

In general case, for sequence search problem with alphabet
size K, search set size M and record length P ≥ M , it
is equivalent to the OR search problem with alphabet size
K ′ = KP , record length P ′ = 1 and search set size
M ′ = o(K ′). Here M ′ is the number of matching cases
for a sequence search, which is a function of P,M,K, i.e.
M ′ = Ψ(P,M,K). To show M ′ = o(K ′), note that if
a sequence is contained in a record, every character in the
sequence must be contained in that record,

Ψ(P,M,K) ≤ Γ(P,m,K) = o(KP ) = o(K ′), (97)

where m = |{Uθ1 , · · · , UθM }|≤ M is the number of distinct
searched symbols. Therefore the asymptotic capacity of se-
quence search is 1− 1/N .

D. Proof of Proposition 1

Consider the even values of K as it approaches infinity
so that we have H(Wk(η)) = H(1/2) = 1 bit, i.e., each
message bit is marginally uniform. We prove the proposition
by contradiction. Suppose the asymptotic capacity is 1 − 1

N ,
namely, limK→∞

D
LH(1/2) =

(
1− 1

N

)−1
, and suppose the

bound (12) is tight for some sequence k1, k2, · · ·. Note that
message Wki corresponds to search set Ski . Then we have
the following equation.

lim
K→∞

1 +
1

N
+

1

N2
+ · · · = lim

K→∞

D

LH( 1
2 )

= lim
K→∞

D

L

(12)
= lim

K→∞
H(Wk1(η)) +

1

N
H(Wk2(η) |Wk1(η))

+
1

N2
H (Wk3(η) |Wk1(η),Wk2(η)) + . . . (98)

Therefore,

0 = lim
K→∞

1

N
(1−H(Wk2(η) |Wk1(η)))

+
1

N2
(1−H (Wk3(η) |Wk1(η),Wk2(η))) + · · · ,

which implies that

lim
K→∞

H (Wk2(η) |Wk1(η)) = 1, (99)

lim
K→∞

H (Wk3(η) |Wk1(η),Wk2(η)) = 1. (100)

Let us represent U1, U2, · · · , UK on an alphabet circle U
shown in Fig. 4.

Since Sk1 is a contiguous set of K/2 points on the circle,
without loss of generality it may be represented by the red
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Fig. 4: Alphabet circle

semi-circle. Wk1(η) and Wk2(η) are binary random variables.
So if limK→∞H (Wk2(η) |Wk1(η)) = 1, then

lim
K→∞

H (Wk2(η) |Wk1(η) = 0) = 1, (101)

lim
K→∞

H (Wk2(η) |Wk1(η) = 1) = 1. (102)

This is equivalent to, within Sk1 half of the points must be in
Sk2 and half of the points must be outside Sk2 , when K ap-
proaches infinity. Similar for the points outside Sk1 . Therefore,
without loss of generality, Sk2 is represented by the blue semi-
circle on the alphabet circle. Note that this divides the alphabet
circle into 4 parts, labeled as A,B,C,D, corresponding to
(Wk1(η),Wk2(η)) = (0, 0), (0, 1), (1, 1), (1, 0), respectively.
Note that each of these spans K/4 + o(K) points.

Since limK→∞H (Wk3(η) |Wk1(η),Wk2(η)) = 1, then

lim
K→∞

H (Wk3(η) | (Wk1(η),Wk2(η)) = (0, 0)) = 1, (103)

lim
K→∞

H (Wk3(η) | (Wk1(η),Wk2(η)) = (0, 1)) = 1, (104)

lim
K→∞

H (Wk3(η) | (Wk1(η),Wk2(η)) = (1, 1)) = 1, (105)

lim
K→∞

H (Wk3(η) | (Wk1(η),Wk2(η)) = (1, 0)) = 1. (106)

Consider (103), it is the sector of the U circle labeled A.
Within this sector Wk3(η) must be uniform, i.e., half of A
must be in Sk3 and half of A must be outside Sk3 . Similarly,
conditions (104), (105) and (106) imply that half of B, C,
D must be in Sk3 and half of B,C,D must be outside Sk3 .
But Sk3 is a contiguous semicircle, a continuous semi-circle
cannot overlap with half of each of A,B,C,D. Therefore we
have a contradiction. The contradiction means that either the
asymptotic capacity of OR search with special patterns is not
1− 1/N or Theorem 1 is not tight for this OR private search.

V. CONCLUDING REMARKS

We introduced the private search problem, which requires
PIR with dependent messages (DPIR). We derived a general
converse bound for DPIR, studied its asymptotic behavior,
and combined it with a known general achievability result
in order to characterize the asymptotic capacity of various
forms of private search, which include exact search, OR
search, AND search, NOT search and sequence search. We
also showed through an example that even asymptotic capacity
characterizations for private search are difficult for additionally
constrained message structures.
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We note that the sufficient condition in Theorem 3 is
applicable to T -colluding servers [17] or (N,T )-MDS coded
servers (T < N) [18], i.e., for DPIR with T -colluding servers
or (N,T )-MDS coded servers, if there exists an increasing
sequence ki that satisfies (15), then the asymptotic capacity is
1− T

N . The converse proof is similar to the proof of Theorem 3.
Following [17], [18], we can obtain a download lower bound
similar to Equation (34),

D ≥
(

1 +
T

N
+
T 2

N2
+ · · ·+ Tm−1

Nm−1

)
LH(w)

− TI(Wk2 ;Wk1)

N
− · · · −

Tm−1I
(
Wkm ;Wk[1:m−1]

)
Nm−1 .

(107)

With the method in Section IV-B, it is easily proven that

limµ→∞
∑m−1
l=1

T lI
(
Wkl+1

;Wk[1:l]

)
LH(w)N l

= 0. In terms of the
achievable scheme, one can use the scheme of [35] and set
the parameters Kc = 1, X = 0, T = T,B = 0, U = 0 for
T -colluding servers, and set parameters Kc = T,X = 0, T =
1, B = 0, U = 0 for (N,T )-MDS coded servers.

One future direction is the capacity of private search over
restricted search patterns discussed in section IV-D. Another
future direction is the capacity in non-asymptotic regime. In
contrast to the outer bound matching the achieving rate in the
asymptotic regime, there is a gap between the outer bound and
the achieving rate in the non-asymptotic regime. Take exact
search with P = 1 as an example, when there are only K = 2
messages, the result is trivial because W1 is a function of W2.
So there is no privacy for K = 2. Consider K = 3 and N = 2,
suppose the desired message is W1, an achievable scheme is
shown in Table II.

TABLE II: Achievable scheme

Server 1 Server 2
a1, b1 a2, b2
a3 + b2 a5 + b1
a4 + c2 a6 + c2
b4 + c3 b6 + c5

a7 + b6 + c5 a8 + b4 + c3

The “+” in the scheme means XOR operation. ai notates
W1(i), which is the i-th symbol of the first message. Similarly,
bi, ci notate W2(i) and W3(i). Based on the problem setting,
dependency only exists among ai, bi, ci. The correctness and
privacy of this scheme are inherited from the achievable
scheme of PIR [16] and the dependence.

In this scheme, on one hand due to the dependency among
ai, bi, ci, we achieve the rate R = 0.6617. On the other hand,
according to our outer bound (12), CPS(3, 1, 1, 2) ≤ 0.7337.
There is a gap between the achievable rate and the outer bound.
Bound (12) is an outer bound for general DPIR problems, and
Proposition 1 and this example show that the outer bound may
not be tight for private search. To close the gap, one might
need to improve the converse bound in the future. Note that
for N = 2,K = 3, the PIR capacity is 4/7 < 0.6617. It
shows that in the non-asymptotic regime, dependency among
messages can increase the capacity, which is different from
that in the asymptotic case.

VI. ACKNOWLEDGMENT

This work was supported in part by NSF grants CNS-
1731384, CCF-1907053 and by ONR grant N00014-18-1-
2057.

APPENDIX

A. Proof of (45)
Let f(p) = H2(p) = −p log2(p)−(1−p) log2(1−p). When

K →∞, 1
K−t → 0 and 1

K → 0. Since limK→∞ f
(

1
K−t

)
=

0, limK→∞ f
(

1
K

)
= 0 and both of them are differentiable,

L′Hôpital′s rule is applicable. Consider the derivative of f(p),

df

dp
= − log2 p−

p

p ln 2
+ log2(1− p) +

1− p
(1− p) ln 2

(108)

= log2(1− p)− log2 p = log2

1− p
p

. (109)

Let p = 1
K−t and q = 1

K . According to L′Hôpital′s rule,

lim
K→∞

f
(

1
K−t

)
f
(

1
K

) = lim
K→∞

df
dp

dp
dK

df
dq

dq
dK

(110)

= lim
K→∞

−1
(K−t)2 log2

1−p
p

−1
K2 log2

1−q
q

(111)

= lim
K→∞

−1
(K−t)2 log2(K − t− 1)

−1
K2 log2(K − 1)

. (112)

Since limK→∞

−1

(K−t)2
−1

K2

= 1 and limK→∞
log2(K−t−1)
log2(K−1)

= 1,
we obtain

lim
K→∞

f
(

1
K−t

)
f
(

1
K

) = 1. (113)

B. Proof of (55)
Let f(p) = H2(p) = −p log2(p) − (1 − p) log2(1 − p).

When K → ∞, (K−t−1)P
(K−t)P → 1 and (K−1)P

KP → 1. Since

limK→∞ f
(

(K−t−1)P
(K−t)P

)
= 0, limK→∞ f

(
(K−1)P
KP

)
= 0 and

both of them are differentiable, L′Hôpital′s rule is applicable.
Let p = (K−t−1)P

(K−t)P and q = (K−1)P
KP . According to L′Hôpital′s

rule,

lim
K→∞

f
(

(K−t−1)P
(K−t)P

)
f
(

(K−1)P
KP

) = lim
K→∞

df
dp

dp
dK

df
dq

dq
dK

(114)

= lim
K→∞

P (K−t−1)P−1(K−t)P−1

(K−t)2P log2
1−p
p

P (K−1)P−1KP−1

K2P log2
1−q
q

(115)

= lim
K→∞

P (K−t−1)P−1(K−t)P−1

(K−t)2P log2

(
(K−t)P

(K−t−1)P − 1
)

P (K−1)P−1KP−1

K2P log2

(
KP

(K−1)P − 1
) .

(116)

Since

lim
K→∞

P (K−t−1)P−1(K−t)P−1

(K−t)2P

P (K−1)P−1KP−1

K2P

= 1 (117)
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and

lim
K→∞

log2

(
(K−t)P

(K−t−1)P − 1
)

log2

(
KP

(K−1)P − 1
) (118)

L′Hôpital′s rule
= lim

K→∞

1(
(K−t)P

(K−t−1)P
−1

)
ln 2
· −P (K−t)P−1

(K−t−1)P+1

1(
KP

(K−1)P
−1

)
ln 2
· −PKP−1

(K−1)P+1

= 1,

(119)

we obtain

lim
K→∞

f
(

(K−t−1)P
(K−t)P

)
f
(

(K−1)P
KP

) = 1. (120)
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