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The Capacity of T -Private Information Retrieval
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Abstract—We consider the problem of T -Private Information
Retrieval with private side information (TPIR-PSI). In this
problem, N replicated databases store K independent messages,
and a user, equipped with a local cache that holds M mes-
sages as side information, wishes to retrieve one of the other
K − M messages. The desired message index and the side
information must remain jointly private even if any T of the
N databases collude. We show that the capacity of TPIR-PSI is(
1 + T

N
+ · · ·+

(
T
N

)K−M−1
)−1

. As a special case obtained by
setting T = 1, this result settles the capacity of PIR-PSI, an
open problem previously noted by Kadhe et al. We also consider
the problem of symmetric-TPIR with private side information
(STPIR-PSI), where the answers from all N databases reveal no
information about any other message besides the desired message.
We show that the capacity of STPIR-PSI is 1− T

N
if the databases

have access to common randomness (not available to the user)
that is independent of the messages, in an amount that is at least
T

N−T bits per desired message bit. Otherwise, the capacity of
STPIR-PSI is zero.

I. INTRODUCTION

The private information retrieval (PIR) problem investigates
the privacy of the contents downloaded from public databases.
In the classical form of PIR [1], a user wishes to, as efficiently
as possible, retrieve one of K messages that are replicated
across N non-colluding databases while preserving the privacy
of the desired message index. Since its first formulation by
Chor et al. in [1], the PIR problem has been studied extensively
in computer science and cryptography under both information-
theoretic and computational privacy constraints [2]–[6]. While
studies of PIR typically seek to optimize both the upload and
download costs, recently there has been a burst of activity
aimed at capacity characterizations for information-theoretic
PIR under the assumption of large message sizes, so that
the communication cost is dominated by the download cost
[7]–[12]. The capacity of PIR was defined in [9] as the
maximum number of bits of the desired message that can
be privately obtained per bit of total downloaded information
from all the servers. In order to summarize some of the
capacity results for PIR, let us define the function Ψ(A,B) =(
1 +A+A2 + · · ·+AB−1

)−1
for positive real number A

and positive integer B. Correspondingly, Ψ(A,∞) = 1 − A
for A < 1. The capacity of PIR was characterized in [9]
as CPIR = Ψ(1/N,K). The capacity of T -PIR, where the
privacy of the user’s desired message index must be protected
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against collusion among any set of up to T servers, was
characterized in [13] as CTPIR = Ψ(T/N,K). The capacity of
symmetric PIR (SPIR), where the user learns nothing about
the database besides his desired message, was shown in [14] to
be CSPIR = Ψ(1/N,∞), and the capacity of STPIR, with both
symmetric privacy and robustness against collusion among any
T servers, was characterized in [15] as CSTPIR = Ψ(T/N,∞).
A number of other variants of PIR have also been investigated,
such as PIR with MDS coded storage [12], multi-message PIR
[16], multi-round PIR [17], secure PIR [18], and PIR with side
information [19]–[29]. Especially relevant to this work is the
problem of PIR with side information.

The recent focus on the capacity of PIR with side infor-
mation started with the work on cache-aided PIR by Tandon
[19], where the user has enough local cache memory to store
a fraction r of all messages as side information. In this model,
the side information can be any function of the K messages
(subject to the storage constraint) and is globally known to
both the user and all the databases. The capacity for this setting
is characterized in [19] as Ψ(1/N,K)/(1− r).

Different from [19] which allows side information to be
an arbitrary function of the messages, the side information in
[20] (and in this paper) can only take the form of M full
messages cached by the user. Within this model there are
several interesting variations depending on the constraints on
the privacy of the side information.

• PIR-GSI, or PIR with global side information, implies
that the side information is globally known.

• PIR-SI, i.e., PIR with (non-private) side information,
corresponds to the case that the side information is not
globally known, but the privacy of the side information
need not be preserved.

• PIR-PSI, or PIR with private side information, refers to
the setting where the joint privacy of both the desired
message and the side information must be preserved. This
is the focus of the paper.

• PIR-SPSI, or PIR with separately private side informa-
tion, refers to the setting where the privacy of the desired
message and the privacy of side information must each be
separately preserved (although their joint privacy need not
be preserved). In Appendix A we provide some insights
into the capacity of PIR-SPSI.

Out of these four settings, PIR-GSI is rather trivial, and
PIR-SPSI has not been studied at all, perhaps because there
is insufficient practical motivation for such an assumption.
However, the remaining two variants, PIR-PSI and PIR-SI,
have indeed drawn much attention, starting with the work of
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Kadhe et al. in [20].
For PIR-SI with a single database (N = 1), Kadhe et al.

showed in [20] that the capacity is d K
M+1e

−1. The single-
database setting has seen rapid progress in various directions
[23]–[29]. However, PIR-SI with multiple databases turns out
to be considerably more challenging. In [20], Kadhe et al. pro-
vided an achievable scheme for PIR-SI with multiple databases
(N > 1), which achieves the rate Ψ(1/N, dK/(M + 1)e).
In spite of some progress in this direction [27], the capacity
of PIR-SI generally remains open1 for multiple databases. In
addition, the works in [21], [22] consider a different form of
side information instead of full messages.

For PIR-PSI with a single database, Kadhe et al. found in
[20] that the capacity is (K−M)−1. The capacity of PIR-PSI
with more than one database was left as an open problem in
[20]. Remarkably, neither a general achievable scheme nor a
converse was known in this case. It is this open problem that
motivates this work.

The first contribution of this work is to show that the
capacity of PIR-PSI is CPIR-PSI = Ψ(1/N,K − M), for an
arbitrary number of databases N , thus settling this open
problem. This allows us to completely order2 the four variants
of PIR with side information that are listed above, in terms
of their capacities as PIR-SI ≥ PIR-SPSI ≥ PIR-PSI = PIR-
GSI. Remarkably, all the inequalities can be strict for certain
parameters.

As a generalization, we show that the capacity of TPIR-
PSI, i.e., PIR-PSI where up to T databases may collude, is
CTPIR-PSI = Ψ(T/N,K −M). Evidently, the effect of private
side information on capacity is the same as if the number
of messages in TPIR was reduced from K to K −M [13].
Similar to the case with non-colluding databases, this is also
the capacity if the side information is globally known to all
databases as well.

As the second contribution of this work, we characterize
the capacity of STPIR-PSI, i.e., PIR with private side infor-
mation with symmetric privacy and robustness against any T -
colluding servers. We show CTPIR-PSI = Ψ(T/N,∞), provided
that the databases have access to common randomness (not
available to the user) in the amount that is at least T/(N −T )
bits per queried message bit. Otherwise, the capacity of
STPIR-PSI is zero. Note that this is identical to the capacity
of STPIR with no side information [15].

The remainder of this paper is organized as follows. Section
II presents the problem statements. Section III presents the
main results, i.e., the capacity characterizations of TPIR-
PSI and STPIR-PSI. The proofs of the capacity results are
presented in Section IV and Section V, and we conclude with
Section VI.

Notation: We use bold font for random variables to dis-
tinguish them from deterministic variables, that are shown in

1The converse in [27] does not cover the scope of PIR-SI, because the
privacy condition assumed in [27] is not a necessary condition for PIR-SI
schemes.

2Based on progressively tighter privacy constraints, it is already immedi-
ately obvious that in terms of their capacities, the settings can be partially
ordered as PIR-SI ≥ PIR-SPSI ≥ PIR-PSI, and PIR-SI≥ PIR-GSI. The main
result of this work shows that PIR-PSI has the same capacity as PIR-GSI,
thus allowing a complete ordering.

normal font. For integers z1 < z2, [z1 : z2] represents the
set {z1, z1 + 1, · · · , z2} and (z1 : z2) represents the vector
(z1, z1+1, · · · , z2). The compact notation [z] represents [1 : z]
for positive integer z. For random variables Wi, i = 1, 2, . . . ,
and a set of positive integers S = {s1, s2, · · · , sn}, where
s1 < s2 < · · · < sn, the notation W S represents the vector
(Ws1 ,Ws2 , · · · ,Wsn). For a matrix G and a vector S, the
notation G[S, :] represents the submatrix of G formed by
retaining only the rows corresponding to the elements of the
vector S. For a matrix G, its transpose is denoted as G′. Fq
represents the finite field of size q.

II. PROBLEM STATEMENTS

A. TPIR-PSI: T -Private Information Retrieval with Private
Side Information

The TPIR-PSI problem is parametrized by (K,M,N, T ).
Consider K independent messages W [K] = (W1, · · · ,WK),
each containing L independent and uniform bits, i.e., their
entropy satisfies

H(W1, · · · ,WK) = H(W1) + · · ·+H(WK), (1)
H(W1) = · · · = H(WK) = L. (2)

There are N databases and each database stores all K mes-
sages W1, · · · ,WK . A user is equipped with a local cache
and has M (M < K) messages as side information. Let
S = {i1, i2, · · · , iM} be M distinct indices chosen uniformly
from [K]. These M cached messages are represented as
WS = (Wi1 , · · · ,WiM ). S is not known to the databases.
A user wishes to retrieve WΘ, where Θ is a message index
uniformly chosen from [K] \ S, as efficiently as possible,
while revealing no information about (Θ,S) to any colluding
subsets of up to T out of the N databases. Note the following
independence,

H(Θ,S,W1, · · · ,WK) = H(Θ,S) +

K∑
i=1

H(Wi). (3)

In order to retrieve WΘ, the user generates N queries
Q

[Θ,S]
1 , · · · ,Q[Θ,S]

N with the knowledge of (Θ,S,WS).
Since the queries are generated with no knowledge of the other
K −M messages, the queries must be independent of them,

I
(
Θ, S,WS ,Q

[Θ,S]
1 , · · · ,Q[Θ,S]

N ;W [K]\S

)
= 0. (4)

The user sends query Q
[Θ,S]
n to the nth database and in

response, the nth database returns an answer A
[Θ,S]
n which

is a deterministic function of Q[Θ,S]
n and W [K],

H
(
A[Θ,S]
n | Q[Θ,S]

n ,W1, · · · ,WK

)
= 0. (5)

Upon collecting the answers from all N databases, the user
must be able to decode the desired message WΘ based on the
queries and side information,

[Correctness] H
(
WΘ | A[Θ,S]

[N ] ,Q
[Θ,S]
[N ] ,WS ,S,Θ

)
= 0. (6)

To satisfy the user-privacy constraint that any T colluding
databases learn nothing about (Θ,S), the information avail-
able to any T databases (queries, answers and stored messages)
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must be independent of (Θ,S). 3 Let T be any subset of
[1 : N ], of cardinality |T | = T . Q[Θ,S]

T represents the vector of
queries corresponding to Q

[Θ,S]
n , n ∈ T . A[Θ,S]

T is defined as
the answer vector corresponding to A

[Θ,S]
n , n ∈ T . To satisfy

the T -privacy requirement we must have ∀T ⊂ [1 : N ], |T | =
T ,

[User privacy] I
(
Θ,S;Q

[Θ,S]
T ,A

[Θ,S]
T ,W [K]

)
= 0. (7)

A TPIR-PSI scheme is called feasible if it satisfies the
correctness constraint (6) and the user-privacy constraint (7).
For a feasible scheme, the TPIR-PSI rate indicates asymptot-
ically how many bits of desired information are retrieved per
downloaded bit, and is defined as follows.

RTPIR-PSI , lim
L→∞

L

D
, (8)

where D is the expected (over all Θ, S, W[K] and random
queries) total number of bits downloaded by the user from
all the databases. The capacity, CTPIR-PSI, is the supremum of
RTPIR-PSI over all feasible schemes.

B. STPIR-PSI: Symmetric T -Private Information Retrieval
with Private Side Information

In symmetric T -colluding private information retrieval, an
additional constraint is imposed: database privacy, which
means that the user does not learn any information about W[K]

beyond the retrieved message, WΘ, and the side information,
WS . To facilitate database privacy, suppose the databases
share a common random variable U that is not known to
the user. It has been shown that without such common
randomness, symmetric PIR is not feasible when there is
more than one message [6], [14]. The common randomness
is independent of the messages, the desired messages index,
and the side information index, so that

H (Θ,S,W1, · · · ,WK ,U)

= H (Θ,S) +

K∑
i=1

H (Wi) +H(U). (9)

The answering string A
[Θ,S]
n is a deterministic function of

Q
[Θ,S]
n , W [K] and common randomness U ,

H
(
A[Θ,S]
n | Q[Θ,S]

n ,W1, · · · ,WK ,U
)

= 0. (10)

The correctness condition is the same as (6). The user-privacy
condition is ∀T ⊂ [1 : N ], |T | = T ,

[User privacy] I
(
Θ,S;Q

[Θ,S]
T ,A

[Θ,S]
T ,W[K],U

)
= 0. (11)

3Note that the joint privacy of (Θ, S) is a stronger
constraint than the marginal privacy of each of Θ and S,
i.e., I(Θ, S;Q

[Θ,S]
T ,A

[Θ,S]
T ,W [K]) = 0 implies both

I(Θ;Q
[Θ,S]
T ,A

[Θ,S]
T ,W [K]) = 0 and I(S;Q

[Θ,S]
T ,A

[Θ,S]
T ,W [K]) =

0. However, the reverse is not true, i.e., even if both
I(Θ;Q

[Θ,S]
T ,A

[Θ,S]
T ,W [K]) = 0 and I(S;Q

[Θ,S]
T ,A

[Θ,S]
T ,W [K]) =

0, this does not imply that I(Θ, S;Q
[Θ,S]
T ,A

[Θ,S]
T ,W [K]) = 0.

Database privacy requires that the user learns nothing about
W

(Θ,S)
= W [K]\({Θ}∪S), i.e., messages other than his

desired message and the side information. Therefore,

[DB privacy] I
(
W (Θ,S);Q

[Θ,S]

[N ] ,A
[Θ,S]

[N ] ,Θ,S,WS

)
= 0. (12)

An STPIR-PSI scheme is called feasible if it satisifes the
correctness constraint (6), the user-privacy constraint (11) and
the database-privacy constraint (12). For a feasible scheme, the
STPIR-PSI rate indicates how many bits of desired information
are retrieved per downloaded bit. The capacity, CSTPIR-PSI, is the
supremum of rates over all feasible STPIR-PSI schemes.

III. MAIN RESULTS

The following theorem presents our first result, the capacity
of TPIR-PSI.

Theorem 1. For the TPIR-PSI problem with K messages, N
databases and M (M < K) side information messages, the
capacity is

CTPIR-PSI =

(
1 +

T

N
+

(
T

N

)2

+ · · ·+
(
T

N

)K−M−1)−1
= Ψ(T/N,K −M), (13)

where Ψ(A,B) =
(
1 +A+A2 + · · ·+AB−1

)−1
.

The following observations place Theorem 1 in perspective.
Remark 1. The expression CTPIR-PSI equals the capacity of TPIR
with K −M messages [13]. Evidently, the impact of private
side information is equivalent to reducing the effective number
of messages from K to K −M .
Remark 2. Remarkably, the capacity expression in (13)
matches the capacity for the setting where the side informa-
tion is assumed to be globally known, i.e., if the M side
information messages are globally known, then the capacity
is also CTPIR-GSI = Ψ(T/N,K − M). This can be seen as
follows. The achievable scheme is the TPIR scheme of [13]
after the cached messages are eliminated. To prove the con-
verse by contradiction, suppose the capacity is greater than
Ψ(T/N,K − M). Then there is a scheme Π that achieves
a larger rate than Ψ(T/N,K − M) in the presence of the
M globally known messages. Consider a TPIR problem with
K − M messages and no side information. From [13] we
know that its capacity is Ψ(T/N,K−M). It can be assumed
that there are M globally known dummy messages. With this
globally known side information, the user can use scheme Π
to retrieve the desired message while achieving a rate larger
than Ψ(T/N,K −M), thus exceeding the capacity of TPIR,
i.e., creating a contradiction. Therefore, the capacity of TPIR
with globally known side information is Ψ(T/N,K −M).
Remark 3. It is worthwhile to place the previous remark in
perspective with the capacity results in [19], where it is also
assumed that the side information is globally available. CTPIR-GSI

is in general less than the capacity expression found in [19].
The reason is that CTPIR-GSI is the capacity for a setting where
the side information can only be M full messages (excluding
the desired one). However, in [19], the side information is
allowed to be any function of all messages. The relaxed
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setting of [19] should allow a higher capacity in general.
For example, if T = 1 and the amount of side information
is ML bits, then the capacity result of [19] corresponds to
the expression Ψ(1/N,K)/

(
1− M

K

)
. It is easy to verify that

CTPIR-GSI = Ψ(1/N,K − M) < Ψ(1/N,K)/
(
1− M

K

)
when

N ≥ 2,K ≥ 2,M ∈ [K − 1]. Aside from this superficial
distinction, it is notable that the essential insight in both
settings is the same. The best strategy in the setting of [19] is to
cache M

K portion of each message and use the protocol of the
original PIR scheme [9] to download the uncached portion.
What this means is that if the side information is globally
known, then there is nothing better than removing the side
information from the effective messages. The expression for
CTPIR-GSI reflects the same insight — the role of globally known
side information is to reduce the effective number of messages
by M . The authors of [21] also give a similar explanation for
the scheme in [19].

Remark 4. Now we can completely order the four variants of
PIR with side information, in terms of their capacities as PIR-
SI ≥ PIR-SPSI ≥ PIR-PSI = PIR-GSI. Remarkably, all the
inequalities can be strict for certain parameters. For example,
as will be shown in Appendix A, suppose we have K = 6
messages stored at N = 1 database, and M = 2 of these
messages are available to the user as side-information. Then
for this example, the capacity of PIR-SI is 1/2 while the
capacity of PIR-SPSI is no more than 1/3, so that PIR-SI
> PIR-SPSI. Now suppose we have K = 6 messages stored
at N = 1 database, and M = 1 of these messages is available
to the user as side-information. Then for this example, the
capacity of PIR-SPSI is 1/3 while the capacity of PIR-PSI is
only 1/5, so that PIR-SPSI > PIR-PSI.

Our second result is the capacity of STPIR-PSI, presented
in the following theorem.

Theorem 2. For the STPIR-PSI problem with K ≥ 2 mes-
sages, N databases and M (M < K) side information
messages, the capacity is

CSTPIR-PSI =


1, if M = K − 1,

1− T
N , if M < K − 1 and ρ ≥ T

N−T ,

0, otherwise,
(14)

where ρ = H(U)
L is the amount of common randomness

available to the databases, normalized by the message size.

The following observations are in order.

Remark 5. When there is only K = 1 message, or when there
are M = K − 1 side information messages, the database-
privacy constraint is satisfied trivially, so STPIR reduces to the
TPIR setting and the capacity is 1. Note that for symmetric
PIR without side information, when K ≥ 2, the common
randomness is necessary for feasibility. However, for STPIR-
PSI, if there are M = K − 1 side information messages, then
common randomness is not needed.

Remark 6. When K ≥ 2 and M < K − 1, then CSTPIR-PSI

only depends on the number of databases N , the colluding
parameter T , and the amount of common randomness. It is

independent of the number of messages K and the number of
side information messages M .
Remark 7. The capacity of STPIR-PSI is strictly smaller than
the capacity of TPIR-PSI, which means that the additional
requirement of preserving database privacy strictly penalizes
the capacity. However, the penalty vanishes in the regime of
large number of messages, i.e., CTPIR-PSI > CSTPIR-PSI for any finite
K and CTPIR-PSI → CSTPIR-PSI when K → ∞. This observation
also holds for the case without side information.
Remark 8. CSTPIR-PSI is equal to the capacity of STPIR without
side information, which is characterized in [30]. Furthermore,
the capacity result remains the same even if the side informa-
tion is globally known.4 Thus, utilizing the private or globally
known side information does not help improve the capacity.

IV. PROOF OF THEOREM 1
A. Achievability

The backbone of the achievable scheme for TPIR-PSI with
parameters (K,M,N, T ) is the achievable scheme of TPIR
[13]. We inherit the steps of the query structure construction
and query specialization. The novel element of the achievable
scheme is query redundancy removal based on the side infor-
mation. To illustrate how this idea works, we present one toy
example with (K,M,N, T ) = (3, 2, 3, 2), and then generalize
it to arbitrary (K,M,N, T ).

1) Example with (K,M,N, T ) = (3, 2, 3, 2): Let us start
with the case without side information (K,M,N, T ) =
(3, 0, 3, 2), i.e., there are 3 messages, 3 databases and any
2 of them can collude. Following the construction of [13],
let each message consist of L = NK = 27 symbols from
a finite field Fq that is large enough so that a systematic
(28, 19) maximum distance separable (MDS) code exists. The
MDS property implies that any 19 out of the 28 codeword
symbols is sufficient to recover all 19 information symbols. A
systematic code is a code in which the information symbols
are embedded in the codeword symbols [31]. According to the
query structure construction and query specialization for TPIR
[13], the messages W1,W2,W3 ∈ F27

q are 27 × 1 column
vectors and let Y1,Y2,Y3 ∈ F27×27

q represent random matrices
chosen privately by the user, independently and uniformly
from all 27× 27 full-rank matrices over Fq . Let Ge×f denote
the generator matrix of an (e, f) MDS code (e.g., a Reed
Solomon code), for some integers e, f . The generator matrices
need not be systematic or random, and may be globally known.
Define the 27×1 column vectors a(1:27), b(1:27), c(1:27) ∈ F27

q

as follows.

a(1:27) = Y1W1, (15)
b(1:18) = G18×12Y2[(1 : 12), :]W2, (16)
c(1:18) = G18×12Y3[(1 : 12), :]W3, (17)
b(19:27) = G9×6Y2[(13 : 18), :]W2, (18)
c(19:27) = G9×6Y3[(13 : 18), :]W3, (19)

where Y2[(1 : 18), :] and Y3[(1 : 18), :] are 18 × 27 matrices
comprised of the first 18 rows of Y2 and Y3, respectively.

4The explanation is similar to that for TPIR with globally known side
information as in Remark 2.
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Note that the same generator matrix G18×12 is used in (16)
and (17), and the same generator matrix G9×6 is used in (18)
and (19).

The downloaded symbols from each database are repre-
sented in Table I. We use DBi to represent the ith database.
It correctly recovers the queried message and maintains user
privacy even if 2 databases collude. The achieved rate is
RTPIR = 9/19, namely, in this scheme the user recovers 9
desired symbols from a total of 19 downloads symbols from
each database.

TABLE I
ACHIEVABLE SCHEME OF TPIR [13]

DB1 DB2 DB3

a1,a2,a3,a4 a5,a6,a7,a8 a9,a10,a11,a12

b1, b2, b3, b4 b5, b6, b7, b8 b9, b10, b11, b12
c1, c2, c3, c4 c5, c6, c7, c8 c9, c10, c11, c12
a13 + b13 a15 + b15 a21 + b17
a14 + b14 a16 + b16 a22 + b18
a17 + c13 a19 + c15 a23 + c17
a18 + c14 a20 + c16 a24 + c18
b19 + c19 b21 + c21 b23 + c23
b20 + c20 b22 + c22 b24 + c24

a25 + b25 + c25 a26 + b26 + c26 a27 + b27 + c27

Now let us consider the case with side information
(K,M,N, T ) = (3, 2, 3, 2), i.e., 2 of the messages are known
to the user as side information. Assume the user knows W2

and W3 as side information and wishes to retrieve W1. He
does not need to download individual symbols of W2,W3, or
the linear combinations comprised of only W2,W3 symbols,
i.e., bi, ci, 1 ≤ i ≤ 12 and bj + cj , 19 ≤ j ≤ 24 in Table I.
Therefore, 10 redundant symbols may be reduced from each
database. Let us take the step of query redundancy removal.
The idea is that the user asks each database to encode the
19 original downloaded symbols with a systematic (28, 19)
MDS code and downloads only the 9 linear combinations cor-
responding to the non-systematic part, called parity symbols.
Formally, let Gse×f denote the generator matrix of a systematic
(e, f) MDS code. The generator matrix does not need to
be random, and it may be globally known. For i = 1, 2, 3,
denote by vector Xi ∈ F19

q the symbols downloaded from DBi
after the query structure construction and query specialization
(symbols in the DBi column in Table I). The user asks
each database to encode Xi with a systematic (28, 19) MDS
code generator matrix Gs28×19 = [V19×9 | I19×19]

′, where
I19×19 is the identity matrix, and downloads only the 9 linear
combinations corresponding to the parity part, V ′19×9Xi.

The correctness constraint is satisfied because of the
property of MDS code and the correctness of the original
TPIR scheme. Given (bi)i∈[12], (ci)i∈[12], (bi + ci)i∈[19:24],
V ′19×9X1, V ′19×9X2 and V ′19×9X3, the user is able to decode
X1, X2 and X3, which constitute the original TPIR scheme.
The privacy is essentially inherited from the original PIR
scheme and the fact that the MDS code is fixed a priori, i.e.,
it does not depend on (Θ,S). Thus, the rate achieved with
private side information is RTPIR-PSI = 27/27 = 1 which gives
a lower bound on the capacity.

2) Arbitrary (K,M,N, T ): Scheme description. For the
sake of completeness, let us briefly introduce the original TPIR

achievable scheme in [13]. In this scheme, the message is
L = NK symbols from a large enough finite field Fq , and the
normalized total download is 1 + T

N + · · · + ( TN )K−1. It has
two key steps: 1) query structure construction and 2) query
specialization.

1) Query Structure Construction: Construct the query struc-
ture. After this step, the query of each database is comprised
of K layers. Over the kth layer, the query symbols are in the
form of sums of k message symbols, each from one distinct
message, called k-sum. There are

(
K
k

)
possible “types” of

k-sums and (N − T )k−1TK−k distinct instances5 of each
type of k-sum in kth layer. So, the total number of elements
contained in layer k is

(
K
k

)
(N − T )k−1TK−k. Therefore, the

total number of symbols to be downloaded from each database
is
∑K
k=1

(
K
k

)
(N−T )k−1TK−k. This structure has two proper-

ties: symmetry across databases and message symmetry within
the query from each database. Symmetry across databases
means that the queries among the databases have the same
structure (i.e., the same form of k-sums). Message symmetry
implies that within the query of each database, any set of M
messages determines the same number of k-sums, 1 ≤ k ≤M .

2) Query Specialization: Map the message symbols to the
symbols in the query structure. This step is to ensure the
correctness and privacy.

Now we are ready to present the achievable scheme for arbi-
trary (K,M,N, T ). First do query structure construction and
query specialization without considering the side information,
and denote the scheme by Π. Then do query redundancy re-
moval based on the side information. Due to symmetry across
databases and message symmetry within the query from each
database, regardless of the realization of side information, the
number of queried symbols and the number of known symbols
(based on the side information) in each query are constants.
For each database, let p1 denote the number of symbols to be
downloaded in Π. Out of these p1 symbols, let p2 (p2 < p1)
denote the number of user known symbols. Denote by vector
Xi ∈ Fp1q the symbols downloaded from DBi in Π. For each
database, use a systematic (2p1 − p2, p1) MDS code with
generator matrix Gs(2p1−p2)×p1 =

[
Vp1×(p1−p2) | Ip1×p1

]′
to

encode the p1 symbols into 2p1 − p2 symbols, of which p1
are systematic, and download only the p1−p2 parity symbols,
V ′p1×(p1−p2)Xi.

Note that the user does not need to know the realization
of side information S or WS in order to construct the
queries. This is because the systematic MDS code in the query
redundancy removal does not depend on S or WS . During the
decoding, S and WS are only used after the answers from the
databases are collected. Therefore, the privacy of this TPIR-
PSI scheme is inherited from the privacy of the original TPIR
scheme. Correctness follows from the MDS property because
in addition to the p1 − p2 downloaded symbols from DBi,
i.e., V ′p1×(2p1−p2)Xi, the user provides the p2 symbols that
he already knows, to obtain a total of p1 symbols from the
MDS code. Since any p1 symbols from an MDS code suffice
to recover the original p1 symbols, the user recovers Xi. Then

5The term (N−T )k−1TK−k comes from the undesired message exploita-
tion step (Step 4) of achievability in [13] and can be verified recursively. A
detailed analysis of a similar flavor can be found in [9].
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the correctness is inherited from the correctness of the original
TPIR scheme. All that remains is to calculate the rate achieved
by this scheme.

Rate calculation. Consider the scheme Π, the total down-
loaded symbols from each database p1 =

∑K
k=1

(
K
k

)
(N −

T )k−1TK−k. The next step is to calculate, out of these p1
symbols, how many are already known to the user based on
his side information. Suppose the user knows the M messages
Wi1 , · · · ,WiM , {i1, · · · , iM} ∈ [K] as side information
beforehand. Thus the user knows all linear combinations that
are comprised of symbols from these M messages. In terms
of layer k (k ≤ M), the user knows all the instances of k-
sum that contain only symbols Wj1 ,Wj2 , · · · ,Wjk , where
{j1, j2, · · · , jk} ⊂ {i1, · · · , iM}. So the total number of
symbols known to the user corresponding to each database
is p2 =

∑M
k=1

(
M
k

)
(N − T )k−1TK−k. Notice that p1 can be

simplified as,

p1 =

K∑
k=1

(N − T )k−1TK−k
(
K

k

)
(20)

=

∑K
k=0(N − T )kTK−k

(
K
k

)
− TK

N − T
(21)

=
NK − TK

N − T
. (22)

And p2 can be simplified as,

p2 =

M∑
k=1

(N − T )k−1TK−k
(
M

k

)
(23)

= TK−M
M∑
k=1

(N − T )k−1TM−k
(
M

k

)
(24)

=
TK−M (NM − TM )

N − T
. (25)

From each database the number of downloaded symbols of
desired messages can be calculated as,

m =

K∑
k=1

(N − T )k−1TK−k
(
K − 1

k − 1

)
= NK−1. (26)

Therefore, the rate achieved is

RTPIR-PSI =
Nm

N(p1 − p2)
(27)

=
NK−1(N − T )

(NK − TK)− TK−M (NM − TM )
(28)

=
1− T

N

1− ( TN )K−M
(29)

=

(
1 +

T

N
+ · · ·+

(
T

N

)K−M−1)−1
. (30)

This gives a lower bound on the capacity of TPIR-PSI, thus
completing the proof of achievability for Theorem 1.

B. Converse

Let S be a set whose elements are all possible realizations
of S, i.e., S = {S

∣∣ S ⊂ [K], |S| = M}. We will need the
following lemmas.

Lemma 1. For all S1 ∈ S , θ ∈ [K] \ S1, S2 ⊆ [K] \ S1,
and T ⊂ [N ], |T | = T , given S = S1,Θ = θ, A[Θ,S]

T ↔(
Q

[Θ,S]
T ,WS1∪S2

)
↔ Q

[Θ,S]
[N ]\T is a Markov chain.

Proof. In this proof, to be convenient, denote E1 = S1 ∪ S2

and E2 = [K] \ (S1 ∪ S2). It is equivalent to prove

I
(
A

[Θ,S]
T ;Q

[Θ,S]
[N ]\T | Q

[Θ,S]
T ,WE1 ,Θ = θ,S = S1

)
= 0.

By the chain rule of mutual information,

I
(
A

[Θ,S]
T ,WE2 ;Q

[Θ,S]
[N ]\T | Q

[Θ,S]
T ,WE1 ,Θ = θ,S = S1

)
= I

(
A

[Θ,S]
T ;Q

[Θ,S]
[N ]\T | Q

[Θ,S]
T ,WE1 ,Θ = θ,S = S1

)
+ I

(
WE2 ;Q

[Θ,S]
[N ]\T | A

[Θ,S]
T ,Q

[Θ,S]
T ,WE1 ,Θ = θ,S = S1

)
= I

(
WE2 ;Q

[Θ,S]
[N ]\T | Q

[Θ,S]
T ,WE1 ,Θ = θ,S = S1

)
+ I

(
A

[Θ,S]
T ;Q

[Θ,S]
[N ]\T | Q

[Θ,S]
T ,W[K],Θ = θ,S = S1

)
.

Therefore,

I
(
A

[Θ,S]
T ;Q

[Θ,S]

[N ]\T | Q
[Θ,S]
T ,WE1 ,Θ = θ,S = S1

)
= I

(
WE2 ;Q

[Θ,S]

[N ]\T | Q
[Θ,S]
T ,WE1 ,Θ = θ,S = S1

)
+ I

(
A

[Θ,S]
T ;Q

[Θ,S]

[N ]\T | Q
[Θ,S]
T ,W[K],Θ = θ,S = S1

)
− I

(
WE2 ;Q

[Θ,S]

[N ]\T | A
[Θ,S]
T ,Q

[Θ,S]
T ,WE1 ,Θ = θ,S = S1

)
.

(31)

Consider the first RHS mutual information term in (31),

I
(
WE2 ;Q

[Θ,S]
[N ]\T | Q

[Θ,S]
T ,WE1 ,Θ = θ,S = S1

)
= I

(
WE2 ;Q

[Θ,S]
[N ] ,WS1∪S2 ,Θ = θ,S = S1

)
− I

(
W[K]\(S1∪S2);Q

[Θ,S]
T ,WE1 ,Θ = θ,S = S1

)
(32)

= 0, (33)

where (33) holds because of (1) and (4). The second RHS
mutual information term in (31) satisfies

I
(
A

[Θ,S]
T ;Q

[Θ,S]
[N ]\T | Q

[Θ,S]
T ,W[K],Θ = θ,S = S1

)
= 0

because of (5). At last, the RHS negative mutual information
term in (31) must also be zero because the LHS mutual
information cannot be negative. Thus

I
(
A

[Θ,S]
T ;Q

[Θ,S]
[N ]\T | Q

[Θ,S]
T ,WE1 ,Θ = θ,S = S1

)
= 0.

Lemma 2. For all S ∈ S, θ, θ′ ∈ [K]\S, and T ⊂ [N ], |T | =
T ,

H
(
A

[Θ,S]
T | Q[Θ,S]

T ,WΘ,WS ,Θ = θ,S = S
)

= H
(
A

[Θ,S]
T | Q[Θ,S]

T ,WΘ,WS ,Θ = θ′,S = S
)
, (34)

H
(
A

[Θ,S]
T | Q[Θ,S]

T ,WS ,Θ = θ,S = S
)

= H
(
A

[Θ,S]
T | Q[Θ,S]

T ,WS ,Θ = θ′,S = S
)
. (35)
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Proof. It follows from the user-privacy constraint (11) and
the non-negativity of mutual information, that for all S ∈ S,
T ⊂ [N ], |T | = T

I
(
Θ;Q

[Θ,S]
T ,A

[Θ,S]
T ,W[K] | S = S

)
= 0, (36)

which implies that ∀θ, θ′ ∈ [K] \ S,

H
(
Q

[Θ,S]
T ,A

[Θ,S]
T ,Wθ,WS | Θ = θ,S = S

)
= H

(
Q

[Θ,S]
T ,A

[Θ,S]
T ,Wθ,WS | Θ = θ′,S = S

)
, (37)

H
(
Q

[Θ,S]
T ,Wθ,WS | Θ = θ,S = S

)
= H

(
Q

[Θ,S]
T ,Wθ,WS | Θ = θ′,S = S

)
. (38)

Subtracting (38) from (37) yields (34). Equation (35) is
similarly obtained.

Before presenting the general converse, let us start with
a simple example (K,M,N, T ) = (3, 1, 3, 2) for ease of
exposition.

1) Converse for (K,M,N, T ) = (3, 1, 3, 2): The total
download is bounded as,

D ≥ H(A
[Θ,S]
[N ] | Q

[Θ,S]
[N ] ,WS ,Θ,S) (39)

≥ min
S∈S

θ∈[K]\S

H(A
[Θ,S]
[N ] | Q

[Θ,S]
[N ] ,WS ,Θ = θ,S = S). (40)

We will derive a lower bound on the entropy in (40) that holds
for all (θ, S).

For (K,M,N, T ) = (3, 1, 3, 2), without loss of generality
suppose message W1 is known as side information and W2

is desired. Let S = {1}. We bound the total download as,

D ≥ H
(
A

[Θ,S]
[3] | Q[Θ,S]

[3] ,W1,Θ = 2,S = S
)

(41)

(6)
= H

(
A

[Θ,S]
[3] ,W2 | Q[Θ,S]

[3] ,W1,Θ = 2,S = S
)

(42)

= H
(
W2 | Q[Θ,S]

[3] ,W1,Θ = 2,S = S
)

+H
(
A

[Θ,S]
[3] | Q[Θ,S]

[3] ,W[2],Θ = 2,S = S
)

(43)

≥ L+H
(
A

[Θ,S]
[2] | Q[Θ,S]

[3] ,W[2],Θ = 2,S = S
)

(44)

= L+H
(
A

[Θ,S]
[2] | Q[Θ,S]

[2] ,W[2],Θ = 2,S = S
)

(45)

= L+H
(
A

[Θ,S]
[2] | Q[Θ,S]

[2] ,W[2],Θ = 3,S = S
)

(46)

≥ L+H
(
A

[Θ,S]
[2] | Q[Θ,S]

[3] ,W[2],Θ = 3,S = S
)

(47)

where (44) holds because of (2), (4), the chain rule and non-
negativity of entropy. Equation (45) holds due to Lemma 1.
Equation (46) holds because of Lemma 2. Similarly,

D ≥ L+H
(
A

[Θ,S]
{2,3} | Q

[Θ,S]
[3] ,W[2],Θ = 3,S = S

)
, (48)

D ≥ L+H
(
A

[Θ,S]
{1,3} | Q

[Θ,S]
[3] ,W[2],Θ = 3,S = S

)
. (49)

Adding (47), (48), (49) and divided by 3 we have

D ≥ L+
1

3
H
(
A

[Θ,S]
{1,2} | Q

[Θ,S]
[3] ,W[2],Θ = 3,S = S

)
+

1

3
H
(
A

[Θ,S]
{2,3} | Q

[Θ,S]
[3] ,W[2],Θ = 3,S = S

)

+
1

3
H
(
A

[Θ,S]
{1,3} | Q

[Θ,S]
[3] ,W[2],Θ = 3,S = S

)
(50)

≥ L+
2

3
H
(
A

[Θ,S]
[3] | Q[Θ,S]

[3] ,W[2],Θ = 3,S = S
)

(51)

= L+
2

3
L (52)

=
5

3
L. (53)

Here (51) follows from Han’s inequality, and (52) holds
because from

(
W[2],A

[Θ,S]
[3] ,Q

[Θ,S]
[3] ,Θ = 3,S = S

)
one can

recover W3 with vanishing probability of error. Since the
same argument holds for all realizations (Θ, S) = (θ, S), this
gives us the upper bound on the capacity of TPIR-PSI with
(K,M,N, T ) = (3, 1, 3, 2) as CTPIR-PSI ≤ 3

5 .
2) Converse for Arbitrary (K,M,N, T ): If M = K − 1,

it is trivial that 1 is an upper bound, since any rates cannot be
larger than 1. So let us assume that M < K−1. For compact
notation, let us define

D(K,S, θ, V ) , H
(
A

[Θ,S]
[N ] | Q[Θ,S]

[N ] ,W[V ],Θ = θ,S = S
)
.

Here W[V ] = (W1,W2, · · · ,WV ) represents the messages
that appear in the conditioning. Also, define an arbitrary
T ⊂ [N ] with cardinality |T | = T which represents the set of
indices of colluding databases.

Without loss of generality, suppose messages W1, · · · ,WM

are known as side information and WM+1 is desired. Then,
we have

D(K, [M ],M + 1,M)

= H(A
[Θ,S]
[N ] |Q

[Θ,S]
[N ] ,W[M ],Θ = M + 1,S = [M ])

(6)
= H

(
A

[Θ,S]
[N ] ,WΘ | Q[Θ,S]

[N ] ,W[M ],Θ = M + 1,S = [M ]
)

= H
(
WΘ | Q[Θ,S]

[N ] ,W[M ],Θ = M + 1,S = [M ]
)

+H
(
A

[Θ,S]
[N ] | Q[Θ,S]

[N ] ,W[M+1],Θ = M + 1,S = [M ]
)
.

Note that

H
(
WΘ | Q[Θ,S]

[N ] ,W[M ],Θ = M + 1,S = [M ]
)

= L

since messages are independent, and queries are independent
of the messages. And

H
(
A

[Θ,S]

[N ] | Q[Θ,S]

[N ] ,W[M+1],Θ =M + 1,S = [M ]
)

≥ H
(
A

[Θ,S]
T | Q[Θ,S]

[N ] ,W[M+1],Θ =M + 1,S = [M ]
)

(54)

= H
(
A

[Θ,S]
T | Q[Θ,S]

T ,W[M+1],Θ =M + 1,S = [M ]
)

(55)

= H
(
A

[Θ,S]
T | Q[Θ,S]

T ,W[M+1],Θ =M + 2,S = [M ]
)

(56)

≥ H
(
A

[Θ,S]
T | Q[Θ,S]

[N ] ,W[M+1],Θ =M + 2,S = [M ]
)
, (57)

where equation (55) holds because of Lemma 1. Equation (56)
holds because of Lemma 2. There are a total of

(
N
T

)
such

subsets T . Writing (57) for all such subsets, adding those
inequalities and divided by

(
N
T

)
, we obtain

D(K, [M ],M + 1,M)

≥ T
N
H
(
A

[Θ,S]
[N ] | Q[Θ,S]

[N ] ,W[M+1],Θ = M + 2,S = [M ]
)
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+ L (58)

=L+
T

N
D(K, [M ],M + 2,M + 1), (59)

where (58) follows from Han’s inequality. Proceeding along
these lines, we have

D(K, [M ],M + 1,M)

≥ L+
T

N
D(K, [M ],M + 2,M + 1) (60)

≥ L+
T

N

(
L+

T

N
D(K, [M ],M + 3,M + 2)

)
(61)

≥ · · · (62)

≥ L+
T

N

(
L+ · · ·+ T

N

(
L+

T

N
D(K, [M ],K,K − 1)

))
(63)

where D(K, [M ],K,K − 1) ≥ L. Therefore,

D(K, [M ],M + 1,M)

≥ L+
T

N
L+ · · ·+

(
T

N

)K−M−1
L (64)

= L

(
1 +

T

N
+ · · ·+

(
T

N

)K−M−1)
. (65)

The above argument holds similarly for any (θ, S), and hence
the upper bound on the rate of TPIR-PSI is

R = lim
L→∞

L

D

≤

(
1 +

T

N
+

(
T

N

)2

+ · · ·+
(
T

N

)K−M−1)−1
.

Thus, the proof of converse for Theorem 1 is complete.

Remark 9. The converse can also be proved alternatively by
a genie-aided approach using the capacity of TPIR-GSI of
Remark 2 as follows. Starting from the TPIR-PSI problem,
suppose we provide the indices of the side information S
to all the databases, so the side information is now glob-
ally known and only the privacy of the desired message
needs to be preserved. Any schemes for TPIR-PSI are ap-
plicable to this TPIR-GSI setting, because they preserve the
privacy of the desired message index even after the side-
information is revealed. This is because TPIR-PSI schemes
satisfy I

(
Θ,S;Q

[Θ,S]
T ,A

[Θ,S]
T ,W [K]

)
= 0, which in turn

implies that I
(
Θ;Q

[Θ,S]
T ,A

[Θ,S]
T ,W [K] | S

)
= 0. There-

fore,

CTPIR-PSI ≤ CTPIR-GSI

=

(
1 +

T

N
+

(
T

N

)2

+ · · ·+
(
T

N

)K−M−1)−1
.

V. PROOF OF THEOREM 2

A. Achievability

When M = K − 1, the user can download the sum of all
the messages from one database and get the desired message
with side information. The rate is 1, achieving the capacity.

Note that in this case, common randomness among databases
is not required. When M < K − 1, the achievable scheme
can directly use the scheme of STPIR [14], [15], and the side
information is simply not used.

B. Converse

When M = K − 1, it is obvious that 1 is an upper bound.
When M < K − 1, we show that 1− T

N is an upper bound.
a) Proof of the bound R ≤ 1−T/N : Let us start with an

intuitive understanding of the upper bound, R ≤ 1−T/N . Due
to database privacy, given the side information, the answers
from all N databases should be independent of the non-queried
messages. At the same time, the answers from any T databases
should contain no information about the queried message
index since the user privacy must be preserved. Combining
these two facts, given the side information, the answers from
any T databases should contain no information about any
individual message, whether desired or undesired. As a result,
the useful information about the desired message must come
from the remaining N −T databases. Thus, the download per
database must be at least 1/(N − T ) times the entropy of the
desired message.

The formal proof is as follows. Since M < K − 1, for
any S ∈ S , there exist at least 2 messages that are not in
the set S. Any feasible STPIR-PSI scheme must satisfy the
database-privacy constraint (12),

0 = I
(
W

(Θ,S)
;Q

[Θ,S]
[N ] ,A

[Θ,S]
[N ] |WS ,S,Θ

)
(66)

Therefore, ∀T ⊂ [N ], |T | = T, ∀S ∈ S, and for all distinct
θ, θ′ ∈ [K] \ S,

0 = I
(
Wθ′ ;A

[Θ,S]
T ,Q

[Θ,S]
T |WS ,Θ = θ,S = S

)
(67)

= I
(
Wθ′ ;Q

[Θ,S]
T |WS ,Θ = θ,S = S

)
+ I

(
Wθ′ ;A

[Θ,S]
T | Q[Θ,S]

T ,WS ,Θ = θ,S = S
)

(68)

= H
(
A

[Θ,S]
T | Q[Θ,S]

T ,WS ,Θ = θ,S = S
)

−H
(
A

[Θ,S]
T | Q[Θ,S]

T ,WS ,Wθ′ ,Θ = θ,S = S
)

(69)

(34)
= H

(
A

[Θ,S]
T | Q[Θ,S]

T ,WS ,Θ = θ,S = S
)

−H
(
A

[Θ,S]
T | Q[Θ,S]

T ,WS ,Wθ′ ,Θ = θ′,S = S
)

(70)

where (67) holds because T is a subset of [N ] and (69) holds
due to (4). According to the correctness condition,

L = H (Wθ′)

(6)
= I

(
Wθ′ ;A

[Θ,S]
[N ] |WS ,Q

[Θ,S]
[N ] ,Θ = θ′,S = S

)
(71)

= H
(
A

[Θ,S]
[N ] |WS ,Q

[Θ,S]
[N ] ,Θ = θ′,S = S

)
−H

(
A

[Θ,S]
[N ] |Wθ′ ,WS ,Q

[Θ,S]
[N ] ,Θ = θ′,S = S

)
(72)

≤ H
(
A

[Θ,S]
[N ] |WS ,Q

[Θ,S]
[N ] ,Θ = θ′,S = S

)
−H

(
A

[Θ,S]
T |Wθ′ ,WS ,Q

[Θ,S]
[N ] ,Θ = θ′,S = S

)
(73)

= H
(
A

[Θ,S]
[N ] |WS ,Q

[Θ,S]
[N ] ,Θ = θ′,S = S

)
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−H
(
A

[Θ,S]
T |Wθ′ ,WS ,Q

[Θ,S]
T ,Θ = θ′,S = S

)
(74)

(70)
= H

(
A

[Θ,S]
[N ] |WS ,Q

[Θ,S]
[N ] ,Θ = θ′,S = S

)
−H

(
A

[Θ,S]
T |WS ,Q

[Θ,S]
T ,Θ = θ,S = S

)
(75)

(35)
= H

(
A

[Θ,S]
[N ] |WS ,Q

[Θ,S]
[N ] ,Θ = θ′,S = S

)
−H

(
A

[Θ,S]
T |WS ,Q

[Θ,S]
T ,Θ = θ′,S = S

)
(76)

≤ H
(
A

[Θ,S]
[N ] |WS ,Q

[Θ,S]
[N ] ,Θ = θ′,S = S

)
−H

(
A

[Θ,S]
T |WS ,Q

[Θ,S]
[N ] ,Θ = θ′,S = S

)
, (77)

where (74) follows due to Lemma 1. Writing (77) for all T ⊂
[1 : N ], |T | = T , adding those inequalities and divided by(
N
T

)
we obtain,

L ≤ H
(
A

[Θ,S]

[N ] |WS ,Q
[Θ,S]

[N ] ,Θ = θ′,S = S
)

− 1(
N
T

) ∑
T

H
(
A

[Θ,S]
T |WS ,Q

[Θ,S]

[N ] ,Θ = θ′,S = S
)

(78)

≤ H
(
A

[Θ,S]

[N ] |WS ,Q
[Θ,S]

[N ] ,Θ = θ′,S = S
)

− T

N
H
(
A

[Θ,S]

[N ] |WS ,Q
[Θ,S]

[N ] ,Θ = θ′,S = S
)

(79)

=

(
1− T

N

)
H
(
A

[Θ,S]

[N ] |WS ,Q
[Θ,S]

[N ] ,Θ = θ′,S = S
)

(80)

where (79) is due to Han’s inequality. Since this inequality is
true for all S ∈ S, θ′ ∈ [K] \ S, it is also true when averaged
across them, so,

L ≤
(

1− T

N

)
H
(
A

[Θ,S]
[N ] |WS ,Q

[Θ,S]
[N ] ,Θ,S

)
(81)

≤
(

1− T

N

)
H
(
A

[Θ,S]
[N ]

)
(82)

≤
(

1− T

N

)
D, (83)

where (82) holds because dropping conditioning does not
reduce entropy. Therefore, R = limL→∞

L
D ≤ 1 − T

N , and
we have shown that the rate of any feasible STPIR-SI scheme
cannot be more than 1− T

N .
b) Proof of the bound ρ ≥ T/(N − T ): Let us first ex-

plain the intuition behind this bound on the size of the common
randomness U that should be available to all databases but not
to the user. We have already shown that the normalized size
of the answer from any individual database must be at least
L/(N −T ). Due to the user and database privacy constraints,
the answers from any T databases are independent of the
messages. Therefore, to ensure database privacy, the amount
of common randomness must be no smaller than the size of
the answers from T databases.

The formal proof is as follows. Suppose a feasible STPIR-
PSI scheme exists that achieves a non-zero rate. Then we
show that it must satisfy ρ ≥ T/(N − T ). For S = S ∈ S
and for Θ = θ ∈ [K] \ S, consider the answering strings
A

[Θ,S]
1 , · · · ,A[Θ,S]

N and the side information WS , from which
the user can retrieve Wθ. According to the database-privacy
constraint, we have

0 = I
(
W

(θ,S)
;A

[Θ,S]
[N ] |WS ,Q

[Θ,S]
[N ] ,Θ = θ,S = S

)

(6)
= I

(
W

(θ,S)
;A

[Θ,S]
[N ] ,Wθ |WS ,Q

[Θ,S]
[N ] ,Θ = θ,S = S

)
(9)
= I

(
W

(θ,S)
;A

[Θ,S]
[N ] |Wθ,WS ,Q

[Θ,S]
[N ] ,Θ = θ,S = S

)
≥ I

(
W

(θ,S)
;A

[Θ,S]
T |Wθ,WS ,Q

[Θ,S]
[N ] ,Θ = θ,S = S

)
= H

(
A

[Θ,S]
T |Wθ,WS ,Q

[Θ,S]
[N ] ,Θ = θ,S = S

)
−H

(
A

[Θ,S]
T |W[K],Q

[Θ,S]
[N ] ,Θ = θ,S = S

)
(10)
= H

(
A

[Θ,S]
T |Wθ,WS ,Q

[Θ,S]
[N ] ,Θ = θ,S = S

)
−H

(
A

[Θ,S]
T |W[K],Q

[Θ,S]
[N ] ,Θ = θ,S = S

)
+H

(
A

[Θ,S]
T |W[K],Q

[Θ,S]
[N ] ,U ,Θ = θ,S = S

)
= H

(
A

[Θ,S]
T |Wθ,WS ,Q

[Θ,S]
[N ] ,Θ = θ,S = S

)
− I

(
U ;A

[Θ,S]
T |W[K],Q

[Θ,S]
[N ] ,Θ = θ,S = S

)
≥ H

(
A

[Θ,S]
T |Wθ,WS ,Q

[Θ,S]
T ,Θ = θ,S = S

)
−H(U)

(70)
= H

(
A

[Θ,S]
T |WS ,Q

[Θ,S]
T ,Θ = θ′,S = S

)
−H(U)

(35)
= H

(
A

[Θ,S]
T |WS ,Q

[Θ,S]
T ,Θ = θ,S = S

)
−H(U).

Therefore,

H(U) ≥ H
(
A

[Θ,S]
T |WS ,Q

[Θ,S]
T ,Θ = θ,S = S

)
. (84)

Adding (84) for all T ⊂ [N ], |T | = T and divided by
(
N
T

)
,

we obtain,

H(U) ≥ T

N
H
(
A

[Θ,S]
[N ] |WS ,Q

[Θ,S]
T ,Θ = θ,S = S

)
(85)

≥ T

N
H
(
A

[Θ,S]
[N ] |WS ,Q

[Θ,S]
[N ] ,Θ = θ,S = S

)
(86)

(80)

≥ T

N

(
N

N − T

)
L =

(
T

N − T

)
L. (87)

⇒ ρ =
H(U)

L
≥ T

N − T
(letting L→∞). (88)

Note that (85) is due to Han’s inequality. Thus the amount of
common randomness normalized by the message size for any
feasible STPIR-PSI scheme cannot be less than T/(N − T ).

VI. CONCLUSION

In this paper, the capacity of TPIR-PSI and the capacity of
STPIR-PSI are characterized. As a special case of TPIR-PSI
obtained by setting T = 1, the result settles the capacity of
PIR-PSI, an open problem highlighted by Kadhe et al. in [20].
Notably, the results of our work (initially limited to capacity of
PIR-PSI for T = 1 as reported in our original ArXiv posting
in 2017 [32]) have subsequently been generalized to multi-
message PIR-PSI in [33]. Other generalizations, e.g., PIR-
PSI with multi-round communication, secure and/or coded
storage, remain promising directions for future work, as are
the capacity characterizations for PIR-SI (multiple databases)
and PIR-SPSI which remain open.
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APPENDIX A
SOME INSIGHTS ON THE CAPACITY OF PIR-SPSI

The four variants of PIR with side information are defined
as follows.
• PIR-SI, or PIR with (non-private) side information. Only

the privacy of the desired message is preserved, i.e.,
I
(
Θ;Q

[Θ,S]
n ,W [K]

)
= 0,∀n ∈ [N ].

• PIR-SPSI, or PIR with separately private side infor-
mation. The privacy of the desired message and the
privacy of the side information are preserved individually,
i.e., I

(
Θ;Q

[Θ,S]
n ,W [K]

)
= I

(
S;Q

[Θ,S]
n ,W [K]

)
=

0,∀n ∈ [N ].
• PIR-PSI, or PIR with jointly private side informa-

tion. The privacy of the desired message and the pri-
vacy of the side information are preserved jointly, i.e.,
I
(
Θ,S;Q

[Θ,S]
n ,W [K]

)
= 0,∀n ∈ [N ].

• PIR-GSI, or PIR with global side information. The side
information is globally known, i.e., the databases are also
fully knowledgeable about the side information. In this
case, the privacy of the desired message index must be
preserved in spite of the globally known side information,
I
(
Θ;Q

[Θ,S]
n ,W [K] | S

)
= 0,∀n ∈ [N ].

From the result of Theorem 1 we know the capacity
of PIR-PSI is Ψ(1/N,K − M), and from Remark 2 that
follows Theorem 1 we also know the capacity of PIR-GSI
is Ψ(1/N,K −M). The capacity of PIR-SI is known to be
d K
M+1e

−1 for N = 1 database from [20]. In spite of various
attempts the capacity of PIR-SI remains in general an open
problem for multiple databases. The remaining setting of PIR-
SPSI has not been studied, perhaps due to lack of practical
motivation for this setting. Nevertheless, out of technical
curiosity, let us present some insights into the capacity of PIR-
SPSI. We will focus only on the single database setting, i.e.,
N = 1 in this section.

A. PIR-SPSI: N = 1, M = 1, K even

For this setting the capacity of PIR-SPSI is
(
K
2

)−1
=

dK2 e
−1, i.e., the same as the capacity of PIR-SI. Since PIR-

SPSI is a more constrained version of PIR-SI, its capacity can-
not be higher than that of PIR-SI. Thus, the converse is trivial.
It turns out that the achievability is also straightforward be-
cause the Partition and Code scheme in [20] already preserves
the separate privacy of side information. Let us present just an
example to illustrate this. Suppose N = 1,M = 1,K = 6, and
suppose each message is comprised of one bit. Let θ denote the
desired message index and s denote the index of the message
available as side information to the user. The user asks the
database for three bits, corresponding to the three partitions:
P1 = Wi1 + Wi2 , P2 = Wi3 + Wi4 , P3 = Wi5 + Wi6 . The
indices (i1, i2, · · · , i6) are obtained by first randomly permut-
ing (1, 2, · · · , 6) and then switching the position of the side

information index s with another index (if needed) so that it
appears within the same partition as θ, i.e., one of the partitions
must contain Wθ + Ws. The scheme is correct because the
user can recover Wθ from the sum Wθ + Ws (because Ws

is already available to the user as side information). It is
easily verified that θ and s are each uniformly distributed over
(i1, i2, · · · , i6), so the scheme preserves their separate privacy.
However, since θ, s must appear in the same partition, it is also
clear that their joint privacy is not preserved. For example,
(θ, s) cannot be equal to (i1, i3). The general scheme in [20]
works for any even K by partitioning the messages into sets
of size 2, one of which contains both θ and s. Each of θ and
s is uniformly distributed over the indices but they are not
jointly uniform.

B. PIR-SPSI: N = 1, M = 1, K odd

For this setting also the capacity of PIR-SPSI is
(
K+1
2

)−1
=

dK2 e
−1, the same as the capacity of PIR-SI. Once again,

the converse is trivially inherited from PIR-SI. Achievabil-
ity requires a small modification to the Partition and Code
scheme of [20], as explained next. Let us also illustrate this
through an example. Suppose N = 1,M = 1,K = 7 and
each message is comprised of one symbol from, say F5.
The user asks the database for 4 symbols, corresponding to
P1 = Wi1 +Wi2 , P2 = Wi3 +Wi4 , P3 = Wi5 +Wi6 +Wi7 ,
and P4 = Wi5 +2Wi6 +3Wi7 . In fact, P3, P4 can be the non-
systematic symbols of any (5, 3) systematic MDS code applied
to Wi5 ,Wi6 ,Wi7 . Once again, the indices (i1, i2, · · · , i7) are
obtained by first randomly permuting (1, 2, · · · , 7) and then
switching the position of the side information index s with
another index (if needed) so that it appears within the same
partition as θ. If Wθ and Ws appear in P1 or P2 then
Wθ is decoded by subtracting the side-information, while
if Wθ and Ws appear in partitions P3, P4 with interfering
message Wi, then after eliminating the known side information
Ws, the two equations can be solved for the remaining two
variables Wθ,Wi (equivalently, the MDS property guarantees
decodability). Once again, it is easily verified that θ and s
are each uniformly distributed over (i1, i2, · · · , i7), so the
scheme preserves their separate privacy. However, since θ, s
must appear in the same partition, it is also clear that their
joint privacy is not preserved. The example generalizes to
any odd value of K, by constructing (K + 1)/2 partitions
of the form Wi1 + Wi2 , Wi3 + Wi4 , · · · , WiK−4

+ WiK−3
,

WiK−2
+ WiK−1

+ WiK and WiK−2
+ 2WiK−1

+ 3WiK ,
and generating the indices (i1, i2, · · · , iK) by first randomly
permuting (1, 2, · · · ,K) and then switching the position of
the side information index s with another index (if needed) so
that it appears within the same partition as θ. This ensures that
θ and s are each uniformly distributed over (i1, i2, · · · , iK),
so the scheme preserves their separate privacy. However, since
θ, s must appear in the same partition, it is also clear that their
joint privacy is not preserved.

C. PIR-SPSI: N = 1, M = 2, K = 6

The preceding discussion shows that PIR-SI and PIR-SPSI
have the same capacity for N = 1,M = 1. Let us now present
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an example to show that the capacity of PIR-SPSI can be
strictly less than the capacity of PIR-SI in general. For this
example, let us consider K = 6 messages stored at N = 1
database, out of which M = 2 messages are available to the
user as side information. From [20] we know that the capacity
of PIR-SI for this example is 1/2. Incidentally, this is achieved
by downloading two partitions, namely Wi1 + Wi2 + Wi3

and Wi4 + Wi5 + Wi6 , where the indices (i1, i2, · · · , i6)
are generated by first randomly permuting (1, 2, · · · , 6) and
then switching indices if necessary to place the two side
information indices into the same partition as θ. Note that
this scheme does not preserve the privacy of side information
indices, e.g., (i1, i4) cannot be both side information indices
(because side information indices must be within the same
partition). We will show that for this example the capacity of
PIR-SPSI is no more than 1/3, i.e., strictly smaller than the
capacity of PIR-SI.

Let us denote the entropy of each message as L bits. We
will show that conditioned on each realization of the query, the
download from the database must be at least 3L bits, which
also proves that the average download must be at least 3L
bits. To set up a proof by contradiction, let us assume that
conditioned on the query realization Q = q, the download A
from the database is less than 3L bits. This assumption implies
that,

H(A | Q = q) < 3L. (89)

The conditioning on Q = q will be assumed throughout the
remainder of this proof.

We need some preliminary work before we start the core of
the converse proof. To have compact notation, for any subset
P ⊂ [K], let us define

HA(WP ) , H
(
A | Q = q,W[K]\P

)
. (90)

Intuitively, HA(WP ) represents the entropy that remains in
the answer A due to messages WP (after all other messages
are known), i.e., the ‘space’ occupied by the messages WP in
A. We need the following facts.

Lemma 3. The following facts hold for PIR-SPSI with N =
1,M = 2,K = 6.

1) If P is a singleton set, e.g., P = {k}, then we must have

HA(Wk) ≥ L, ∀k ∈ [K]. (91)

2) If P1 ⊂ P2 ⊂ [K], then

HA(P1) ≤ HA(P2). (92)

3) If Θ = θ is the desired message index, S = (s1, s2) are
the M = 2 side information indices, and l,m, n are the
3 remaining indices representing interfering messages,
then we must have,

HA(Wl,Wm,Wn) < 2L, (93)
HA(Wθ,Wi) ≥ 2L, ∀i ∈ {l,m, n}. (94)

Proof. The first fact, (91) holds because given the answer A
and all messages except Wk (which must include the side
information), the user must be able to decode Wk, therefore

L = I(Wk; A | Q = q,W[K]\{k}) ≤ HA(Wk). The next fact,
(92) is simply the statement that conditioning reduces entropy.
The third fact, (93) is quite intuitive, as it says that the space
occupied by interference must be less than 2L bits because
the overall download is less than 3L bits, out of which L bits
are needed for the desired message. Formally, this can be seen
as follows.

L = I(Wθ; A | Q = q,Ws1 ,Ws2) (95)
= H(A | Q = q,Ws1 ,Ws2)

−H(A | Q = q,Ws1 ,Ws2 ,Wθ) (96)
≤ H(A | Q = q)−HA(Wl,Wm,Wn) (97)
< 3L−HA(Wl,Wm,Wn) (98)

which implies (93). Finally, the last fact, (94) is also quite
intuitive. It says that the desired information must not align
with interference so that the user is able to resolve the two.
Formally, for any i ∈ {l,m, n}, because the user must be
able to decode his desired message from A and his side
information,

L = I(Wθ; A | Q = q,W[K]\{θ,i}) (99)
= HA(Wθ,Wi)−HA(Wi) (100)
≤ HA(Wθ,Wi)− L (101)

which implies (94). Note that we used (91) to obtain (101).
With these preliminary facts established, let us now proceed

with the core of the converse argument. Since the query
preserves the privacy of the side information, all choices of
(s1, s2) must be equally likely. In particular they must all be
feasible (have non-zero probability) from the database’s per-
spective. Note that because the database knows Q = q, it can
evaluate H(WP ) for all P ⊂ [K]. Let (a, b, c, d, e, f) represent
some permutation of (1, 2, · · · , 6). The main reasoning now
proceeds through the following steps.

1) Consider (s1, s2) = (a, b). Since this must be feasible,
there must exist another index in [K] that could be
a desired message, i.e., that satisfies facts (93), (94).
Without loss of generality, let c be this index, so that,

HA(Wd,We,Wf ) < 2L, (102)
HA(Wc,Wi) ≥ 2L, ∀i ∈ {d, e, f}. (103)

2) Now consider (s1, s2) = (b, c). This must also be
feasible, so there must exist an index in [K] which can
be a desired message. Based on (102), and the fact (94)
the database can conclude that this index must be a. This
is because all other indices lead to contradictions. For
example, if the desired message is Wd, then from (94)
we must have HA(Wd,We) ≥ 2L, which contradicts
the fact that HA(Wd,We) ≤ HA(Wd,We,Wf ) < 2L
according to (92) and (102). Similarly, the desired mes-
sage index cannot be e or f either, leaving a as the only
possibility. Now (94) implies that we must have

HA(Wa,Wi) ≥ 2L, ∀i ∈ {d, e, f}. (104)

3) Next, consider (s1, s2) = (e, f). This must also be
feasible, so there must exist an index in [K] which can
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be a desired message. Based on (103), (104) and the fact
(93) the database can conclude that this index must be d.
This is because all other indices lead to contradictions.
For example, if the desired message is a, then from (93)
we must have HA(Wb,Wc,Wd) < 2L. Along with (92)
this implies that HA(Wc,Wd) < 2L which contradicts
(103). Similarly, the desired message index cannot be b
or c either, leaving d as the only possibility. Now (93)
implies that we must have

HA(Wa,Wb,Wc) < 2L. (105)

4) Finally, consider (s1, s2) = (a, d). This must also be
feasible, so there must exist an index in [K] which
can be a desired message. However, it turns out that
every choice of this desired message index leads to a
contradiction. For example, suppose the desired mes-
sage index is b. Then according to (94) we must have
HA(Wb,Wc) ≥ 2L, which contradicts with the combi-
nation of (105) and (92). All other indices are similarly
ruled out, leaving us with an unavoidable contradiction.

The contradiction proves that the download must be at least 3L
bits, which in turn implies that the average download must be
at least 3L bits, and therefore the capacity cannot be more than
1/3. The exact capacity even for this simple setting remains
an intriguing open problem. Remarkably, if the capacity is
less than 1/3 then that would imply that having more side-
information is counterproductive for PIR-SPSI (because if M
is reduced from 2 to 1 then we do know from the preceding
discussion in this section that the capacity of PIR-SPSI is 1/3).
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