
Wireless MapReduce Distributed Computing
Fan Li, Jinyuan Chen and Zhiying Wang

Abstract—Motivated by mobile edge computing and wireless
data centers, we study a wireless distributed computing frame-
work where the distributed nodes exchange information over a
wireless interference network. Our framework follows the struc-
ture of MapReduce. This framework consists of Map, Shuffle,
and Reduce phases, where Map and Reduce are computation
phases and Shuffle is a data transmission phase. In our setting,
we assume that the transmission is operated over a wireless
interference network. We demonstrate that, by duplicating the
computation work at a cluster of distributed nodes in the Map
phase, one can reduce the amount of transmission load required
for the Shuffle phase. In this work, we characterize the fundamen-
tal tradeoff between computation load and communication load,
under the assumption of one-shot linear schemes. The proposed
scheme is based on side information cancellation and zero-
forcing, and we prove that it is optimal in terms of computation-
communication tradeoff. The proposed scheme outperforms the
naive TDMA scheme with single node transmission at a time, as
well as the coded TDMA scheme that allows coding across data,
in terms of the computation-communication tradeoff.

Index Terms—Distributed computing, MapReduce, wireless
interference network, interference management.

I. INTRODUCTION

In recent years, wireless distributed computing technolo-
gies developed rapidly due to the advancements in wireless
communications and devices. For example, interconnected
autonomous vehicles can utilize distributed computing for
collision avoidance and congestion management. For another
example, distributed computing among smart phones and
nearby fog nodes can implement augmented reality for gaming
or entertainment. Other use cases of wireless distributed com-
puting include wireless data centers [1], [2], cloud computing
in wireless networks [3], edge computing and fog computing
for mobile networks and Internet of Things (IoT) [4]–[8].

In this work, we study distributed computing based on the
MapReduce framework over a wireless interference network.
In MapReduce distributed computing (cf. [9], [10]), data
is first split and processed (called Map) at the distributed
nodes, and then the results are shuffled (called Shuffle), and
processed again (called Reduce). As the amount of data and
the number of nodes grow, the Shuffle phase could lead to
a significant delay for the overall performance. In this work,
we study a MapReduce-based wireless distributed computing

Fan Li and Jinyuan Chen are with Louisiana Tech University, Department
of Electrical Engineering, Ruston, LA 71272, US (emails: fli005@latech.edu,
jinyuan@latech.edu). Zhiying Wang is with University of California, Irvine,
Center for Pervasive Communications and Computing (CPCC), Irvine, CA
92697, US (email:zhiying@uci.edu). This work was presented in part at the
2018 IEEE International Symposium on Information Theory. The work of
Jinyuan Chen was partly supported by Louisiana Board of Regents Support
Fund (BoRSF) Research Competitiveness Subprogram (RCS) under grant 32-
4121-40336. Copyright (c) 2017 IEEE. Personal use of this material is permit-
ted. However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

Broadcast

a1,2

a1,1

a3,2

a3,1

a2,2

a2,1

Node 1
Files

Map

w2

w1

a1,3

a3,1

Need

Broadcast

a1,3

a1,1

a3,3

a3,1

a2,3

a2,1

Node 2
Files

Map

w3

w1

Need

Broadcast

Node 3
Files

Map

w3

w2

Need

a1,2 a3,2a2,2

a1,3 a3,3a2,3

a2,2

a1,3 a2,2

a3,1

Fig. 1. An example of wireless distributed computing with K = Q = N = 3
and r = 2.

framework, where the Shuffle phase is operated over a wireless
interference network, and explore the advantages of wireless
communication to reduce the system latency.

We parameterize the MapReduce problem by N,K, r,Q,
where N is the number of data files, K is the number of
nodes, each file is duplicated at r nodes on average (called
computation load), and Q is the number of Reduce functions.
See Fig. 1 for an example. In this example, three distributed
nodes (K = 3) seek to compute three Reduce functions
(Q = 3) for three data files (N = 3), with each file stored
at two nodes (r = 2). Every Map function takes one file
as input, and outputs 3 intermediate values, one for each
Reduce function. The intermediate value is denoted as aq,n for
File n and Reduce function q. The Reduce function q takes
(aq,1, aq,2, aq,3) as inputs and produces the q-th final value. In
the Map phase, every node computes 6 intermediate values for
2 files. For example, Node 1 computes 6 intermediate values,
i.e., {aq,n : q = 1, 2, 3, n = 1, 2}, for Files 1 and 2. In the
Shuffle phase, some intermediate values are communicated in
order to complete the computation in the Reduce phase. In the
Reduce phase, assume that Node k computes the k-th Reduce
function, for k = 1, 2, 3. In order to compute the first Reduce
function, Node 1 needs input (a1,1, a1,2, a1,3). While a1,1 and
a1,2 are already cached locally, a1,3 needs to be transmitted
from a different node in the Shuffle phase. Similarly, Node 2
requires a2,2 and Node 3 requires a3,1 in the Shuffle phase.

In our setting, communication in the Shuffle phase takes
place over a wireless interference channel. Assume that the
channel state information is available to all nodes, and the
communication is full-duplex. One possible application sce-
nario is in data centers, where the environment (and hence the
channel) is fixed for a long enough period, hence one may
assume that channel state information is available at all users.
Let the (non-interfered) transmission time of 1 intermediate
value be 1 time unit, namely, a coded packet corresponding
to aq,n is transmitted using 1 time unit, such that aq,n can be
successfully decoded. In order to handle interference, we have
the following possible solutions.
• If we use a naive uncoded time-division multiple access

(TDMA) broadcast scheme, allowing only 1 node to

transmit 1 intermediate value at any time unit, we need
3 time units to transmit in total.

• We could also use a coded TDMA broadcast scheme
(cf. [10]), allowing only 1 node to transmit 1 coded
intermediate value at any time. For example, Node 3 can
transmit a linear combination of the coded packets of a1,3
and a2,2. Through the cached intermediate values, Nodes
1 and 2 can respectively decode their desired information.
Then Node 1 can transmit a3,1 for Node 3. We need 2
time units in total.

• Alternatively, we can let 3 nodes transmit at the same
time. Each node receives the superposition of the 3 trans-
mitted symbols. However, the two undesired symbols
can be canceled using cached intermediate values (side
information). Thus the desired symbol is decoded. We
need only 1 time unit.

In this paper we study the shuffle communication time units
normalized by NQ, termed as communication load, which is
a function of K and the computation load r. For practical
purposes, we assume that the one-shot linear scheme is used,
where each intermediate value is encoded into a coded packet,
and the transmitted symbol is a linear combination of the
coded packets in the cache, ensuring that the coded packet can
be decoded at the intended receiver with a linear operation. We
show that the optimal communication load is given as

1− r
K

min{K, 2r}
, r ∈ {1, 2, . . . ,K}. (1)

The significant improvement of our scheme compared to
uncoded and coded TDMA schemes is depicted in Fig. 2.
As shown in Fig. 2, considering the case of r = 1, namely,
when there is no extra computation in the Map phase, the
communication load of the proposed one-shot linear scheme
is 50% lower than that of both uncoded TDMA and coded
TDMA schemes. For the case of r = 5, the communication
load of the proposed one-shot linear scheme is 90% lower than
that of uncoded TDMA scheme and 50% lower than that of
coded TDMA scheme.

The two key factors to obtain (1) are side information
cancellation and zero-forcing. The role of side information has
been demonstrated in the example of Fig. 1. If an intermediate
value is stored in multiple nodes, then by simultaneously
transmitting this intermediate value from these nodes, the
corresponding signal may be zero-forced at some undesired
receivers. It is similar to the interference cancellation in a
MISO interference channel. In fact, we convert our problem to
a MISO interference channel problem to obtain the converse.

The technical challenges of obtaining the optimal com-
munication load of (1) lie in both the converse and the
achievability. For the converse, our main task is to bound the
maximum number of coded packets that can be transmitted
simultaneously at the `-th time unit, denoted by |D`|. When
each file is replicated r times, referred to as symmetric file
replications, we prove that |D`| is upper bounded by a value
that depends on the number of times each file is replicated, i.e.,
r. However, when different files are replicated with different
numbers of times, referred to as asymmetric file replications,
the problem becomes more challenging, because we have N

parameters, each corresponding to the replication number of
one file. For this case, even though each |D`| depends on the
replication numbers of the particular files involved in time unit
`, we prove that the total number of required transmission time
units is upper bounded by a value that depends on the average
number of times the files are replicated (i.e., r). In fact, this
proof combined with our achievability shows that asymmetric
file replications cannot have a better communication load than
symmetric ones.

For the achievability, we provide an explicit one-shot linear
scheme, in which files are placed symmetrically, and the num-
ber of transmitted coded packets at each time unit attains the
maximum of |D`| from the converse. Note that the difficulty
of the achievability lies in the case with r < K/2, where
interference might not be eliminated completely if all nodes
participate in transmission simultaneously. For this case, the
proposed scheme guarantees that a subset of nodes can receive
packets without interference at each time unit, by using side
information cancellation and partial zero-forcing.

Related work: In [10], [11], coded distributed computing
for MapReduce is introduced to utilize cache and broadcast
to reduce communication delay. A lot of work appeared
after that regarding communication in MapReduce distributed
computing [12]–[24]. Specifically, [12] aims at reducing the
overall computation and communication time. In [13] and
[14], the number of computed Map intermediate results is
also considered as one of the performance parameters. In [15],
heterogeneous nodes with different communication constraints
are considered. In the scheme of [10] the required minimum
number of files, termed subpacketization, is exponential in K
and r. The works in [16]–[18] focus on reducing the subpack-
etization. When the Reduce function depends on only a subset
of the files, described by a graph, the problem is studied in
[19]. When each node can broadcast only to a subset of the
nodes, the problem is addressed in [20]. Linear aggregation
of intermediate results at the Reduce stage is studied in [21].
Wireless MapReduce is studied in [22] where the distributed
nodes must be connected through a wireless access point (or a
relay), while in our paper the nodes can directly communicate
with each other and the communication channel is a wireless
interference channel. In our work, coding is used in a smart
way for improving the performance of wireless distributed
computing. In some other research directions, coding was
used in different applications such as data shuffling [25]–
[27], caching [28]–[33], and straggling distributed computing
[34]–[44]. Another topic for distributed computing is federated
learning, where communication efficiency is one of the main
concerns [45]–[47].

The remainder of this work is organized as follows. Sec-
tion II describes the system model. Section III provides the
main results of this work. The converse proof is described
in Sections V, while the achievability proof is described in
Sections VI. Section IV provides the scheme examples. The
work is concluded in Section VII.

Notation: Throughout this work, [c1 : c2] denotes the set of
integers from c1 to c2, for some nonnegative integers c1 ≤ c2.
|•| denotes the magnitude of a scalar or the cardinality of a set.
o(·) is the standard Landau notation, where f(x) = o(g(x))

1 2 3 4 5 6 7 8 9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Computation Load (r)

C
om

m
un

ic
at

io
n

L
oa

d
(L

)

Uncoded TDMA scheme
Coded TDMA scheme

Optimal one-shot linear scheme

Fig. 2. Comparison on the communication load vs. computation load
performance for uncoded TDMA scheme, coded TDMA, and the optimal
one-shot linear scheme, given K = 10, N = 2520, and Q = 360.

implies that limx→∞ f(x)/g(x) = 0. C and R denote the
sets of complex numbers and real numbers, respectively. Fq2
denotes the set of q-tuples over the binary field. N+ denotes the
set of positive natural numbers. Logarithms are in base 2. dce
denotes the least integer that is no less than c, and bcc denotes
the greatest integer that is no larger than c. s ∼ CN (0, σ2)
denotes that the random variable s has a circularly symmetric
complex normal distribution with zero mean and σ2 variance.

II. SYSTEM MODEL

We consider a wireless distributed computing system based
on a MapReduce framework (cf. [9], [10]), where K nodes
(servers) first compute Map functions to generate intermediate
values for N input files, and then exchange (Shuffle) informa-
tion over a wireless interference channel, and finally compute
Q outputs (Reduce functions), for some K,N,Q ∈ N+, with
N ≥ K. The formal model is described as follows.

Map phase: Consider a total of N independent input files
w1, w2, · · · , wN . Let Mk ⊆ [1 : N] denote the indices of the
files assigned at Node k, k ∈ [1 : K]. For each file wn, n ∈
Mk, after the Map function Node k generates Q intermediate
values, i.e., {aq,n}Qq=1, aq,n ∈ FB2 , for some B ∈ N+. The
computation load of the system is defined as the total number
of map functions computed over K nodes, normalized by the
total number of independent files, that is,

r,

∑K
k=1 |Mk|
N

. (2)

Shuffle phase and the interference channel: In the Shuffle
phase, distributed nodes exchange the intermediate values over
a wireless interference channel, in order to compute Reduce
functions. Let Wk denote the indices of Reduce functions
computed at Node k, k ∈ [1 : K]. Node k needs the set
of intermediate values {aq,n : q ∈ Wk, n ∈ [1 : N]}. Note
that after the Map phase, Node k already has

Pk ,{aq,n : q ∈ [1 : Q], n ∈Mk} (3)

for k ∈ [1 : K]. Therefore, it only requires

Gk ,{aq,n : q ∈ Wk, n ∈ [1 : N], n /∈Mk}.

The communication over this interference channel at time t
is modeled as

yk(t) =

K∑
i=1

hk,ixi(t) + zk(t), k ∈ [1 : K], (4)

where yk(t) denotes the received signal at Node k at time t;
xk(t) is the transmitted signal of Node k at time t subject to
a power constraint E[|xk(t)|2] ≤ P , and zk(t) ∼ CN (0, 1)
denotes the additive white Gaussian noise (AWGN). hk,i ∈ C
denotes the coefficient of the channel from Transmitter i to
Receiver k, assumed to be fixed and known by all the nodes1,
for all k, i ∈ [1 : K]. We assume that all submatrices of the
channel matrix consisting of all the channel coefficients are
full rank. We also assume that the absolute value of each
channel coefficient is bounded between a finite maximum
value and a nonzero minimum value. We consider the full-
duplex communication, where each node can receive and
transmit signal at the same time.

In this phase, each node first employs a random Gaussian
coding scheme (cf. [48]) to encode each of its generated
intermediate values aq,n ∈ FB2 into a coded packet ãq,n ∈ Cτ ,
corresponding to τ channel uses (called a block), for some
integer τ such that B = τ logP + o(τ logP). The rate is
B/τ ≈ logP bits/channel use, equivalent to one degree of
freedom (DoF). The transmission of all the required coded
packets takes place over a total of T blocks. In block `, a
subset of the required packets, denoted by D`, is delivered to
a subset of receivers whose indices are denoted by R`, with
each packet intended for one of the receivers, i.e., |D`| = |R`|,
for D` ∩ D`′ = ∅, ∀`, `′ ∈ [1 : T], ` 6= `′.

Specifically, in block ` we consider the one-shot lin-
ear scheme. The signal transmitted by Node i, denoted by
xi[`] ∈ Cτ , is a linear combination of the coded packets
{ãq,n : ãq,n ∈ D`, n ∈Mi} generated by Node i, that is,

xi[`] =
∑

(q,n): ãq,n∈D`, n∈Mi

βi,q,nãq,n, (5)

where βi,q,n is the beamforming coefficient, for ` ∈ [1 : T]
and i ∈ [1 : K]. Then, the received signal of Node k at block `
takes the following form

yk[`] =

K∑
i=1

hk,ixi[`] + zk[`], ` ∈ [1 : T], (6)

where zk[`] ∈ Cτ denotes the noise vector at Receiver k
(Node k) in block `, for k ∈ [1 : K]. In terms of decoding,
Node k utilizes its side information (the generated coded
packets), i.e.,

P̃k ,{ãq,n : aq,n ∈ Pk}

1Although we assume that the channel coefficients are fixed, our result also
holds for the setting with time varying channel coefficients. An example is
provided in Section IV-C. For simplicity of presentation, we will derive our
results for fixed channel coefficients.

(see (3)), to subtract the interference from yk[`] using a linear
function, denoted as,

Lk,`(yk[`], P̃k). (7)

The communication in block `, ` ∈ [1 : T], is successful if
there exist linear operations as in (5) and (7) to obtain

Lk,`(yk[`], P̃k) = ãq,n + zk[`] (8)

for ∀k ∈ R` and ãq,n ∈ D` ∩ {ãq′,n′ : aq′,n′ ∈ Gk}. Because
the channel in (8) is a point to point AWGN channel and
its capacity is roughly logP bits/channel use, aq,n can be
decoded with vanishing error probability as B increases [48].
Note that, in our setting we use the random Gaussian coding
scheme to encode each of the intermediate values. In terms
of decoding, the maximum likelihood (ML) decoding can be
used. However, the complexity of the Gaussian coding and ML
decoding is very high. To reduce the complexity, one could use
the low-complexity encoding/decoding method, e.g., lattice-
based encoding and decoding [49].

Reduce phase: Node k computes the Reduce function
bq, q ∈ Wk, as a function of (aq,1, aq,2, · · · , aq,N). In this
work we consider a symmetric job assignment, that is, each
node has Q/K number of output functions to compute, for
Q
K ∈ N. Specifically,

|W1| = |W2| = · · · = |WK | = Q/K, (9)

and Wk ∩Wj = ∅ for any k, j ∈ [1 : K], k 6= j.
We define the communication load of this wireless dis-

tributed computing system as

L,
T

NQ

which denotes the normalized communication blocks used
in the Shuffle phase. In our setting, the computation load
and communication load pair (r, L) is said to be achievable
if there exists a wireless MapReduce scheme consisting of
Map, Shuffle and Reduce phases under the above one-shot
linear assumptions, in which all the intermediate values can be
decoded with vanishing error probability as B increases. We
also define the computation-communication function of this
wireless distributed computing system, as

L∗(r), inf{L : (r, L) is feasible}.

III. MAIN RESULTS

This section provides the main results of this work for the
wireless distributed computing system defined in Section II.
The converse and achievability proofs are presented in Sec-
tions V and VI, respectively.

Theorem 1. For the wireless distributed computing system
defined in Section II, with the assumption of one-shot lin-
ear schemes and a sufficiently large N , the computation-
communication function, L∗(r), is characterized as

L∗(r) =
1− r

K

min{K, 2r}
, r ∈ {1, 2, · · · ,K}. (10)

Theorem 1 provides a fundamental tradeoff between the
communication load L and the computation load r for the
wireless distributed computing system defined in Section II.
The achievability of Theorem 1 is based on a one-shot
linear scheme that utilizes the methods of zero-forcing and
interference cancellation with side information. The proposed
scheme turns out to be optimal for integer r. For non-integer
r, our converse proof shows that L∗(r) ≥ 1− r

K

min{K,2r} ; our
achievability results can be extended using time-sharing such
that the line connecting the adjacent integer points (r, L∗(r))
and (r+ 1, L∗(r+ 1)) is achievable, for any 1 ≤ r ≤ K − 1,
as plotted in Fig. 2. When K

2 ≤ r ≤ K, the expression in
(10) is linear in r. Therefore, the expression (10) gives the
optimal computation-communication function for all integer r
for 1 ≤ r ≤ K, and all real r, for K

2 ≤ r ≤ K.
From the achievability proof in Section VI, Theorem 1 holds

when N is a multiple of some N0 that depends on (K, r), or
when N is sufficiently large for fixed K,Q, r. Note that, in
practice, the dataset to be processed is typically big (big data)
for the distributed computing systems. The whole dataset can
be partitioned into N files and N can be much larger than the
number of servers K. Moreover, Q is often a small multiple
of K [9]. We also assume that r is fixed to ensure bounded
computation load.

Since the Reduce functions indexed by Wk need QN/K
intermediate values as inputs and Q · |Mk|/K of them have
been cached at Node k, it implies that the total number of
intermediate values required by Node k is Q

K (N − |Mk|).
Therefore, the total number of intermediate values required to
be delivered in the Shuffle phase, denoted as Ctotal, can be
expressed as

Ctotal =

K∑
k=1

Q

K
(N − |Mk|) = QN(1− r

K
). (11)

Remark 1 (Uncoded TDMA scheme). In the uncoded TDMA
scheme, only one node delivers one (uncoded) intermediate
value at each transmission block. From (11), the communica-
tion load L is expressed as

LUncoded-TDMA(r) = 1− r

K
, r ∈ {1, 2, · · · ,K}. (12)

Remark 2 (Coded TDMA scheme). In the coded TDMA
scheme, one node delivers one coded intermediate value at
each transmission block. From the result in [10], the commu-
nication load L of this coded TDMA scheme is

LCoded-TDMA(r) =
1

r
·
(
1− r

K

)
, r ∈ {1, 2, · · · ,K}. (13)

Remark 3. The significant improvement of our scheme com-
pared to uncoded and coded TDMA schemes is depicted in
Fig. 2. Note that, the communication load of the proposed one-
shot linear scheme is (1− 1

min{K,2r})×100% lower than that
of uncoded TDMA. Furthermore, the communication load of
the proposed one-shot linear scheme is (1− r

min{K,2r})×100%
lower than that of coded TDMA.

Files

Node 1

w1
Map

a1,1 a2,1 a3,1 a4,1

a1,2 a2,2 a3,2 a4,2

a1,3 a2,3 a3,3 a4,3w3

w2

a2,3 a3,3

a3,1 a4,1

a2,2 a4,2

Files

Node 2

w1
Map

a1,1 a2,1 a3,1 a4,1

a1,4 a2,4 a3,4 a4,4

a1,5 a2,5 a3,5 a4,5w5

w4

a3,1 a4,1

a1,4 a4,4

a1,5 a3,5

Files

Node 4

w3
Map

a1,6 a2,6 a3,6 a4,6w6

w5

a1,6 a2,6

Files

Node 3

w2
Map

a1,4 a2,4 a3,4 a4,4

a1,6 a2,6 a3,6 a4,6w6

w4

a1,4 a4,4

a1,2 a2,2 a3,2 a4,2

a2,2 a4,2

a1,6 a2,6

a1,3 a2,3 a3,3 a4,3

a1,5 a2,5 a3,5 a4,5

a1,5 a3,5

a2,3 a3,3

Broadcast

a1,4

a1,5

a1,6

NeedBlocks

1

3

2

Broadcast Broadcast Broadcast

a2,3

a2,2

a2,6

a3,5

a3,1

a3,3

a4,1

a4,4

a4,2

Blocks

1

3

2

Blocks

1

3

2

Blocks

1

3

2

NeedNeedNeed

Fig. 3. An example of wireless distributed computing with K = Q = 4, N = 6 and r = 2.

IV. EXAMPLES

In the introduction, we saw an example of one-shot linear
scheme in the Shuffle phase with K = Q = N = 3 and r = 2.
The scheme exploits the side information for interference
cancellation. In this section, we use two examples to illustrate
the proposed one-shot linear schemes in the Shuffle phase.
In the first example with r ≥ K/2, the scheme exploits side
information cancellation and zero-forcing, while in the second
example with r < K/2, the scheme uses side information
cancellation and partial zero-forcing. We introduce important
notations including virtual transmitters, beamforming vectors
and channel coefficient vectors for the virtual transmitters.
These notations will be used in our converse and achievablility
proofs in Sections V and VI.

A. The example of K = Q = 4, N = 6 and r = 2 (r ≥ K/2)

Let us consider the case of (K = Q = 4, N = 6, r = 2).
As shown in Fig. 3, we assign three files for each node such
that M1 = {1, 2, 3},M2 = {1, 4, 5},M3 = {2, 4, 6} and
M4 = {3, 5, 6}. Without loss of generality we consider the
case where the k-th Reduce function is assigned to Node k,
for k = 1, 2, 3, 4.

In the Map phase, each node generates a set of intermediate
values. Then, each intermediate value (e.g., a1,4) is mapped
into a coded packet (e.g., ã1,4). Let Sn = {i : n ∈ Mi}
represent the indices of all the nodes having file wn, n ∈ [1 :
N]. The transmitters indexed by Sn are defined to be a virtual
transmitter (i.e., virtual Transmitter Sn). We use

hk,Sn ,
[
hk,S1

n
, hk,S2

n
, · · · , h

k,S|Sn|n

]T
(14)

to denote the channel vector from virtual Transmitter Sn to
Receiver k, where Sjn denotes the jth element of set Sn. Let

vSn,q,n,
[
βS1

n,q,n
, βS2

n,q,n
, · · · , βS|Sn|n ,q,n

]T
(15)

denote the beamforming vector for coded packet ãq,n that is
transmitted from virtual Transmitter Sn, where βSj

n,q,n
is the

beamforming coefficient of node Sjn for the coded packet ãq,n.
For example, for virtual Transmitter Sn = {2, 3} and Receiver
1, we have the channel vector hT1,{2,3} =

[
h1,2, h1,3

]
. And

vT{2,3},1,4 =
[
β2,1,4, β3,1,4

]
is the beamforming vector for the

coded packet ã1,4.
In order to compute the first Reduce function, Node 1

needs the intermediate values (a1,1, a1,2, a1,3, a1,4, a1,5, a1,6).
Since three intermediate values (a1,1, a1,2, a1,3) are already
available at Node 1 after the Map phase, Node 1 only needs
to obtain (a1,4, a1,5, a1,6) in the Shuffle phase. Similarly,
(a2,2, a2,3, a2,6), (a3,1, a3,3, a3,5) and (a4,1, a4,2, a4,4) need to
be delivered to Nodes 2, 3 and 4, respectively (see Fig. 3). We
will show that in each transmission block, K = 4 intermediate
values are transmitted to K receivers without interference,
and three blocks (T = 3) are sufficient for delivering all the
required intermediate values.

In the first block, four required intermediate values
a1,4, a2,3, a3,3 and a4,4 are transmitted to Nodes 1, 2, 3 and 4,
respectively. Specifically, the transmitted signals of four nodes
are given as

x1[1] = β1,2,3ã2,3 + β1,3,3ã3,3, (16)
x2[1] = β2,1,4ã1,4 + β2,4,4ã4,4, (17)
x3[1] = β3,1,4ã1,4 + β3,4,4ã4,4, (18)
x4[1] = β4,2,3ã2,3 + β4,3,3ã3,3, (19)

where the beamforming coefficients {βi,q,n} are designed such
that

v{2,3},4,4 ∈ Null(h1,{2,3}), v{1,4},3,3 ∈ Null(h2,{1,4}), (20)
v{1,4},2,3 ∈ Null(h3,{1,4}), v{2,3},1,4 ∈ Null(h4,{2,3}), (21)

where Null(e) denotes the null space of the vector e.
At the receiver side, Node 1 receives the following signal

y1[1] =

K∑
i=1

h1,ixi[1] + z1[1]

= hT1,{2,3}v{2,3},1,4ã1,4︸ ︷︷ ︸
desired intermediate value

+hT1,{1,4}v{1,4},2,3ã2,3︸ ︷︷ ︸
side information

+

hT1,{1,4}v{1,4},3,3ã3,3︸ ︷︷ ︸
side information

+hT1,{2,3}v{2,3},4,4ã4,4︸ ︷︷ ︸
interference

+z1[1].

In the above expansion of y1[1], the second and the third terms
can be removed by using side information ã2,3 and ã3,3 at

w1 w4w3w2 w1 w7w6w5 w2 w9w8w5 w3 w10w8w6 w4 w10w9w7

Map Map Map Map Map

a1,1 a2,1 a5,1a4,1a3,1

a1,2 a2,2 a3,2 a4,2 a5,2

a1,3 a2,3 a3,3 a4,3 a5,3

a1,4 a2,4 a3,4 a4,4 a5,4 a1,10 a2,10 a3,10 a4,10 a5,10

a1,9 a2,9 a3,9 a4,9 a5,9

a1,10 a2,10 a3,10 a4,10 a5,10

a1,1 a2,1 a5,1a4,1a3,1

a1,5 a2,5 a3,5 a4,5 a5,5

a1,6 a2,6 a3,6 a4,6 a5,6

a1,7 a2,7 a3,7 a4,7 a5,7

a1,5 a2,5 a3,5 a4,5 a5,5

a1,8 a2,8 a3,8 a4,8 a5,8

a1,9 a2,9 a3,9 a4,9 a5,9

a1,2 a2,2 a3,2 a4,2 a5,2

a1,8 a2,8 a3,8 a4,8 a5,8

a1,7 a2,7 a3,7 a4,7 a5,7

a1,3 a2,3 a3,3 a4,3 a5,3

a1,6 a2,6 a3,6 a4,6 a5,6

a1,4 a2,4 a3,4 a4,4 a5,4

Node 1 Node 2 Node 3 Node 4 Node 5

a3,7 a4,71

2

3

4

5

6

7

8

Node 1 Node 2 Node 3 Node 4 Node 5

Broadcast BroadcastBlocks

a2,8

Need

a3,7 a4,7

Broadcast

a3,7

Need

a4,7

Need

a2,8 a5,8

Broadcast

a5,8

NeedBroadcast

a2,8 a5,8

a2,10 a3,10a2,10 a4,5 a5,5 a3,10 a4,5 a2,10 a3,10 a5,5a4,5 a5,5

a3,3 a5,3 a1,9 a4,9a1,9 a3,3 a4,9 a3,3 a5,3 a5,3a1,9 a4,9

a4,2 a5,2 a3,4 a1,10a3,4a1,10 a3,4 a4,2 a1,10 a5,2a4,2 a5,2

a2,2 a4,1a1,8 a2,2 a3,6 a4,1 a3,6 a4,1 a1,8 a3,6a2,2a1,8

a2,4 a4,4 a2,4 a4,4a1,6 a2,4 a1,6 a5,6 a4,4 a1,6 a5,6 a5,6

a1,7a2,3a1,7 a2,3 a1,7 a2,3

a3,1 a5,1 a2,9a1,5 a2,9 a1,5 a3,1 a5,1 a3,1 a5,1a1,5 a2,9

Need

Fig. 4. An example of wireless distributed computing with K = Q = 5, N = 10 and r = 2.

Node 1, while the fourth term can be canceled out due to our
design in (20). In our setting, since we consider the full rank
assumption for the channels, once a beamforming vector is or-
thogonal to the channel vector associated with the interference,
e.g., v{2,3},1,4 ∈ Null(h4,{2,3}), then this beamforming vector
is not orthogonal to the channel vector associated with the
desired intermediate value, e.g., v{2,3},1,4 6∈ Null(h1,{2,3}).

Therefore, Node 1 can decode the desired intermediate value
a1,4. Similarly, Nodes 2, 3 and 4 can decode the desired
a2,3, a3,3 and a4,4, respectively.

By applying the same methods, in the second block the
desired intermediate values a1,5, a2,2, a3,5 and a4,2 can be
delivered to Nodes 1, 2, 3 and 4, respectively, while in the
third block, the desired intermediate values a1,6, a2,6, a3,1 and
a4,1 can be delivered to Nodes 1, 2, 3 and 4, respectively.

Therefore, with the methods of side information cancellation
and zero-forcing, each node can obtain the desired intermedi-
ate values after using three blocks (T = 3) in the Shuffle
phase.

B. The example of K = Q = 5, N = 10 and r = 2 (r < K/2)

Let us consider the example of K = Q = 5, r = 2
and N =

(
K
r

)
= 10 (see Fig. 4). This case is different

from the case mentioned in Section IV-A. In the previous
case with r ≥ K/2, K intermediate values are delivered
without interference in each transmission block. However,
in this case with r < K/2, it is impossible to deliver K
intermediate values without interference in each transmission
block. Instead, 2r intermediate values are delivered in each

transmission block, by using partial zero-forcing and side
information cancellation.

In this example, given 10 independent files, we assign 4
independent files for each node such that M1 = {1, 2, 3, 4},
M2 = {1, 5, 6, 7}, M3 = {2, 5, 8, 9}, M4 = {3, 6, 8, 10},
and M5 = {4, 7, 9, 10}, as shown in Fig. 4. Again, without
loss of generality we consider the case where the k-th Reduce
function is assigned to Node k, for k ∈ [1 : K].

After the Map phase, each node generates a set of inter-
mediate values. In order to complete the computation of each
Reduce function, all the nodes need to exchange a subset of
intermediate values in the Shuffle phase. For instance, in order
to compute the first Reduce function at Node 1, the following
intermediate values

(a1,5, a1,6, a1,7, a1,8, a1,9, a1,10)

need to be delivered to Node 1 in the Shuffle phase.
We select 2r = 4 nodes to exchange the intermediate

values at each transmission block. Let us focus on the first
block. As shown in Fig. 4, in this block, we select only four
nodes, i.e., Nodes 2, 3, 4 and 5, to exchange four intermediate
values (a2,8, a3,7, a4,7, a5,8). Note that, a2,8, a3,7, a4,7 and
a5,8 are intended for Nodes 2, 3, 4 and 5, respectively. The
beamforming coefficients {βi,q,n} are designed such that

v{3,4},5,8 ∈ Null(h2,{3,4}), v{2,5},4,7 ∈ Null(h3,{2,5}), (22)
v{2,5},3,7 ∈ Null(h4,{2,5}), v{3,4},2,8 ∈ Null(h5,{3,4}). (23)

At the receiver side, Node 2 receives the following signal

y2[1] = hT2,{3,4}v{3,4},2,8ã2,8︸ ︷︷ ︸
desired intermediate value

+hT2,{2,5}v{2,5},3,7ã3,7︸ ︷︷ ︸
side information

+

hT2,{2,5}v{2,5},4,7ã4,7︸ ︷︷ ︸
side information

+hT2,{3,4}v{3,4},5,8ã5,8︸ ︷︷ ︸
interference

+z2[1].

Due to the side information cancellation and zero-forcing, a2,8
can be decoded at Node 2 without interference. In a similar
way, a3,7, a4,7 and a5,8 can be decoded at Nodes 3, 4 and 5,
respectively.

With the same argument, in each of the other blocks (see
Fig. 4), only four nodes are selected to receive four interme-
diate values. In this way, at each block all the interference can
be either canceled with side information or zero-forced at the
selected nodes (partial zero-forcing). The only exception is
that block 6 transmits only two intermediate values, because
the total number of transmitted intermediate values 30 is not
a multiple of 2r = 4. Therefore, all the required intermediate
values can be delivered with T = 8 transmission blocks in the
Shuffle phase. The communication load is L = T

NQ = 0.16.
In fact, it will be seen from the converse proof in Section
V that, for any feasible scheme, one needs to transmit a
total of Ctotal = 30 intermediate values in the shuffle phase,
and at most 2r = 4 intermediate values can be delivered
in each block. Thus the number of transmission blocks is
T ≥ d 304 e = 8. Therefore, the scheme of this example is
optimal for N = 10. Note that if there are N = 20 files, then
it is possible to extend the scheme in this example and obtain
a lower communication load L = 0.15, matching the result of
Theorem 1. The details are shown in Section VI-B.

C. Discussion on time varying channels
Note that our achievability and converse also work for

the setting with varying channel gains. One simply needs to
replace the channel vector and the beamforming vector with
the channel matrix and the beamforming matrix, respectively.
In the following we explain this point by focusing on the
example in Section IV-A.

For this example with varying channel gains, the received
signal of Node 1 at block 1 takes the following form

y1[1]

=

K∑
i=1

H1,i[1]xi[1] + z1[1]

=HT
1,{2,3}[1]V {2,3},1,4ã1,4︸ ︷︷ ︸

desired intermediate value

+HT
1,{1,4}[1]V {1,4},2,3ã2,3︸ ︷︷ ︸

side information

+ HT
1,{1,4}[1]V {1,4},3,3ã3,3︸ ︷︷ ︸

side information

+HT
1,{2,3}[1]V {2,3},4,4ã4,4︸ ︷︷ ︸

interference

+ z1[1] (24)

where

Hk,i[`] =


h
(1)
k,i [`] 0 . . . 0

0 h
(2)
k,i [`] . . . 0

...
...

...
...

0 0 . . . h
(τ)
k,i [`]



and h
(n)
k,i [`], n ∈ [1, τ] denotes the channel gain of the n-th

channel use in block `, for Transmitter i and Receiver k. In
the above expression of y1[1], we have the following notations

HT
1,{2,3}[1]

=



h
(1)
1,2[1] h

(1)
1,3[1] 0 0 0

0 0 h
(2)
1,2[1] h

(2)
1,3[1] 0

...
...

...
...

...
...

...

0 0 h
(τ)
1,2 [1] h

(τ)
1,3 [1]


and

V {2,3},4,4 =



β
(1)
2,4,4 0 . . . 0

β
(1)
3,4,4 0 . . . 0

0 β
(2)
2,4,4 . . . 0

0 β
(2)
3,4,4 . . . 0

...
...

...
...

0 0 . . . β
(τ)
2,4,4

0 0 . . . β
(τ)
3,4,4


where β

(n)
i,q,n denotes the beamforming coefficient of the n-

th channel use. By designing the beamforming coefficients
{β(n)

i,q,n} such that HT
1,{2,3}[1]V {2,3},4,4 = 0, the interference

can be removed.
With this approach, one can conclude that the proposed

general scheme and the converse argument also hold for the
setting with time varying channel gains. For simplicity of
presentation, we omit the details and just assume fixed channel
gains in the remaining sections.

V. CONVERSE PROOF FOR THEOREM 1

In this section we show the converse of Theorem 1. In fact,
we show the following lower bound of the communication
load:

L ≥
1− r

K

min{K, 2r}
, r ∈ R, 1 ≤ r ≤ K. (25)

We first bound the maximum number of coded packets (of
the corresponding intermediate values) that can be transmitted
simultaneously in block `, denoted by |D`|, for ` ∈ [1 : T]. We
take a similar approach as in [32], [50]. Recall that in block `
we have coded packets D` to be transmitted to the receivers
indexed by R`, with |R`| = |D`|.

In block `, the transmitted signal from Node i takes the
form as in (5). Then, the received signal of Node k, k ∈ R`,

takes the following form

yk[`] =

K∑
i=1

hk,ixi[`] + zk[`]

=

K∑
i=1

hk,i
∑

(q,n): ãq,n∈D`, n∈Mi

βi,q,nãq,n + zk[`]

=
∑

(q,n):ãq,n∈D`

∑
i∈Sn

hk,iβi,q,nãq,n + zk[`]

=
∑

(q,n):ãq,n∈D`

hTk,SnvSn,q,nãq,n + zk[`] (26)

where the channel vector hk,Sn , the beamforming vector
vSn,q,n are defined in (14) and (15), respectively. From (26),
we can conclude that the channel of packet transmission can
be transformed into a MISO interference channel. The MISO
interference channel has |R`| single-antenna receivers and |D`|
virtual transmitters, where virtual Transmitter Sn has |Sn|
antennas, for n ∈ [1 : N].

In what follows let us first consider the case where each file
wn is stored at |Sn| = r nodes (symmetric file replications),
for n = 1, 2, · · · , N and integer r ∈ {1, 2, . . . ,K}. For the
other case where different files may be replicated different
times (asymmetric file replications), the proof is provided in
Section V-A.

Let us focus on the transmission of one coded packet ãq,n
associated with the intermediate value aq,n, for a given pair
(q, n). Assume it is transmitted in block `, and is intended
for Receiver k, for ` ∈ [1 : T] and k ∈ [1 : K].
Based on a MISO interference channel, a beamforming vector
vSn,q,n ∈ C|Sn| is used by virtual Transmitter Sn to transmit
the corresponding coded packet ãq,n. At the receiver side, let
Jn = R`\{{k}∪Sn} denote the indices of receivers excluding
the intended Receiver k and the transmitters indexed by Sn,
where the packet ãq,n should be zero forced. Then

|Jn| ≥ |R`| − |Sn| − 1, (27)

and the inequality holds with equality when Sn is a subset
of R`. Therefore, for H ∈ C|Jn|×|Sn| denoting the channel
from virtual Transmitter Sn to the receivers indexed by Jn,
we should have

HvSn,q,n = 0 (28)

in order to remove the interference associated with ãq,n at the
receivers indexed by Jn. Given that H is full rank and vSn,q,n
should be nonzero, a necessary condition for the existence of
the solution to (28) becomes

|Jn| ≤ |Sn| − 1, (29)

which combined with (27) gives

|D`| = |R`| ≤ 2|Sn| = 2r. (30)

Furthermore, it is obvious that |D`| ≤ K. Then, we can
conclude that, at block ` the maximum number of transmitted
coded packets satisfies

|D`| ≤ min{K, 2r}, ∀` ∈ [1 : T]. (31)

Since in one block we can transmit |D`| coded packets,
combining (11) and (31), the number of blocks used to
transmit all the intermediate values should be bounded by

T ≥
⌈
Ctotal

|D`|

⌉
≥

⌈
NQ(1− r

K)

min{K, 2r}

⌉
. (32)

Therefore, communication load L should be bounded by

L =
T

NQ
≥

⌈
NQ(1− r

K)

min{K,2r}

⌉
NQ

≥
1− r

K

min{K, 2r}
. (33)

A. The case with asymmetric file replications

Now, let us consider the case where different files may be
replicated different times (asymmetric file replications), given
an average computation load r =

∑K
k=1 |Mk|
N . Note that for

this case the value r does not need to be an integer. Let

θn, |Sn|

denote the number of times that File n is replicated across the
distributed nodes, n ∈ [1 : N]. By our definitions of θn and
r, we have, ∑N

n=1 θn
N

= r.

Without loss of generality, we consider the case with

θ1 ≤ θ2 ≤ · · · ≤ θN .

Let Cn denote the total number of intermediate values gen-
erated by File n and required to be delivered in the Shuffle
phase, n ∈ [1 : N]. Then, we have

Cn =
(K − θn)Q

K
. (34)

This is because, for each node that does not have File n,
it needs Q/K intermediate values generated by File n to
complete the computation of its output functions; and the total
number of nodes that do not have File n is (K − θn). It is
easy to see that

N∑
n=1

Cn = Ctotal, (35)

where Ctotal is defined in (11). Let us use the following
notations for the ease of our argument:

σn ,
Cn

min{2θn,K}
=

(K − θn)

min{2θn,K}
· Q
K
, (36)

and

σsum ,
N∑
n=1

σn. (37)

In the rest of the proof, we show that σsum is a lower bound
on the number of required blocks T . Thus the converse of
Theorem 1 follows from bounding σsum.

In each block `, packets corresponding to |R`| = |D`|
intermediate values are transmitted, for ` ∈ [1 : T]. Let r`,j
denote the total number of nodes that generate (after the Map
phase) the jth intermediate value out of these |D`| intermediate

values. It implies that r`,j ∈ {θ1, · · · , θN}, for j ∈ [1 : |D`|].
For example, in block `, if we transmit intermediate values
corresponding to Files 1, 1, 2 and 3, then we have

(r`,1, r`,2, r`,3, r`,4) = (θ1, θ1, θ2, θ3).

Without loss of generality let

r`,1 ≤ r`,2 ≤ · · · ≤ r`,|D`|.

Let C`,n denote the total number of intermediate values
generated by File n and delivered in block `. By the definitions
of C`,n and Cn, we have

T∑
`=1

C`,n = Cn. (38)

Moreover,

|D`| =
N∑
n=1

C`,n. (39)

Thus
T∑
`=1

|D`| =
T∑
`=1

N∑
n=1

C`,n (40)

=

N∑
n=1

Cn (41)

=

N∑
n=1

Cn
min{2θn,K}

min{2θn,K}

=

N∑
n=1

σn min{2θn,K}, (42)

where (40) is from (39); (41) is from (38); (42) is from (36).
Normalizing

∑T
`=1 |D`| by σsum (see (37)), we then have

1

σsum

T∑
`=1

|D`| =
N∑
n=1

σn
σsum

min{2θn,K} (43)

≤ 1

N

N∑
n=1

min{2θn,K} (44)

≤min
{ 1

N

N∑
n=1

2θn,K
}

(45)

= min{2r,K}. (46)

Here (43) is the weighted average of the non-decreasing
sequence min{2θn,K}, 1 ≤ n ≤ N , with non-increasing
weights σn

σsum
, 1 ≤ n ≤ N . But 1

N

∑N
n=1 min{2θn,K} is the

simple average of min{2θn,K}, 1 ≤ n ≤ N , and thus (44)
holds. In addition, (45) is due to the property of the minimum
function.

Based on (46), we have

σsum ≥
∑T
`=1 |D`|

min{2r,K}
(47)

=

∑N
n=1 Cn

min{2r,K}
(48)

=
Ctotal

min{2r,K}
, (49)

where (47) is from (46); (48) is from (38) and (39); (49) is
from (35).

Furthermore, by the same argument as (31) we get that

|D`| ≤min{2r`,1,K} (50)

where r`,1 is the smallest number in {r`,j}|D`|
j=1 for block `.

On the other hand,

1 =
|D`|
|D`|

=

∑N
n=1 C`,n
|D`|

(51)

≥
∑N
n=1 C`,n

min{2r`,1,K}
(52)

≥
∑

n:C`,n=0

C`,n
min{2θn,K}

+
∑

n:C`,n 6=0

C`,n
min{2θn,K}

(53)

=

N∑
n=1

C`,n
min{2θn,K}

, (54)

where (51) is from (39); (52) results from (50); (53) is due
to the fact that for all n such that C`,n 6= 0, we have θn ∈
{r`,1, . . . , r`,|D`|}, and hence r`,1 ≤ θn. Thus,

T =

T∑
`=1

1

≥

⌈
T∑
`=1

N∑
n=1

C`,n
min{2θn,K}

⌉
(55)

≥

⌈
N∑
n=1

Cn
min{2θn,K}

⌉
(56)

=
⌈
σsum

⌉
, (57)

where (55) is from (54) and the interger property of T ; (56) is
from (38); σsum is defined in (37). Combining (49) and (57),
the total number of transmission blocks T can be bounded by

T ≥
⌈
σsum

⌉
(58)

≥
⌈

Ctotal

min{2r,K}

⌉
(59)

=

⌈
NQ(1− r

K)

min{2r,K}

⌉
, (60)

where (58) is from (57); (59) is from (49); Ctotal is defined in
(11). Finally, the communication load L is

L =
T

NQ

≥

⌈
NQ(1− r

K)

min{K,2r}

⌉
NQ

≥
1− r

K

min{K, 2r}
, (61)

which completes the proof.

VI. ACHIEVABILITY PROOF FOR THEOREM 1

In this section, we provide the achievability proof for
Theorem 1. We present our file placement scheme as well
as the one-shot linear transmission scheme. We consider the
case when the number of files, N , is sufficiently large2. Note
that for a sufficiently large number of files N , we have

αN0 < N ≤ (α+ 1)N0

for some nonnegative integer α, where N0 is defined by

N0 =


(
K
r

)
, if r ≥ K/2,(

K−r−1
r−1

)(
K
r

)
, if r < K/2.

(62)

In our scheme, we add the following number of empty files

∆ = (α+ 1)N0 −N, 0 ≤ ∆ < N0,

and then the number of input files becomes

Ñ = N + ∆ = (α+ 1)N0. (63)

Afterwards, for every
(
K
r

)
files, we design a symmetric file

placement such that each file is placed at r out of the K
nodes (see Fig. 3 for example). Then, the same placement
can be copied Ñ/

(
K
r

)
times to complete the placement of Ñ

input files. Since communication is not needed when r ≥ K,
we will just focus on the cases when

r < K.

Similar to (11), the total number of intermediate values to
be transmitted is

ÑQ
(
1− r

K

)
. (64)

We describe below the intuition of designing an optimal
achievable transmission scheme. Let us focus on the transmis-
sion of one intermediate value aq,n, for a given pair (q, n).
Assume it is transmitted in block `, and is intended for
Receiver k for ` ∈ [1 : T] and k ∈ [1 : K]. Recall that
Sn denotes the indices of r nodes having the intermediate
value aq,n. This set of transmitters is viewed as a virtual
transmitter. Recall that R` denotes the indices of receivers
in block `. Jn = R`\{{k} ∪ Sn} denotes the indices of
receivers where the packet ãq,n is zero forced. Thus |Jn| ≤
|[1 : K]\{{k} ∪ Sn}| = K − r − 1. From the analysis in the
converse proof in Section V, the number of receivers without
interference from aq,n, excluding the intended Receiver k, is:

[side information cancellation:] |Sn ∩R`| ≤ |Sn| = r, (65)
[zero-forcing:] |Jn| ≤ min{r − 1,K − r − 1}, (66)

and the total number of receivers in a block (i.e., |R`|, ` ∈ [1 :
T]) is upper bounded by 1 + |Sn ∩R`|+ |Jn| ≤ min{2r,K}.

We will show an optimal scheme such that |R`| =
min{2r,K} for all `. In particular, we show that there exists
an assignment of the intermediate values to the blocks, such
that for every aq,n, the transmitters indexed by Sn are a subset

2Note that our result also holds for the case with finite N as long as N
can be expressed as N = (α+1)N0, for some nonnegative integer α, where
N0 is defined in (62).

of the receivers indexed by R` (i.e., Sn ⊆ R`) and hence (65)
holds with equality. As a result, (66) automatically holds with
equality since |Jn| = |R`|−1−|Sn| = min{r−1,K−r−1}.

For a sufficiently large number of files N , the algorithm
of the general achievable scheme is described in Algorithm 1.
The algorithm of the Shuffle phase is described in Algorithm 2.
In what follows, we describe the scheme in details for different
cases of r < K.

Algorithm 1 Achievable MapReduce Scheme
Map Phase:

1: procedure FILE PLACEMENT
2: Partition Ñ files into Ñ/

(
K
r

)
disjoint groups

3: for i = 1 : Ñ/
(
K
r

)
4: Place

(
K
r

)
files indexed by [(i− 1)

(
K
r

)
+ 1 : i

(
K
r

)
]

symmetrically across K nodes, with each file placed at r
out of the K nodes

5: end for
6: end procedure
7: procedure MAP FUNCTION
8: for k = 1 : K
9: Node k computes Map functions and outputs aq,n,
q ∈ [1 : Q] and n ∈Mk

10: end for
11: end procedure

Shuffle Phase:
12: procedure SHUFFLE
13: for ` = 1 : T
14: Deliver min{2r,K} intermediate values in block `
15: end for
16: end procedure

Reduce Phase:
17: procedure REDUCE FUNCTION
18: for k = 1 : K
19: Node k computes Reduce functions indexed byWk

20: end for
21: end procedure

A. The case of r ≥ K/2
In this case we will show that K = min{2r,K} interme-

diate values can be transmitted in each block. From (62), in
this case we have the following number of data files

Ñ = (α+ 1)N0 = (α+ 1)

(
K

r

)
.

Recall that after the Map phase, the following set of interme-
diate values are cached at Node k, k ∈ [1 : K],

Pk = {aq,n : q ∈ [1 : Q], n ∈Mk}, (67)

with |Pk| = Q · |Mk|, where |Mk| = Ñr
K according to

our placement. Furthermore, the following set of intermediate
values are required by Node k

Gk = {aq,n : q ∈ Wk, n ∈ [1 : Ñ], n /∈Mk}, (68)

Algorithm 2 Shuffle Phase

Shuffle Phase:
1: procedure SHUFFLE
2: procedure ENCODING

3: 1. Choose intermediate values:
4: if r ≥ K/2
5: for block index ` = 1 : T
6: For every k ∈ [1 : K], choose one
7: undelivered aq,n from Gk as in (68).
8: end for
9: else (r < K/2)

10: Initialize block index ` = 1
11: for every R ⊆ [1 : K]
12: for copy = 1 : (α+ 1)QK
13: for i = 1 :

(
2r−1
r

)
14: Choose one undelivered aq,n from
15: Ak,Sk,i

defined in (72) and (73), for
16: every k ∈ R.
17: Increase block index ` = `+ 1.
18: end for
19: end for
20: end for
21: end if

22: 2. Gaussian coding: aq,n ∈ FB2 → ãq,n ∈ Cτ ,
23: where B = τ logP + o(τ logP), ∀q, n.

24: 3. Choose beamforming coefficients βi,q,n,
25: ∀q, n, i ∈ Sn, to satisfy zero-forcing in (28).

26: 4. Node i: xi[`] =
∑

(q,n): ãq,n∈D`, n∈Mi

βi,q,nãq,n,

27: i ∈ [1 : K], ` ∈ [1 : T].
28: end procedure

29: procedure DECODING

30: 1. Node k receives signal: yk[`] =
∑K
i=1 hk,ixi[`]

31: +zk[`], k ∈ [1 : K], ` ∈ [1 : T].

32: 2. Substract the interference from yk[`] by using
33: a linear function, Lk,`(yk[`], P̃k), where
34: P̃k = {ãq,n : aq,n ∈ Pk} is side information at
35: Node k, k ∈ [1 : K], ` ∈ [1 : T].

36: 3. Decode ãq,n as Lk,`(yk[`], P̃k) = ãq,n +zk[`],
37: ∀q, n.

38: 4. Decoding: ãq,n ∈ Cτ → aq,n ∈ FB2 , ∀q, n.
39: end procedure
40: end procedure

with |Gk| = Q
K (Ñ − |Mk|) =

ÑQ(1− r
K)

K .
In our scheme, we design

T =
ÑQ(1− r

K)

K
(69)

blocks such that in every block each of the K nodes receives
one intermediate value without interference. Specifically, in
each block we choose one of the undelivered intermediate
values arbitrarily from Gk, for all k ∈ [1 : K]. As a result, in
each block, K intermediate values are selected, each intended
for a different receiver. For each selected intermediate value,
it interferes with K − 1 unintended receivers. However, we
note that for any intermediate value aq,n, (65) and (66) hold
with equality, since R` = [1 : K], |Sn ∩R`| = |Sn| = r, and
|Jn| = K − r − 1 = min{r − 1,K − r − 1}. Thus a total of
K = min{2r,K} intermediate values can be transmitted in
every block.

In our scheme, one intermediate value in Gk, ∀k ∈ [1 : K],
is delivered at each block. It implies that the number of blocks
to deliver all the required intermediate values is

T = |G1| = · · · |GK | =
ÑQ(1− r

K)

K
,

which can be rewritten as

T =
NQ(1− r

K)

K
+

∆Q(1− r
K)

K
, (70)

where 0 ≤ ∆ < N0, N0 =
(
K
r

)
(see (62) and (63)). The

second term on the right hand side of (70) can be bounded by

∆Q(1− r
K)

K
<
N0Q(1− r

K)

K
= o(N), (71)

where o(N)/N vanishes when N grows and Q,K, r are kept
fixed. As mentioned, such scaling of N is seen in many big
data applications. Therefore, for a large N , the communication
load L is

L =
T

NQ
=

1− r
K

K
.

B. The case of r < K/2

In this case, at each transmission block we choose 2r =
min{2r,K} nodes out of K nodes as receivers, and a subset
of them as transmitters. Next, we show that 2r intermediate
values can be transmitted for each block without interference.

From (62) and (63), in this case we have the following
number of data files

Ñ = (α+ 1)

(
K − r − 1

r − 1

)(
K

r

)
.

For any k ∈ [1 : K] and S ⊆ [1 : K]\{k}, |S| = r, let us
define a set of intermediate values as

Ak,S = {aq,n : q ∈ Wk, n ∈ ∩j∈SMj}.

By definition, for each intermediate value in Ak,S , it is
required by Node k for its Reduce functions and it is cached
in each of the nodes indexed by S. Note that due to the

TABLE I
AN EXAMPLE FOR ONE COPY WITH 3 BLOCKS, FOR r = 2 AND

R = {1, 2, 3, 4}.

Receiver 1 2 3 4

block 1 A1
1,{2,3} A1

2,{1,3} A1
3,{1,2} A1

4,{1,2}
block 2 A2

1,{2,4} A2
2,{1,4} A2

3,{1,4} A2
4,{1,3}

block 3 A2
1,{3,4} A2

2,{3,4} A2
3,{2,4} A2

4,{2,3}

symmetric file placement, for every pair (k,S), the number
of intermediate values in Ak,S is

|Ak,S | =
Q

K

Ñ(
K
r

) = (α+ 1)
Q

K

(
K − r − 1

r − 1

)
. (72)

Let R ⊆ [1 : K] be the indices of an arbitrary set of
2r receivers, |R| = 2r. We next design (α + 1)QK

(
2r−1
r

)
blocks such that in every block, every node whose index is
in R receives one intermediate value without interference.
Such blocks can be viewed as (α + 1)QK copies, each copy
corresponding to

(
2r−1
r

)
blocks. We describe the transmission

for one copy, and without loss of generality we index the
corresponding blocks of that copy by 1, 2, . . . ,

(
2r−1
r

)
. The

transmissions for the other copies are the same.
For every k ∈ R, let

Sk,1,Sk,2, . . . ,Sk,(2r−1
r) (73)

be the subsets of R\{k} in any given order, each subset with
size r, i.e., |Sk,i| = r for i = 1, 2, · · · ,

(
2r−1
r

)
. These subsets

are used as different virtual transmitters for Receiver k. In
the i-th block, 1 ≤ i ≤

(
2r−1
r

)
, one intermediate value in

Ak,Sk,i
is transmitted, for all k ∈ R. From (65) and (66),

when an intermediate value in Ak,Sk,i
is transmitted, it can

be canceled using side information at r undesired receivers
indexed by Sk,i (because it is cached in the nodes indexed by
Sk,i); it can be zero-forced at the remaining r− 1 = min{r−
1,K − r− 1} undesired receivers. Hence, in block i, each of
2r receivers in R gets a desired intermediate value without
interference. In addition, over the

(
2r−1
r

)
blocks, a total of

2r ·
(
2r−1
r

)
intermediate values are transmitted, where each of

them comes from one (and only one) of the sets {Ak,S : k ∈
R,S ⊆ R\{k}, |S| = r}.

For example, let r = 2,R = {1, 2, 3, 4}. One copy of the
scheme has

(
2r−1
r

)
= 3 blocks. Some details of one copy are

given in Table I. In Table I, Ajk,S denotes the j-th element of
set Ak,S for j ∈ [1 : |Ak,S |]. We can arbitrarily choose the
superscript j as long as the intermediate value has not been
sent. In this example, every transmitted intermediate value can
be decoded at the intended receiver without interference. Note
that {2, 3}, {2, 4} and {3, 4} are three subsets of R\{1} and
we choose S1,1 = {2, 3},S1,2 = {2, 4} and S1,3 = {3, 4},
corresponding to the column for Receiver 1. One can also
permute these three subsets in any other order and have, e.g.,
S1,1 = {2, 4},S1,2 = {2, 3} and S1,3 = {3, 4}.

Now for every R ⊆ [1 : K] of size 2r, we proceed as before
and create (α+ 1)QK

(
2r−1
r

)
blocks. In every block, exactly 2r

intermediate values can be transmitted without interference.
Moreover, the scheme is symmetric, in the sense that a total
of (α + 1)QK

(
K−r−1
r−1

)
= |Ak,S | intermediate values in Ak,S

are transmitted at the end of the scheme, for any k ∈ [1 :
K],S ⊆ [1 : K]\{k}, |S| = r. This can be seen from the
following facts: there are

(
K−r−1
r−1

)
choices of R that include

k and S; for every such R we create (α + 1)QK copies; and
for every copy we transmit one intermediate value in Ak,S .

One can see an example with (Ñ = 20,K = Q = 5, r = 2)
in Table II. Let {A1

k,S}k,S be the set of intermediate values
associated with Files 1 to 10, and {A2

k,S}k,S be the set of
intermediate values associated with Files 11 to 20. Note that
focusing on the intermediate values in the set {A1

k,S}k,S in
Table II, we can extract a scheme with (N = 10, T = 8) that
is identical to the example (see Fig. 4) in Section IV-B. For
example, the four intermediate values (a2,8, a3,7, a4,7, a5,8) in
block 1 of Fig. 4 correspond to the four intermediate values
(A1

2,{3,4}, A
1
3,{2,5}, A

1
4,{2,5}, A

1
5,{3,4}) in block 1 of Table II.

Similarly, the transmissions of blocks 1, 2, · · · , 8 in Fig. 4
match the transmissions of blocks 1, 2, 4, 5, 7, 8, 10, 13 in
Table II, respectively. We note that when the number of files
increases from N = 10 to N = 20, the communication load
is reduced from L = 0.16 to L = 0.15, due to the integral
effect in dCtotal

2r e.
Based on the above scheme, and similar to (70) and (71),

the number of transmission blocks T is

T =
ÑQ(1− r

K)

2r
(74)

=
NQ(1− r

K)

2r
+ o(N). (75)

Finally, for a large N , the communication load L is given as

L =
T

NQ
=

1− r
K

2r
. (76)

Remark 4. As a sanity check, the total number of blocks is
also equal to

T = (α+ 1)
Q

K

(
2r − 1

r

)(
K

2r

)
, (77)

where (α + 1)QK
(
2r−1
r

)
is the number of blocks for each 2r

receiver set R, and
(
K
2r

)
is the number of choices of receiver

sets R. One can easily verify that (77) is equal to (74).

Remark 5. In the proof, at least one copy of
(
2r−1
r

)
blocks for

receivers R is needed. However, it may be possible to reduce
the number of blocks in a copy, and hence reduce the minimum
required Ñ . The smallest Ñ for given parameters is an open
problem.

VII. CONCLUSION

In this work, we studied the MapReduce-based wireless
distributed computing framework, where the distributed nodes
exchange information over a wireless interference network.
We demonstrated an optimal tradeoff between the computation
load and communication load, under the assumption of one-
shot linear schemes. One possible future direction is to allow
arbitrary given file placement in the Map phase, with a given

TABLE II
AN EXAMPLE WITH (Ñ = 20,K = Q = 5, r = 2). FOR EACH RECEIVER SET R, WE DESIGN (α+ 1)Q

K
= 1 COPY OF

(2r−1
r

)
= 3 BLOCKS. WE LIST

ALL THE TRANSMITTED INTERMEDIATE VALUES AND THE CORRESPONDING RECEIVERS IN EACH BLOCK. INTERMEDIATE VALUE A1
k,S CORRESPONDS

TO FILES 1 TO 10; INTERMEDIATE VALUES A2
k,S CORRESPONDS TO FILES 11 TO 20.

Receiver (Node) 1 2 3 4 5

File w1 w2 w3 w4 w1 w5 w6 w7 w2 w5 w8 w9 w3 w6 w8 w10 w4 w7 w9 w10

placement w11 w12 w13 w14 w11 w15 w16 w17 w12 w15 w18 w19 w13 w16 w18 w20 w14 w17 w19 w20

block 1 A1
2,{3,4} A1

3,{2,5} A1
4,{2,5} A1

5,{3,4}
block 2 A1

2,{4,5} A1
3,{4,5} A1

4,{2,3} A1
5,{2,3}

block 3 A2
2,{3,5} A2

3,{2,4} A2
4,{3,5} A2

5,{2,4}

block 4 A1
1,{3,5} A1

3,{1,4} A1
4,{3,5} A1

5,{1,4}
block 5 A1

1,{4,5} A1
3,{1,5} A1

4,{1,3} A1
5,{1,3}

block 6 A2
1,{3,4} A2

3,{4,5} A2
4,{1,5} A2

5,{3,4}

block 7 A1
1,{2,4} A1

2,{1,5} A1
4,{1,5} A1

5,{2,4}
block 8 A1

1,{2,5} A1
2,{1,4} A2

4,{1,2} A2
5,{1,2}

block 9 A2
1,{4,5} A2

2,{4,5} A2
4,{2,5} A2

5,{1,4}

block 10 A1
1,{2,3} A1

2,{3,5} A1
3,{1,2} A1

5,{1,2}
block 11 A2

1,{2,5} A2
2,{1,3} A2

3,{1,5} A2
5,{1,3}

block 12 A2
1,{3,5} A2

2,{1,5} A2
3,{2,5} A2

5,{2,3}

block 13 A1
1,{3,4} A1

2,{1,3} A1
3,{2,4} A1

4,{1,2}
block 14 A2

1,{2,3} A2
2,{1,4} A2

3,{1,2} A2
4,{1,3}

block 15 A2
1,{2,4} A2

2,{3,4} A2
3,{1,4} A2

4,{2,3}

average computation load, and find the corresponding optimal
achievable scheme. Moreover, the communication cost is an
open problem when channel state information and synchro-
nization are not fully available. Another direction is to charac-
terize the fundamental tradeoff between the computation load
and communication load without the assumption of one-shot
linear schemes, where it may be possible apply the interference
alignment approach to improve the system performance.

REFERENCES

[1] H. Vardhan, S.-R. Ryu, B. Banerjee, and R. Prakash, “60GHz wireless
links in data center networks,” Computer Networks, vol. 58, pp. 192–
205, Jan. 2014.

[2] J. Bao, D. Dong, B. Zhao, Z. Luo, C. Wu, and Z. Gong, “Flycast: Free-
space optics accelerating multicast communications in physical layer,”
in ACM SIGCOMM Computer Communication Review, Oct. 2015, pp.
97–98.

[3] E. Marinelli, “Hyrax: Cloud computing on mo-
bile devices using mapreduce,” 2009, available on:
http://www.dtic.mil/dtic/tr/fulltext/u2/a512601.pdf.

[4] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mobile
edge computing – A key technology towards 5G,” ETSI white paper,
no. 11, pp. 1–16, 2015.

[5] S. Yi, C. Li, and Q. Li, “A survey of fog computing: Concepts,
applications and issues,” in Proceedings of the 2015 Workshop on Mobile
Big Data, Jun. 2015.

[6] M. Satyanarayanan, “The emergence of edge computing,” Computer,
vol. 50, no. 1, pp. 30–39, Jan. 2017.

[7] T. Jeong, J. Chung, J. Hong, and S. Ha, “Towards a distributed
computing framework for fog,” in IEEE Fog World Congress, Nov. 2017.

[8] S. Li, M. A. Maddah-Ali, and A. S. Avestimehr, “Coding for distributed
fog computing,” IEEE Commun. Magazine, vol. 55, no. 4, pp. 34–40,
Apr. 2017.

[9] J. Dean and S. Ghemawat, “MapReduce: simplified data processing on
large clusters,” Commun. of the ACM, vol. 51, no. 1, pp. 107–113, Jan.
2008.

[10] S. Li, M. A. Maddah-Ali, Q. Yu, and A. S. Avestimehr, “A funda-
mental tradeoff between computation and communication in distributed
computing,” IEEE Trans. Inf. Theory, vol. 64, no. 1, pp. 109–128, Jan.
2018.

[11] S. Li, M. A. Maddah-Ali, and A. S. Avestimehr, “Coded MapReduce,”
in Proc. Allerton Conf. Communication, Control and Computing, Sep.
2015, pp. 964–971.

[12] Q. Yu, S. Li, M. A. Maddah-Ali, and A. S. Avestimehr, “How to
optimally allocate resources for coded distributed computing?” in Proc.
IEEE Int. Conf. Communications (ICC), May 2017.

[13] Y. Ezzeldin, M. Karmoose, and C. Fragouli, “Communication vs dis-
tributed computation: an alternative trade-off curve,” in Proc. IEEE Inf.
Theory Workshop (ITW), Nov. 2017.

[14] Q. Yan, S. Yang, and M. Wigger, “A storage-computation-
communication tradeoff for distributed computing,” 2018, available on:
https://arxiv.org/abs/1805.10462.

[15] N. Shakya, F. Li, and J. Chen, “On distributed computing
with heterogeneous communication constraints,” available on
ArXiv:http://arxiv.org/abs/1802.00413.

[16] N. Woolsey, R. Chen, and M. Ji, “A new combinatorial
design of coded distributed computing,” 2018, available on:
https://arxiv.org/abs/1802.03870.

[17] E. Parrinello, E. Lampiris, and P. Elia, “Coded distributed computing
with node cooperation substantially increases speedup factors,” 2018,
available on: https://arxiv.org/abs/1802.04172.

[18] K. Konstantinidis and A. Ramamoorthy, “Leveraging coding tech-
niques for speeding up distributed computing,” 2018, arXiv preprint
arXiv:1802.03049.

[19] S. Prakash, A. Reisizadeh, R. Pedarsani, and A. S. Avestimehr, “Coded
computing for distributed graph analytics,” in Proc. IEEE Int. Symp. Inf.
Theory (ISIT), Jun. 2018.

[20] S. Srinivasavaradhan, L. Song, and C. Fragouli, “Distributed computing
trade-offs with random connectivity,” in Proc. IEEE Int. Symp. Inf.
Theory (ISIT), Jun. 2018.

[21] S. Li, M. A. Maddah-Ali, and A. S. Avestimehr, “Compressed coded
distributed computing,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Jun.
2018.

[22] S. Li, Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “A scalable
framework for wireless distributed computing,” IEEE/ACM Trans. Netw.,
vol. pp, no. 99, pp. 1–12, May 2017.

[23] ——, “Coded distributed computing: Fundamental limits and practical
challenges,” in Proc. Asilomar Conf. Signals, Systems and Computers,
Nov. 2016, pp. 509–513.

[24] S. Li, M. A. Maddah-Ali, and A. S. Avestimehr, “Communication-aware
computing for edge processing,” in Proc. IEEE Int. Symp. Inf. Theory
(ISIT), Jun. 2017, pp. 2885–2889.

[25] M. Attia and R. Tandon, “On the worst-case communication overhead
for distributed data shuffling,” in Proc. Allerton Conf. Communication,
Control and Computing, Sep. 2016, pp. 961–968.

[26] L. Song, C. Fragouli, and T. Zhao, “A pliable index coding approach to
data shuffling,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Jun. 2017,
pp. 2558–2562.

[27] M. Attia and R. Tandon, “Information theoretic limits of data shuffling
for distributed learning,” in Proc. IEEE Global Conf. Communications
(GLOBECOM), Dec. 2016.

[28] M. A. Maddah-Ali and U. Niesen, “Cache-aided interference channels,”
in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Jun. 2015, pp. 809–813.

[29] J. Hachem, U. Niesen, and S. Diggavi, “Degrees of freedom of cache-
aided wireless interference networks,” Nov. 2016, available on ArXiv:
https://arxiv.org/pdf/1606.03175v3.pdf.

[30] A. Sengupta, R. Tandon, and O. Simeone, “Fog-aided wireless networks
for content delivery: Fundamental latency tradeoffs,” IEEE Trans. Inf.
Theory, vol. 63, no. 10, pp. 6650–6678, Oct. 2017.

[31] M. Ji, G. Caire, and A. F. Molisch, “Fundamental limits of caching in
wireless D2D networks,” IEEE Trans. Inf. Theory, vol. 62, no. 2, pp.
849–869, Feb. 2016.

[32] N. Naderializadeh, M. A. Maddah-Ali, and A. S. Avestimehr, “Funda-
mental limits of cache-aided interference management,” IEEE Trans. Inf.
Theory, vol. 63, no. 5, pp. 3092–3107, Feb. 2017.

[33] F. Xu, M. Tao, and K. Liu, “Fundamental tradeoff between storage and
latency in cache-aided wireless interference networks,” IEEE Trans. Inf.
Theory, vol. 63, no. 11, pp. 7464–7491, Nov. 2017.

[34] S. Dutta, V. Cadambe, and P. Grover, ““Short-dot”: computing large
linear transforms distributedly using coded short dot products,” in
Advances In Neural Information Processing Systems (NIPS), Dec. 2016.

[35] ——, “Coded convolution for parallel and distributed computing within
a deadline,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Jun. 2017, pp.
2403–2407.

[36] S. Li, M. A. Maddah-Ali, and A. S. Avestimehr, “Coded distributed com-
puting: Straggling servers and multistage dataflows,” in Proc. Allerton
Conf. Communication, Control and Computing, Sep. 2016, pp. 164–171.

[37] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran,
“Speeding up distributed machine learning using codes,” IEEE Trans.
Inf. Theory, vol. 64, no. 3, pp. 1514–1529, Mar. 2018.

[38] M. Attia and R. Tandon, “Combating computational heterogeneity in
large-scale distributed computing via work exchange,” 2017, available
on ArXiv:https://arxiv.org/abs/1711.08452.

[39] K. Lee, C. Suh, and K. Ramchandran, “High-dimensional coded matrix
multiplication,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Jun. 2017,
pp. 2418–2422.

[40] C. Karakus, Y. Sun, and S. Diggavi, “Encoded distributed optimization,”
in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Jun. 2017, pp. 2890–2894.

[41] A. Reisizadeh, S. Prakash, R. Pedarsani, and S. Avestimehr, “Coded
computation over heterogeneous clusters,” in Proc. IEEE Int. Symp. Inf.
Theory (ISIT), Jun. 2017, pp. 2408–2412.

[42] A. Reisizadeh and R. Pedarsani, “Latency analysis of coded computation
schemes over wireless networks,” in Proc. Allerton Conf. Communica-
tion, Control and Computing, Oct. 2017, pp. 1256–1263.

[43] R. Tandon, Q. Lei, A. Dimakis, and N. Karampatziakis, “Gradient
coding: Avoiding stragglers in distributed learning,” in Proceedings of
the 34th International Conference on Machine Learning, 2017.

[44] H. Park, K. Lee, J. Sohn, C. Suh, and J. Moon, “Hierarchi-
cal coding for distributed computing,” 2018, available on ArXiv:
https://arxiv.org/abs/1801.04686.

[45] H. McMahan, F. Moore, D. Ramage, S. Hampson, and B. Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” available on ArXiv:https://arxiv.org/abs/1602.05629.

[46] J. Konecny, H. McMahan, X. Yu, P. Richtarik, A. Suresh, and D. Ba-
con, “Federated learning: Strategies for improving communication effi-
ciency,” 2017, available on: https://arxiv.org/abs/1610.05492.

[47] N. Agarwal, A. Suresh, F. Yu, S. Kumar, and H. McMahan, “cpSGD:
Communication-efficient and differentially-private distributed SGD,”
available on ArXiv:https://arxiv.org/abs/1805.10559.

[48] T. Cover and J. Thomas, Elements of Information Theory, 2nd ed. New
York: Wiley-Interscience, 2006.

[49] U. Erez and R. Zamir, “Achieving 1
2
log(1 + SNR) on the AWGN

channel with lattice encoding and decoding,” IEEE Trans. Inf. Theory,
vol. 50, no. 10, pp. 2293–2314, Oct. 2004.

[50] M. Razaviyayn, G. Lyubeznik, and Z. Q. Luo, “On the degrees of free-
dom achievable through interference alignment in a MIMO interference
channel,” IEEE Trans. Signal Process., vol. 60, no. 2, pp. 812–821, Feb.
2012.

Fan Li is currently pursuing the Ph.D. degree with the Electrical Engineering
Department of Louisiana Tech University. She received the B.Sc. degree
from Shandong Technology and Business University in 2012, and the M.Sc.
degree from University of Shanghai for Science and Technology in 2015.
Her research interests include information theory, distributed computing and
machine learning.

Jinyuan Chen is an assistant professor in the Electrical Engineering Depart-
ment of Louisiana Tech University. Before joining Louisiana Tech, he was a
postdoctoral scholar at Stanford University from 2014 to 2016. He received the
B.Sc. degree from Tianjin University in 2007, the M.Sc. degree from Beijing
University of Posts and Telecommunications in 2010, and the Ph.D. degree
from Télécom ParisTech in 2014. His research interests include information
theory, communication theory, security and privacy, distributed computing,
and machine learning.

Zhiying Wang received the B.Sc. degree in Information Electronics and
Engineering from Tsinghua University in 2007, M. Sc. and Ph.D degrees
in Electrical Engineering from California Institute of Technology in 2009
and 2013, respectively. She was a postdoctoral fellow in Department of
Electrical Engineering, Stanford University. She is currently Assistant Pro-
fessor at Center for Pervasive Communications and Computing, University of
California, Irvine. Dr. Wang is the recipient of NSF Center for Science of
Information (CSoI) Postdoctoral Research Fellow, 2013. She received IEEE
Communication Society Data Storage Best Paper Award. Her research focuses
on information theory, coding theory, with an emphasis on coding for data
storage.

