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Abstract—A secure multi-party batch matrix multiplication
problem (SMBMM) is considered, where the goal is to allow
a master to efficiently compute the pairwise products of two
batches of massive matrices, by distributing the computation
across S servers. Any X colluding servers gain no information
about the input, and the master gains no additional information
about the input beyond the product. A solution called Generalized
Cross Subspace Alignment codes with Noise Alignment (GCSA-
NA) is proposed in this work, based on cross-subspace alignment
codes. The state of art solution to SMBMM is a coding scheme
called polynomial sharing (PS) that was proposed by Nodehi
and Maddah-Ali. GCSA-NA outperforms PS codes in several key
aspects — more efficient and secure inter-server communication,
lower latency, flexible inter-server network topology, efficient
batch processing, and tolerance to stragglers. The idea of noise
alignment can also be combined with N-source Cross Subspace
Alignment (N-CSA) codes and fast matrix multiplication algo-
rithms like Strassen’s construction. Moreover, noise alignment
can be applied to symmetric secure private information retrieval
to achieve the asymptotic capacity.

Index Terms—Distributed computing, coded computing, ma-
trix multiplication secure multi-party computation, noise align-
ment.

I. INTRODUCTION

RECENT interest in coding for secure, private, and dis-
tributed computing combines a variety of elements such

as coded distributed massive matrix multiplication, straggler
tolerance, batch computing and private information retrieval
[1]–[40]. These related ideas intersected recently in General-
ized Cross Subspace Alignment (GCSA) codes presented in
[40]. GCSA codes originated in the setting of secure private
information retrieval [37] and have recently been developed
further in [40] for applications to coded distributed batch
computation problems. GCSA codes generalize and improve
upon the state of art distributed computing schemes such
as Polynomials codes [2], MatDot codes and PolyDot codes
[3], Generalized PolyDot codes [4] and Entangled Polynomial
(EP) Codes [5] that partition matrices into submatrices, as
well as Lagrange Coded Computing [6], [7] that allows batch
processing of multiple computations.
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As the next step in the expanding scope of coding for
distributed computing, recently in [41] Nodehi and Maddah-
Ali explored its application to secure multiparty computation
[42]. Specifically, Nodehi et al. consider a system including N
sources, S servers and one master. Each source sends a coded
function of its data (called a share) to each server. The servers
process their inputs and while doing so, may communicate
with each other. After that each server sends a message to the
master, such that the master can recover the required function
of the source inputs. The input data must be kept perfectly
secure from the servers even if up to X of the servers collude
among themselves. The master must not gain any information
about the input data beyond the result. Nodehi et al. propose
a scheme called polynomial sharing (PS), which admits basic
matrix operations such as addition and multiplication. By
concatenating basic operations, arbitrary polynomial function
can be calculated. The PS scheme has a few key limitations. It
needs multiple rounds of communication among servers where
every server needs to send messages to every other server. This
is a concern because communication increases the risk for
collusion. Furthermore, PS carries a high communication cost
and requires the network topology among servers to be a com-
plete graph (otherwise data security may be compromised),
does not tolerate stragglers, and does not lend itself to batch
processing. These aspects (batch processing, improved inter-
server communication efficiency, various network topologies)
are highlighted as open problems by Nodehi et al. in [41].

Since GCSA codes are particularly efficient at batch pro-
cessing and already encompass prior approaches to coded
distributed computing, in this work we explore whether GCSA
codes can also be applied to the problem identified by Nodehi
et al. In particular, we focus on the problem of secure
multiplication of two matrices. Such a problem may arise,
e.g., in correlation analysis between privately held genomic
datasets to determine genetic connections without revealing
anything else. As it turns out, in this context the answer is
in the affirmative. Securing the data against any X colluding
servers is already possible with GCSA codes as shown in
[40]. The only remaining challenge is how to prevent the
master from learning anything about the inputs besides the
result of the computation. Let us refer to the additional terms
that are contained in the answers sent by the servers to the
master, which may collectively reveal information about the
inputs beyond the result of the computation, as interference
terms. To secure these interference terms, we use the idea of
Noise Alignment (NA) – the workers communicate among
themselves to share noise terms (unknown to the master)
that are structured in the same manner as the interfering
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terms. Because of their matching structures, when added to the
answer, the noise terms align perfectly with the interference
terms and as a result no information is leaked to the master
about the input data besides the result of the computation.
Notably, the idea of noise alignment is not novel. While there
are superficial distinctions, noise alignment is used essentially
in the same manner in [43].

The combination of GCSA codes with noise alignment,
GCSA-NA in short, leads to significant advantages over PS
schemes. Foremost, because it uses GCSA codes, it allows
the benefits of batch processing as well as straggler robustness,
neither of which are available in the PS scheme of [41]. The
only reason any inter-server communication is needed in a
GCSA-NA scheme is to share the aligned noise terms among
the servers. Since these terms do not depend on the data
inputs, the inter-server communication in a GCSA-NA scheme
is secure in a stronger sense than possible with PS, i.e., even if
all inter-server communication is leaked, it can reveal nothing
about the data inputs. The inter-server communication can take
place before the input data is determined, say during off-peak
hours. This directly leads to another advantage. The GCSA-
NA scheme allows the inter-server communication network
graph to be any connected graph unlike PS schemes which
require a complete graph. In fact, the GCSA-NA scheme works
even if inter-server communication is entirely disallowed, be-
cause the aligned noise can be equivalently generated by either
of the source nodes and sent to the servers. By disallowing
communication among servers, GCSA-NA may reduce the
probability of collusion among servers relative to PS where
all servers must communicate with each other.

The rest of the paper is organized as follows. Section II
presents the problem statement. In Section III we state the
main result and compare it with previous approaches. A toy
example is presented in Section IV. The construction and proof
of GCSA-NA are shown in Section V. Section VI concludes
the paper.

Notation: For positive integers M,N (M < N ), [N ] stands
for the set {1, 2, . . . , N} and [M : N ] stands for the set
{M,M + 1, . . . , N}. For a set I = {i1, i2, . . . , iN}, XI
denotes the set {Xi1 , Xi2 , . . . , XiN }. The notation ⊗ denotes
the Kronecker product of two matrices. IN denotes the N×N
identity matrix. T(X1, X2, · · · , XN ) denotes the N×N lower
triangular Toeplitz matrix, i.e.,

T(X1, X2, · · · , XN ) =


X1

X2 X1

...
. . .

. . .
XN · · · X2 X1

 .
For a matrix M , |M | denotes the number of elements in M .
For a polynomial P , degα(P ) denotes the degree with respect
to a variable α. Define the degree of the zero polynomial as
−1. The notation Õ(a log2 b) suppresses polylog terms for
computation complexity. It may be replaced with O(a log2 b)
if the field F supports the Fast Fourier Transform (FFT), and
with O(a log2 b log log(b)) if it does not.

II. PROBLEM STATEMENT

Consider a system including 2 sources (A and B), S servers
(workers) and one master, as illustrated in Fig. 1. Each source

Source A

A =
(
A(1), . . . ,A(L)

)
,ZA

Source B

B =
(
B(1), . . . ,B(L)

)
,ZB

Server S

Server 1
· · ·

Server i1

· · ·

Server iX

· · ·

ÃS

Ã1 Ãi1

ÃiX

B̃1

B̃iX

B̃i1

B̃S

Master

Y1 Yi1

YiX

AB =
(
A(1)B(1), . . . ,A(L)B(L)

)

I(A,B;Y1,Y2, · · · ,YS | AB) = 0

A total of R answers downloaded

X possible colluding servers

Fig. 1: The SMBMM problem. Sources generate matrices
A = (A(1),A(2), · · · ,A(L)) with separate noise ZA and
B = (B(1),B(2), · · · ,B(L)) with separate noise ZB , and
upload information to S distributed servers in coded form
Ã[S], B̃[S], respectively. Servers may communicate with each
other via dash-dotted links. For security, any X colluding
servers (e.g., Servers i1 to iX in the figure) learn nothing
about A,B. The sth server computes the answer Ys, which
is a function of all information available to it. For effec-
tive straggler (e.g., Server S in the figure) mitigation, upon
downloading answers from any R servers, where R < S,
the master must be able to recover the product AB =
(A(1)B(1),A(2)B(2), . . . ,A(L)B(L)). For privacy, the master
must not gain any additional information about A,B beyond
the desired product AB.

is connected to every single server. Servers are connected to
each other,1 and all of the servers are connected to the master.
All of these links are secure and error free.

Source A and B independently generate sequences2 of
L matrices, denoted as A =

(
A(1),A(2), . . . ,A(L)

)
, and

B =
(
B(1),B(2), . . . ,B(L)

)
, respectively, such that ∀l ∈

[L], A(l) ∈ Fλ×κ and B(l) ∈ Fκ×µ. The master is
interested in the sequence of product matrices, AB =(
A(1)B(1),A(2)B(2), . . . ,A(L)B(L)

)
. The system operates in

three phases: 1) sharing, 2) computation and communication,
and 3) reconstruction.

1) Sharing: Each source encodes (encrypts) its matrices for
the sth server as Ãs and B̃s, so Ãs = fs(A,ZA), B̃s =
gs(B,ZB), where ZA and ZB represent private random-
ness (noise) generated by the source. The encoded matrices,
Ãs, B̃s, are sent to the sth server.

2) Computation and Communication: Servers may send
messages to other servers, and process what they received from
both the sources and other servers. Denote the communication
from Server s to Server s′ as Ms→s′ . DefineMs , {Ms′→s |
s′ ∈ [S] \ {s}} as the messages that Server s receives from

1While we allow these links (dash-dotted lines in Figure 1) for the sake of
consistency with the original formulation in [41], these links are not necessary
for our solution. See the remark following the definition of security & strong
security.

2The batch size L can be chosen to be arbitrarily large by the coding
algorithm.



3

other servers, and M , {Ms | s ∈ [S]} as the total
messages that all servers receive. After the communication
among servers, each server s computes a response Ys and
sends it to the master. Ys is a function of Ãs, B̃s andMs, i.e.,
Ys = hs(Ã

s, B̃s,Ms), where hs, s ∈ [S] are the functions
used to produce the answer, and we denote them collectively
as h = (h1, h2, . . . , hS).

3) Reconstruction: The master downloads information from
servers. Some servers may fail to respond (or respond after
the master executes the reconstruction), such servers are called
stragglers. The master decodes the sequence of product matri-
ces AB based on the information from the responsive servers,
using a class of decoding functions d = {dR | R ⊂ [S]} where
dR is the decoding function used when the set of responsive
servers is R.

This scheme must satisfy three constraints.
Correctness: The master must be able to recover the desired

products AB, i.e.,

H(AB | YR) = 0, (1)

or equivalently AB = dR(YR), for some R.
Security & Strong Security: We first define security which

is called privacy for workers in [41]. The servers must remain
oblivious to the content of the data A,B, even if X of them
collude. Formally, ∀X ⊂ [S], |X | ≤ X ,

I(A,B; ÃX , B̃X ,MX ) = 0. (2)

In this paper, strong security is also considered. It requires
that the information transmitted among servers is independent
of data A,B and all the shares Ã[S], B̃[S], i.e.,

I(A,B, Ã[S], B̃[S];M) = 0. (3)

This property makes it possible that inter-server commu-
nications happen before receiving data from sources, and
makes the server communication network topology more flex-
ible. Note that PS does not satisfy strong security because
H (AB | M) = 0 in the PS scheme.

Remark: M can be shared among servers in various ways
that satisfy strong security. For example, the servers can share
M a-priori during an initial setup phase, so that there is no
communication among servers during the actual computation
phase. Alternatively, M can come from a service provider
whose sole purpose is to generate structured noise and send it
to each server. Finally, M can also be separately generated
by either of the source nodes (independent of the input
matrices and their coded shares) and sent to each server. This
only makes uses of existing communication links between
the source and server nodes, and requires no communication
between servers.

Privacy: The master must not gain any additional informa-
tion about A,B, beyond the required product. Precisely,

I(A,B; Y1,Y2, · · · ,YS | AB) = 0. (4)

This is the privacy for the master in [41].
Remark: There is another setting for secure distributed

matrix multiplication that appears in the literature, where the
input matrices originate at the master node itself [26]–[30],

[44]. In that case, while the solution presented in this work
will still apply, the privacy aspect would be irrelevant because
the master already knows both A and B. Correspondingly, our
solution degenerates to a special case called X-secure GCSA
codes (see Remark 2 of Appendix A in [40]). Since privacy is
an important aspect of this work, we assume that the source
nodes are distinct from the master node as shown in Figure 1.

We say that (f, g,h, d) form an SMBMM (Secure coded
Multi-party Batch Matrix Multiplication) code if it satisfies
these three constraints. An SMBMM code is said to be r-
recoverable if the master is able to recover the desired products
from the answers obtained from any r servers. In particular, an
SMBMM code (f, g,h, d) is r-recoverable if for any R ⊂ [S],
|R| = r, and for any realization of A, B, we have AB =
dR(YR). Define the recovery threshold R of an SMBMM code
(f, g,h, d) to be the minimum integer r such that the SMBMM
code is r-recoverable.

The communication cost of an SMBMM code is comprised
of these parts: upload cost of the sources, communication cost
among the servers, and download cost of the master. The
(normalized)3 upload costs UA and UB are defined as follows.

UA =

∑
s∈[S] |Ãs|
Lλκ

, UB =

∑
s∈[S] |B̃s|
Lκµ

. (5)

Similarly, the (normalized) server communication cost CC and
download cost D are defined as follows.

CC =

∑
M∈M |M|
Lλµ

, D = max
R,R⊂[S],|R|=R

∑
s∈R |Ys|
Lλµ

. (6)

Next let us consider the complexity of encoding, decoding
and server computation. Define the (normalized) computa-
tional complexity at each server, Cs, to be the order of
the number of arithmetic operations required to compute
the function hs at each server, normalized by L. Similarly,
define the (normalized) encoding computational complexity
CeA for Ã[S] and CeB for B̃[S] as the order of the number
of arithmetic operations required to compute the functions
f and g, respectively, each normalized by L. Finally, define
the (normalized) decoding computational complexity Cd to be
the order of the number of arithmetic operations required to
compute dR(YR), maximized over R,R ⊂ [S], |R| = R,
and normalized by L. Note that normalization by batch-size
L is needed to have fair comparisons between batch processing
approaches and individual matrix-partitioning solutions per
matrix multiplication.

III. MAIN RESULT

Our main result appears in the following theorem.

Theorem 1. For SMBMM over a field F with S servers, X-
security, and positive integers (`,Kc, p,m, n) such that m | λ,
p | κ, n | µ and L = `Kc ≤ |F| − S, the GCSA-NA scheme

3We normalize source upload cost with the number of elements contained
in the constituent matrices A,B. The server communication cost and master
download cost are normalized by the number of elements contained in the
desired product AB.
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presented in Section V is a solution, and its recovery threshold,
cost, and complexity are listed as follows.

Recovery Threshold:R = pmn(`+ 1)Kc + 2X − 1,

Source Upload Cost of Ã[S], B̃[S]:(UA, UB) =

(
S

Kcpm
,

S

Kcpn

)
,

Server Communication Cost:CC =
S − 1

`Kcmn
,

Master Download Cost:D =
R

`Kcmn
,

Source Encoding Complexity for Ã[S], B̃[S]:

(CeA, CeB) =

(
Õ
(
λκS log2 S

Kcpm

)
, Õ
(
κµS log2 S

Kcpn

))
,

Server Computation Complexity:Cs = O
(

λκµ

Kcpmn

)
,

Master Decoding Complexity:Cd = Õ
(
λµp log2R

)
.

The following observations place the result of Theorem 1 in
perspective.

1. GCSA-NA codes are based on the construction of GCSA
codes from [40], combined with the idea of noise-alignment
(e.g., [43]). In turn, GCSA codes are based on a combination
of CSA codes for batch processing [40] and EP codes for
matrix partitioning [5]. CSA codes are themselves based on the
idea of Cross-Subspace Alignment (CSA) that was introduced
in the context of secure Private Information Retrieval (PIR)
[37]. It is a remarkable coincidence that while the idea of CSA
originated in the context of PIR [37], and Lagrange Coded
Computing (LCC) was introduced in parallel independently in
[6] for the context of coded computing, the two approaches
are essentially identical, with CSA codes being slightly more
powerful in the context of coded distributed matrix multipli-
cation (CSA codes offer additional improvements over LCC
codes in terms of download cost [40]). Indeed, LCC codes for
batch matrix multiplication are recovered as a special case of
CSA codes.

2. The idea of noise alignment can be applied to the N -
CSA codes [40], for N -source secure coded multi-party batch
matrix computation. In [7], Strassen’s construction [45], com-
bined with LCC, are introduced for batch distributed matrix
multiplication for better computation complexity. Noise align-
ment is also applicable to Strassen’s constructions (see Section
VI). By setting Kc = 1, ` = L and S = R, the construction of
GCSA-NA codes, with a straightforward generalization, can
be further modified to settle the asymptotic (the number of
messages go to infinity) capacity of symmetric X-secure T -
private computation (and also symmetric X-secure T -private
information retrieval XSTPIR) [37]. However, the amount of
randomness required by the construction is not necessarily
optimal. For example, it is shown in [37] that by the achievable
scheme for XSTPIR, symmetric security (privacy) is automati-
cally satisfied when T = 1, i.e., no randomness among servers
is required.

3. A side-by-side comparison of the GCSA-NA solution
with polynomial sharing (PS) appears in Table I. Because
all inter-server communication is independent of input data,
GCSA-NA schemes are strongly secure, i.e., even if all inter-
server communication is leaked it does not compromise the
security of input data. In GCSA-NA the inter-server network

graph can be any connected graph. This is not possible with
PS. For example, if the inter-server network graph is a star
graph, then the hub server can decode AB by monitoring
all the inter-server communication in a PS scheme, violating
the security constraint. Unlike the PS scheme, in GCSA-NA,
all inter-server communication can take place during off-peak
hours, even before the input data is generated, giving GCSA-
NA a significant latency advantage. Unlike PS where every
server must communicate with every server, i.e., S(S − 1)
such inter-server communications must take place, GCSA-NA
only requires S − 1 inter-server communications to propagate
structured noise terms across all servers. This improvement
is shown numerically in Fig. 2a. The server computation
complexity is also lower for the GCSA-NA scheme than the
PS scheme. This is because in PS, each server needs to
multiply the two shares received from the sources, calculate
the shares for every other server and sum up all the shares
from every other server. However, in GCSA-NA, each server
only needs to multiply the two shares received from the
sources and add noise (which can be precomputed during off-
peak hours). This advantage is particularly significant for large
number of servers. The GCSA-NA scheme naturally allows
robustness to stragglers, which is particularly important for
massive matrix multiplications. Stragglers can be an especially
significant concern for PS because of the strongly sequential
nature of multi-round computation that is central to PS. This
is because server failures between computation rounds disrupt
the computation sequence. Remarkably, Fig. 2a shows that the
inter-server communication cost of GCSA-NA is significantly
better than PS even when GCSA-NA accommodates stragglers
(while PS does not).

When restricted to batch size 1, i.e., with ` = Kc = 1,
GCSA-NA has the same recovery threshold as PS. Now
consider batch processing, i.e., batch size L > 1, e.g., with
L = Kc, ` = 1. PS can be applied to batch processing by
repeating the scheme L times. Fig. 2b shows that the nor-
malized server communication cost of GCSA-NA decreases
as L increases and is significantly less than that in PS. For
the same number of servers S, the upload cost of GCSA-NA
is smaller by a factor of 1/Kc compared to PS. GCSA-NA
does have higher download cost and decoding complexity than
PS by approximately a factor of p, which depends on how the
matrices are partitioned. If p is a small value, e.g., p = 1, then
the costs are quite similar. The improvement in download cost
and decoding complexity of PS by a factor of 1/p comes at
the penalty of increased inter-server communication cost by
a factor of S. But since S ≥ R ≥ 2pmn + 2X − 1 ≥ p,
and typically S � p, the improvement is dominated by the
penalty, so that overall the communication cost of PS is still
significantly higher.

IV. TOY EXAMPLE

Let us consider a toy example with parameters λ = κ =
µ,m = n = 1, p = 2, l = 1,Kc = 2, X = 1 and
S = R. Suppose matrices A,B ∈ Fλ×λ, and we wish to
multiply matrix A = [A1 A2] with matrix B =

[
BT

1 BT
2

]T
to compute the product AB = A1B1 + A2B2, where
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Polynomial Sharing (PS [41]) GCSA-NA

Strong Security No Yes
Recovery Threshold (R) 2pmn+ 2X − 1 pmn(`+ 1)Kc + 2X − 1

Straggler Tolerance No (S = R) Yes. Tolerates S −R stragglers
Server Network Topology Complete Graph Any Connected Graph

Source Encoding
Complexity (CeA, CeB)

(
Õ
(
λκS log2 S

pm

)
, Õ
(
κµS log2 S

pn

)) (
Õ
(
λκS log2 S
Kcpm

)
, Õ
(
κµS log2 S
Kcpn

))
Source Upload Cost (UA, UB)

(
S
pm

, S
pn

) (
S

Kcpm
, S
Kcpn

)
Server Communication Cost (CC)

S(S−1)
mn

S−1
`Kcmn

Server Computation
Complexity (Cs) O

(
λκµ
pmn

)
+O (λµ) + Õ

(
S log2 Sλµ

mn

)
O
(

λκµ
Kcpmn

)
+O

(
λµ

Kcmn

)
+ Õ

(
λµ log2 S
`Kcmn

)
+O

(
(S−1)λµ
mn

)
≈ O

(
λκµ
pmn

)
if κ
p
� S ≈ O

(
λκµ

Kcpmn

)
if κ
p
� S

Master Download Cost (D) mn+X
mn

R
`Kcmn

Master Decoding Complexity (Cd) Õ
(
λµ log2(mn+X)

)
Õ
(
λµp log2(R)

)
TABLE I: Performance Comparison of PS and GCSA-NA.
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Fig. 2: λ = κ = µ, p = m = n. (a) Server communication
cost vs. partition size, given L = 1, X = 5. (b) Server
communication cost vs. batch size, given p = 2, X = 5.

A1,A2 ∈ Fλ×λ2 ,B1,B2 ∈ Fλ
2×λ. For this toy example we

summarize both the Polynomial Sharing approach [41], [46],
[47], and our GCSA-NA approach.

A. Polynomial Sharing Solution

Polynomial sharing is based on EP code [5] . The given
partitioning corresponds to EP code construction for m = n =
1, p = 2, and we have

P = A1 + αA2, Q = αB1 + B2. (7)

=⇒ PQ = A1B2 + α(A1B1 + A2B2) + α2A2B1. (8)

To satisfy X = 1 security, PS includes noise with each
share, i.e., Ã = P + α2ZA, B̃ = Q + α2ZB , where α, Ã, B̃
are generic variables that should be replaced with αs, Ãs, B̃s

for Server s, and α1, · · · , αS are distinct elements. Each server
computes the product of the shares that it receives, i.e.,

ÃB̃ = PQ + α2PZB + α2ZAQ + α4ZAZB (9)

= A1B2 + α(A1B1 + A2B2) + α2(A2B1 + A1Z
B + ZAB2)

+ α3(A2Z
B + ZAB1) + α4ZAZB . (10)

To secure inputs from the master, PS requires that every
server sends to the master only the desired term A1B1 +
A2B2 by using secret sharing scheme among servers. Since
degα(ÃB̃) = 4, A1B1 + A2B2 can be calculated from 5
distinct ÃB̃ according to the Lagrange interpolation rules.
In particular, there exist 5 constants r1, · · · , r5, such that

A1B1+A2B2 =
∑
s∈[5] rsÃ

sB̃s. Consider Server s, it sends
Ms→j = rsÃ

sB̃s +αjZs to Server j, where Z1, · · · ,Z5 are
i.i.d. uniform noise matrices. After Server s collects all the
shares Mj→s, it sums them up

Ys =
∑

j∈[5]

Mj→s = A1B1 + A2B2 + αs
∑

j∈[5]

Zj (11)

and sends Ys to the master. Note that after receiving Mj→s
for all j ∈ [5], Server s still gains no information about the
input data, which guarantees the security. However, it does not
satisfy strong security, because AB can be decoded based on
Mj→s, j, s ∈ [5].

The master can decode AB after collecting 2 responses
from servers.4 Note that PS needs at least S = R = 5 servers,
since 5 distinct ÃB̃ are required to obtain Ys.

B. GCSA-NA Solution

GCSA codes [40] can handle batch processing, therefore let
us consider batch size 2 (` = 1,Kc = 2). Denote the second
instance by A′,B′. Using CSA code,

P = A1 + (f − α)A2, Q = (f − α)B1 + B2. (12)
P′ = A′1 + (f ′ − α)A′2, Q′ = (f ′ − α)B′1 + B′2. (13)

And the shares are constructed as follows,

Ã = ∆

(
P

(f − α)2
+

P′

(f ′ − α)2

)
, B̃ =

Q

(f − α)2
+

Q′

(f ′ − α)2
,

where ∆ = (f − α)2(f ′ − α)2, and α, Ã, B̃ are generic
variables that should be replaced with αs, Ãs, B̃s for Server s.

4In [47], for arbitrary polynomials, Ms→j = rsÃsB̃s + α2
jZs because

Ys is forced to be casted in the form of entangled polynomial sharing.
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Furthermore, f, f ′, α1, α2, · · · , αS are distinct elements. Each
server computes the product of the shares that it receives, i.e.,

ÃB̃ =
(f ′ − α)2

(f − α)2
PQ +

(f − α)2

(f ′ − α)2
P′Q′ + P′Q + PQ′ (14)

=
((f ′ − f) + (f − α))2

(f − α)2
PQ +

((f − f ′) + (f ′ − α))2

(f ′ − α)2
P′Q′

+ P′Q + PQ′ (15)

=
(f ′ − f)2 + 2(f ′ − f)(f − α) + (f − α)2

(f − α)2
PQ

+
(f − f ′)2 + 2(f − f ′)(f ′ − α) + (f ′ − α)2

(f ′ − α)2
P′Q′

+ P′Q + PQ′ (16)

=
(f ′ − f)2

(f − α)2
PQ +

2(f ′ − f)

f − α PQ +
(f − f ′)2

(f ′ − α)2
P′Q′

+
2(f − f ′)
f ′ − α P′Q′ + PQ + P′Q′ + P′Q + PQ′ (17)

=
c0

(f − α)2
PQ +

c1
f − αPQ +

c′0
(f ′ − α)2

P′Q′

+
c′1

f ′ − αP′Q′ + I0 + αI1 + α2I2 (18)

=
c0A1B2

(f − α)2
+
c0A1B1 + c0A2B2 + c1A1B2

f − α +
c′0A

′
1B
′
2

(f ′ − α)2

+
c′0A

′
1B
′
1 + c′0A

′
2B
′
2 + c′1A

′
1B
′
2

f ′ − α + I0 + αI1 + α2I2, (19)

where I0, I1, I2 are various linear combinations of
A1,A2,B1,B2,A

′
1,A

′
2,B

′
1,B

′
2 and c0, c1, c

′
0, c
′
1 are

constants. Their exact forms can be found by performing
partial fraction decomposition. This is the original GCSA
code [40], and we need R = pmn((`+ 1)Kc−1) +p−1 = 7
responses to recover the desired product.

Next, let us modify the scheme to make it X = 1 secure
by including noise with each share, i.e.,

Ã = ∆

(
P

(f − α)2
+

P′

(f ′ − α)2
+ ZA

)
,

B̃ =
Q

(f − α)2
+

Q′

(f ′ − α)2
+ ZB .

ÃB̃ =
c0PQ

(f − α)2
+
c1PQ

f − α +
c′0P

′Q′

(f ′ − α)2
+
c′1P

′Q′

f ′ − α +

4∑

i=0

αiIi.

As a result of the added noise terms, the recovery threshold is
now increased to 9. Note that the term I4 contains only con-
tributions from ∆ZAZB , i.e., this term leaks no information
about A,B matrices.

If the servers directly return their computed values of ÃB̃
to the master, then besides the result of the computation some
additional information about the input matrices A,B may be
leaked by the interference terms

(
c0

(f−α)2 + c1
f−α

)
A1B2 +(

c′0
(f ′−α)2 +

c′1
f ′−α

)
A′1B

′
2 +

∑3
i=0 α

iIi, which can be se-

cured by the addition of aligned noise terms Z̃ =(
c0

(f−α)2 + c1
f−α

)
Z +

(
c′0

(f ′−α)2 +
c′1

f ′−α

)
Z′ +

∑3
i=0 α

iZi at
each server so that the answer returned by each server to
the master is ÃB̃ + Z̃. Here Z,Z′,Z0,Z1,Z2,Z3 are i.i.d.
uniform noise matrices, that can all be privately generated by
one server, who can then share their aligned form Z̃ with
all other servers. This sharing of Z̃ is the only inter-server

communication needed in GCSA-NA. Since it is independent
of the inputs, it can be done during off-peak hours, thereby
reducing the latency of server computation. The strong security
is also automatically satisfied.

V. CONSTRUCTION OF GCSA-NA

Now let us present the general construction. L = `Kc

instances of A and B matrices are split into ` groups.
∀l ∈ [`],∀k ∈ [Kc], denote

Al,k = A(Kc(l−1)+k), Bl,k = B(Kc(l−1)+k). (20)

Further, each matrix Al,k is partitioned into m×p blocks and
each matrix Bl,k is partitioned into p× n blocks, i.e.,

Al,k =


Al,k

1,1 · · · Al,k
1,p

Al,k
2,1 · · · Al,k

2,p

...
...

...
Al,k
m,1 · · · Al,k

m,p

 ,Bl,k =


Bl,k1,1 · · · Bl,k1,n
Bl,k2,1 · · · Bl,k2,n

...
...

...
Bl,kp,1 · · · Bl,kp,n

 ,

where
(
Al,k
i,j

)
i∈[m],j∈[p]

∈ F
λ
m×

κ
p and

(
Bl,k
i,j

)
i∈[m],j∈[p]

∈
F
κ
p×

µ
n .

Let f1,1, f1,2, · · · , f`,Kc , α1, α2, · · · , αS be (S+L) distinct
elements from the field F. For convenience, define

R′ = pmn, DE = max(pm, pmn− pm+ p)− 1, (21)
E = {p+ p(m′ − 1) + pm(n′′ − 1) | m′ ∈ [m], n′′ ∈ [n]} ,

(22)

∆l,Kc
s =

∏

k∈[Kc]

(fl,k − αs)R
′
,∀l ∈ [`],∀s ∈ [S]. (23)

Define cl,k,i, i ∈ {0, 1, · · · , R′(Kc− 1)} to be the coefficients
satisfying

Ψl,k(α) =
∏

k′∈[Kc]\{k}

(α+ (fl,k′ − fl,k))
R′

=

R′(Kc−1)∑

i=0

cl,k,iα
i,∀l ∈ [`],∀k ∈ [Kc], (24)

i.e., they are the coefficients of the polynomial
Ψl,k(α) =

∏
k′∈[Kc]\{k} (α+ (fl,k′ − fl,k))

R′
, which

is defined by its roots. Note that all the coefficients
(cl,k,i)l∈[L],k∈[Kc],i∈{0,1,··· ,R′(Kc−1)}, α[S], (fl,k)l∈[L],k∈[K]

are globally known.

A. Sharing

Firstly, each source encodes each constituent matrix blocks
Al,k and Bl,k with Entangled Polynomial code [5]. For all
l ∈ [`], k ∈ [Kc], define

Pl,k
s =

∑

m′∈[m]

∑

p′∈[p]

Al,k
m′,p′(fl,k − αs)p

′−1+p(m′−1), (25)

Ql,k
s =

∑

p′′∈[p]

∑

n′′∈[n]

Bl,k
p′′,n′′(fl,k − αs)p−p

′′+pm(n′′−1). (26)

Note that the original Entangled Polynomial code can be
regarded as polynomials of αs, and here for each (l, k),
Entangled Polynomial code is constructed as polynomials of
(fl,k − αs).
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Each source generates `X independent random matrices,
ZA =

{
ZA1,1, · · · ,ZA`,X

}
and ZB =

{
ZB1,1, · · · ,ZB`,X

}
. The

independence is established as follows.

H(ZA,ZB ,A,B) = H(A) +H(B)

+
∑

l∈[`],x∈[X]

H
(
ZAl,x

)
+

∑

l∈[`],x∈[X]

H
(
ZBl,x

)
. (27)

For all s ∈ [S], the shares of matrices A and B at the sth

server are constructed as Ãs =
(
Ãs

1, Ã
s
2, . . . , Ã

s
`

)
, B̃s =(

B̃s
1, B̃

s
2, . . . , B̃

s
`

)
, where for all l ∈ [`],

Ãs
l = ∆l,Kc

s


 ∑

k∈[Kc]

Pl,k
s

(fl,k − αs)R′ +
∑

x∈[X]

αx−1s ZAl,x


 ,

B̃s
l =

∑

k∈[Kc]

Ql,k
s

(fl,k − αs)R′ +
∑

x∈[X]

αx−1s ZBl,x.

Then each pair of shares Ãs, B̃s is sent to the corresponding
server.

B. Computation and Communication

One of the servers generates a set of λ
m ×

µ
n matrices

Zserver, which contains R′(Kc−1)+X+DE+`Kc(p−1)mn
independent random matrices and `Kcmn zero
matrices. In particular, Zserver = {Zserver1 ,Zserver2 },
Zserver1 = {Z′i | i ∈ [R′(Kc − 1) +X +DE ]}, and
Zserver2 =

{
Z′′l,k,i | l ∈ [`], k ∈ [Kc], i ∈ [R′]

}
. Here,

Z′′l,k,i =

{
0, if i ∈ E
Z′′′l,k,i, otherwise,

∀l ∈ [`],∀k ∈ [Kc].

Here Z′i and Z′′′l,k,i are the independent random matrices. The
independence is established as follows.

H(Zserver,A,B) = H(A) +H(B)

+

R′(Kc−1)+X+DE∑

i=1

H(Z′i) +
∑

l∈[`],k∈[Kc],
i∈[R′]

H(Z′′l,k,i). (28)

Without loss of generality, assume the first server generates
Zserver, encodes them into

M̃s =

R′(Kc−1)+X+DE∑

x=1

αx−1s Z′x

+
∑

l∈[`]

∑

k∈[Kc]

R′−1∑

i=0

∑i
i′=0 cl,k.i−i′Z

′′
l,k,i′+1

(fl,k − αs)R′−i (29)

and sends M̃s to server s, s ∈ [S]\{1}, where cl,k,i is defined
in (24). The answer returned by the sth server to the master
is constructed as Ys =

∑
l∈[`] Ã

s
l B̃

s
l + M̃s.

C. Reconstruction

After the master collects any R answers, it decodes the
desired products AB.

D. Proof of Theorem 1

To begin, let us recall the standard result for Confluent
Cauchy-Vandermonde matrices [48], replicated here for the
sake of completeness.

Lemma 1. If f1,1, f1,2, · · · , f`,Kc , α1, α2, · · · , αR are R+L
distinct elements of F, with |F| ≥ R + L, L = `Kc and
R = R′(`+1)Kc+2X−1, then the R×R Confluent Cauchy-
Vandermonde matrix (30) (shown at the bottom of the next
page) is invertible over F.

Firstly, let us prove that the GCSA-NA codes are R =
pmn(`+ 1)Kc + 2X − 1 recoverable. Rewrite Ys as follows.

Ys = Ãs
1B̃

s
1 + Ãs

2B̃
s
2 + · · ·+ Ãs

`B̃
s
` + M̃s (31)

=
∑
l∈[`]

∆l,Kc
s

 ∑
k∈[Kc]

Pl,k
s

(fl,k − αs)R′ +
∑
x∈[X]

αx−1
s ZAl,x


·

 ∑
k∈[Kc]

Ql,k
s

(fl,k − αs)R′ +
∑
x∈[X]

αx−1
s ZBl,x

+ M̃s (32)

=
∑
l∈[`]

∆l,Kc
s

 ∑
k∈[Kc]

Pl,k
s

(fl,k − αs)R′

 ∑
k∈[Kc]

Ql,k
s

(fl,k − αs)R′


+
∑
l∈[`]

∆l,Kc
s

 ∑
k∈[Kc]

Pl,k
s

(fl,k − αs)R′

 ∑
x∈[X]

αx−1
s ZBl,x


︸ ︷︷ ︸

Γ2

+
∑
l∈[`]

∆l,Kc
s

 ∑
k∈[Kc]

Ql,k
s

(fl,k − αs)R′

 ∑
x∈[X]

αx−1
s ZAl,x


︸ ︷︷ ︸

Γ3

+
∑
l∈[`]

∆l,Kc
s

 ∑
x∈[X]

αx−1
s ZAl,x

 ∑
x∈[X]

αx−1
s ZBl,x


︸ ︷︷ ︸

Γ4

+M̃s

(33)

=
∑
l∈[`]

∑
k∈[Kc]

∏
k′∈[Kc]\{k}(fl,k′ − αs)

R′

(fl,k − αs)R′ Pl,k
s Ql,k

s

+
∑
l∈[`]

∑
k,k′∈[Kc]
k 6=k′

 ∏
k′′∈[Kc]\{k,k′}

(fl,k′′ − αs)R
′

Pl,k
s Ql,k′

s

︸ ︷︷ ︸
Γ1

+ Γ2 + Γ3 + Γ4 + M̃s. (34)

Consider the first term in (34). For each l ∈ [`], k ∈ [Kc], we
have∏

k′∈[Kc]\{k}(fl,k′ − αs)
R′

(fl,k − αs)R′ Pl,k
s Ql,k

s

=

∏
k′∈[Kc]\{k} ((fl,k − αs) + (fl,k′ − fl,k))R

′

(fl,k − αs)R′ Pl,k
s Ql,k

s (35)

=
Ψl,k(fl,k − αs)
(fl,k − αs)R′ Pl,k

s Ql,k
s (36)

=

(
cl,k,0

(fl,k − αs)R′ +
cl,k,1

(fl,k − αs)R′−1
+ · · ·+ cl,k,R′−1

fl,k − αs

)
Pl,k
s Ql,k

s
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+

R′(Kc−1)∑
i=R′

cl,k,i(fl,k − αs)i−R
′

Pl,k
s Ql,k

s︸ ︷︷ ︸
Γ5

, (37)

where (36) results from the definition of Ψl,k(·) as in (24) and
in (37) the polynomial Ψl,k(fl,k−αs) is rewritten in terms of
its coefficients.

By the construction of Entangled Polynomial code (25) (26),
the product Pl,k

s Ql,k
s can be written as weighted sums of the

terms 1, (fl,k − αs), · · · , (fl,k − αs)R
′+p−2, i.e.,

Pl,k
s Ql,k

s =

R′+p−2∑

i=0

Cl,k
i+1(fl,k − αs)i, (38)

where Cl,k
1 ,Cl,k

2 , · · · ,Cl,k
R′+p−1 are various linear combina-

tions of products of blocks of Al,k and blocks of Bl,k.
Consider the first term in (37).
(

cl,k,0
(fl,k − αs)R′ + · · ·+ cl,k,R′−1

fl,k − αs

)
Pl,k
s Ql,k

s

(38)
=

(
cl,k,0

(fl,k − αs)R′ + · · ·+ cl,k,R′−1

fl,k − αs

)R′+p−2∑

i=0

Cl,k
i+1(fl,k − αs)i

(39)

=

R′−1∑

i=0

∑i
i′=0 cl,k,i−i′C

l,k
i′+1

(fl,k − αs)R′−i

+

p−2∑

i=0

(fl,k − αs)i



R′+i′∑

i′=i+1

cl,k,R′−i′+iC
l,k
i′+1




︸ ︷︷ ︸
Γ6

+

R′+p−3∑

i=p−1
(fl,k − αs)i



R′+p−2∑

i′=i+1

cl,k,R′−i′+iC
l,k
i′+1




︸ ︷︷ ︸
Γ7

.

(40)

Note that if Kc = 1, ∀i 6= 0, cl,k,i = 0, then Γ5 and Γ7 are
zero polynomials. Now let us consider the degree with respect
to αs of Γ1, · · · ,Γ7.

degαs (Γ1) =

{
R′(Kc − 1) + p− 2, if Kc > 1

−1, otherwise
,

degαs (Γ2) = R′(Kc − 1) + pm+X − 2,

degαs (Γ3) = R′(Kc − 1) + pmn− pm+ p+X − 2,

degαs (Γ4) = R′Kc + 2X − 2, degαs (Γ6) = p− 2,

degαs (Γ5) =

{
R′(Kc − 1) + p− 2, if Kc > 1

−1, otherwise
,

degαs (Γ7) =

{
R′ + p− 3, if Kc > 1

−1, otherwise
.

Recall X, p,m, n,Kc are positive integers. If Kc > 1, it is
easy to see that R′Kc+2X−2 is the largest. If Kc = 1, R′ =
pmn ≥ p > p−2, R′Kc+2X−2 is also the largest. Therefore
the sum of Γ1, · · · ,Γ7 can be expanded into weighted sums
of the terms 1, αs, · · · , αR

′Kc+2X−2
s . Note that the weights of

terms αR
′(Kc−1)+X+DE+1

s , · · · , αR′Kc+2X−2
s are functions of

ZA,ZB . Ys can be rewritten as

Ys =
∑

l∈[`]

∑

k∈[Kc]

R′−1∑

i=0

∑i
i′=0 cl,k,i−i′C

l,k
i′+1

(fl,k − αs)R′−i

+

R′Kc+2X−1∑

x=1

αx−1s Ix + M̃s (41)

(29)
=
∑

l∈[`]

∑

k∈[Kc]

R′−1∑

i=0

∑i
i′=0 cl,k,i−i′C

l,k
i′+1

(fl,k − αs)R′−i

+

R′Kc+2X−1∑

x=1

αx−1s Ix +

R′(Kc−1)+X+DE∑

x=1

αx−1s Z′x

+
∑

l∈[`]

∑

k∈[Kc]

R′−1∑

i=0

∑i
i′=0 cl,k.i−i′Z

′′
l,k,i′+1

(fl,k − αs)R′−i (42)

=
∑

l∈[`]

∑

k∈[Kc]

R′−1∑

i=0

∑i
i′=0 cl,k,i−i′

(
Cl,k
i′+1 + Z′′l,k,i′+1

)

(fl,k − αs)R′−i

+

R′(Kc−1)+X+DE∑

x=1

αx−1s (Ix + Z′x)

+

R′Kc+2X−1∑

x=R′(Kc−1)+X+DE+1

αx−1s Ix (43)

=
∑

l∈[`]

∑

k∈[Kc]

R′−1∑

i=0

∑i
i′=0 cl,k,i−i′D

l,k
i′+1

(fl,k − αs)R′−i

+
∑

x∈[R′Kc+2X−1]

αx−1s Jx, (44)

where Dl,k
i = Cl,k

i + Z′′l,k,i, l ∈ [`], k ∈ [Kc], i ∈ [R′],
Jx = Ix + Z′x, x ∈ [R′(Kc − 1) + X + DE ] and Jx =
Ix, x ∈ [R′(Kc − 1) + X + DE + 1 : R′Kc + 2X − 1].
In the matrix form, answers from any R = R′Kc + 2X −
1 + R′L = pmn(` + 1)Kc + 2X − 1 servers, whose indices
are denoted as s1, s2, · · · , sR, can be written as (45), shown
at the bottom of the next page. Since f1,1, f1,2, · · · , f`,Kc
are distinct, for all l ∈ [`], k ∈ [Kc], cl,k,0 =∏
k′∈[Kc]\{k}(fl,k′ − fl,k)R

′
are non-zero. Hence, the

V̂`,Kc,R′,X,R ,




1
(f1,1−α1)R

′ · · · 1
f1,1−α1

· · · 1
(f`,Kc−α1)R

′ · · · 1
f`,Kc−α1

1 · · · αR
′Kc+2X−2

1

1
(f1,1−α2)R

′ · · · 1
f1,1−α2

· · · 1
(f`,Kc−α2)R

′ · · · 1
f`,Kc−α2

1 · · · αR
′Kc+2X−2

2

...
...

...
...

...
...

...
...

...
...

1
(f1,1−αR)R′ · · · 1

f1,1−αR · · · 1
(f`,Kc−αR)R′ · · · 1

f`,Kc−αR
1 · · · αR

′Kc+2X−2
R




(30)
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lower triangular toeplitz matrices T(c1,1,0, · · · , c1,1,R′−1),
· · · , T(c`,Kc,0, · · · , c`,Kc,R′−1) are non-singular, and the
block diagonal matrix V̂′`,Kc,R′,X,R is invertible. Guaran-
teed by Lemma 1 and the fact that the Kronecker prod-
uct of non-singular matrices is non-singular, the matrix
(V̂`,Kc,R′,X,RV̂′`,Kc,R′,X,R) ⊗ Iλ/m is invertible. Therefore,

the master is able to recover
(
Dl,k
i

)
l∈[`],k∈[Kc],i∈[R′]

by

inverting the matrix. Note that Z′′l,k,i = 0, l ∈ [`], k ∈ [Kc], i ∈
E , therefore

(
Cl,k
i

)
l∈[`],k∈[Kc],i∈E

=
(
Dl,k
i

)
l∈[`],k∈[Kc],i∈E

.

The desired products (A(l)B(l))l∈[L] are recoverable from(
Cl,k
i

)
l∈[`],k∈[Kc],i∈E

, guaranteed by the correctness of En-

tangled Polynomial code [5]. This completes the proof of
recovery threshold R = pmn(`+ 1)Kc + 2X − 1.

Consider the strong security property. According to the
construction, M1 = 0, Ms = M̃s, s ∈ [S] \ {1}, and
M = {M̃s | s ∈ [S] \ {1}}. Since M̃s is a function of
Zserver,

I
(
A,B, Ã[S], B̃[S];M) ≤ I(A,B, Ã[S], B̃[S];Zserver

)
= 0.

Strong security is satisfied. Security is guaranteed because
∀X ⊂ [S], |X | = X ,

I
(
A,B; ÃX , B̃X ,MX

)

= I
(
A,B;MX ) + I(A,B; ÃX , B̃X | MX

)
(46)

= I (A,B;MX ) + I
(
A,B; ÃX , B̃X

)
= 0, (47)

where (47) is due to (27), (28) and the facts that each share is
encoded with (X,S) Reed-Solomon code with uniformly and
independently distributed noise.

Consider the privacy property,

I (Y1,Y2, · · · ,YS ; A,B | AB)

= I

((
Dl,k
i

)
l∈[`],k∈[Kc],i∈[R′]

, (Jx)x∈[R′Kc+2X−1]; A,B | AB

)
(48)

= I

((
Dl,k
i

)
l∈[`],k∈[Kc],i∈[R′]

; A,B | AB

)
+ I

(
(Jx)x∈[R′Kc+2X−1]; A,B | AB,

(
Dl,k
i

)
l∈[`],k∈[Kc],i∈[R′]

)
(49)

= I

(
(Jx)x∈[R′Kc+2X−1]; A,B | AB,

(
Dl,k
i

)
l∈[`],k∈[Kc],i∈[R′]

)
(50)

≤ I
(

(Jx)x∈[R′Kc+2X−1]; A,B,AB,
(
Dl,k
i

)
l∈[`],k∈[Kc],i∈[R′]

)
(51)

≤ I
(
Zserver1 ,ZA,ZB ; A,B,

(
Dl,k
i

)
l∈[`],k∈[Kc],i∈[R′]

)
= 0,

(52)

where (48) holds because the mapping from((
Dl,k
i

)
l∈[`],k∈[Kc],i∈[R′]

, (Jx)x∈[R′Kc+2X−1]

)
to

(Y1, · · · ,YS) is bijective. Equation (50) holds due to
(28) and the fact

(
Cl,k
i

)
l∈[`],k∈[Kc],i∈E

are functions of AB.

Consider the communication cost. The source upload cost
UA = S

Kcpm
and UB = S

Kcpn
. The server communication cost

CC = S−1
`Kcmn

. Note that the master is able to recover Lmn
desired symbols from R downloaded symbols, the master
download cost is D = R

Lmn = pmn(`+1)Kc+2X−1
`Kcmn

. Thus the
desired costs are achievable.

Now let us consider the computation complexity. Note
that the source encoding procedure can be regarded as prod-
ucts of confluent Cauchy matrices by vectors. So by fast
algorithms [49], the encoding complexity of (CeA, CeB) =(
Õ
(
λκS log2 S
Kcpm

)
, Õ
(
κµS log2 S
Kcpn

))
is achievable. For the


Ys1

Ys2

...
YsR

 =



1

(f1,1−αs1 )R
′ · · · 1

f1,1−αs1
· · · 1

(f`,Kc−αs1 )R
′ · · · 1

f`,Kc−αs1
1 · · · αR

′Kc+2X−2
s1

1

(f1,1−αs2 )R
′ · · · 1

f1,1−αs2
· · · 1

(f`,Kc−αs2 )R
′ · · · 1

f`,Kc−αs2
1 · · · αR

′Kc+2X−2
s2

...
...

...
...

...
...

...
...

...
...

1

(f1,1−αsR )R
′ · · · 1

f1,1−αsR
· · · 1

(f`,Kc−αsR )R
′ · · · 1

f`,Kc−αsR
1 · · · αR

′Kc+2X−2
sR


︸ ︷︷ ︸

V̂`,Kc,R′,X,R


T(c1,1,0, · · · , c1,1,R′−1)

. . .
T(c`,Kc,0, · · · , c`,Kc,R′−1)

IR−R′L


︸ ︷︷ ︸

V̂′
`,Kc,R′,X,R

⊗Iλ/m



D1,1
1

...
D1,1
R′

...
D`,Kc

1

...
D`,Kc
R′

J1

...
JR′Kc+2X−1



. (45)
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server computation complexity, each server multiplies the `
pairs of shares Ãsl , B̃

s
l , l ∈ [`], and returns the sum of these

` products and structured noise M̃s. With straightforward
matrix multiplication algorithms, each of the ` matrix products
has a computation complexity of O

(
λκµ
pmn

)
for a total of

O
(
`λκµ
pmn

)
. The complexity of summation over the products

and noise is O
(
`λµ
mn

)
. To construct the noise, one server needs

to encode the noise, whose complexity is Õ
(
λµS log2 S

mn

)
by

fast algorithms [49]. Normalized by the number of servers,
it is Õ

(
λµ log2 S
mn

)
. Considering these 3 procedures, upon

normalization by L = `Kc, it yields a complexity of
O
(

λκµ
Kcpmn

)
+ O

(
λµ

Kcmn

)
+ Õ

(
λµ log2 S
`Kcmn

)
per server. The

master decoding complexity is inherited from that of GCSA
codes [40], which is at most Õ(λµp log2R). This completes
the proof of Theorem 1.

Remark: When L = ` = Kc = 1, S = R, by setting
f1,1 = 0, our construction of shares of Ãs and B̃s essentially
recovers the construction of shares in [41].

VI. DISCUSSION AND CONCLUSION

In this paper, the class of GCSA codes is expanded by
including noise-alignment, so that the resulting GCSA-NA
code is a solution for secure coded multi-party computation
of massive matrix multiplication. For two sources and matrix
multiplication, GCSA-NA strictly generalizes PS [41] and
outperforms it in several key aspects. This construction also
settles the asymptotic capacity of symmetric X-secure T -
private information retrieval. The idea of noise-alignment can
be applied to construct a scheme for N sources based on N -
CSA codes, and be combined with Strassen’s construction. As
open problems, exploring the optimal amount of randomness
and finding the communication efficient schemes for arbitrary
polynomial are interesting directions.

Since Strassen’s algorithm [45] is an important fast ma-
trix multiplication approach, it is interesting to show noise
alignment can be combined with it for secure multi-party
matrix multiplication. Consider an example with two 2 × 2
block matrices A,B and X = 1. It can be shown that the
general recursive Strassen’s algorithm also works similarly.

The desired product is denoted by C =

[
C1,1 C1,2

C2,1 C2,2

]
. The

Strassen’s constuction constructs 14 matrices Pi,Qi, i ∈ [7]
(Pi only depends on A and Qi only depends on B) andC1,1

C1,2

C2,1

C2,2

 =

0 −1 0 1 1 1 0
1 1 0 0 0 0 0
0 0 1 1 0 0 0
1 0 −1 0 1 0 −1




P1Q1

P2Q2

...
P7Q7.

 . (53)

This is the basic Strassen algorithm. Now let us see how
we apply CSA and noise alignment to it. Each share is
constructed based on CSA code principles with noise, i.e.,
Ã = ∆

(∑
i∈[7]

Pi
fi−α + ZA

)
, B̃ =

∑
i∈[7]

Qi

fi−α+ZB , ÃB̃ =
∑
i∈[7]

ci
fi−αPiQi +

∑7
i=0 α

iIi.
If the servers directly return ÃB̃ to the master, additional

information about the input may be leaked due to interfer-
ence terms P1Q1, · · · ,P7Q7 and

∑6
i=0 α

iIi. We secure the

scheme by the addition of noise. The idea is that we want the
master to decode T1, · · · ,T7 instead of P1Q1, · · · ,P7Q7,
such that

H(C | T1, · · · ,T7) = I(A,B; T1, · · · ,T7 | C) = 0. (54)

T1, · · · ,Tv are constructed as follows.

T1 = P1Q1 − Z1 − Z2 + Z3, T2 = P2Q2 − Z1 + Z2 − Z3,

T3 = P3Q3 − Z1, T4 = P4Q4 + Z1, T5 = P5Q5 + Z2,

T6 = P6Q6 − Z3, T7 = P7Q7 + Z3,

where Z1,Z2,Z3 are i.i.d. uniform noise matrices. To align
the noise, we construct Z̃,

Z̃ =

(
− c1
f1 − α

− c2
f2 − α

− c3
f3 − α

+
c4

f4 − α

)
Z1

+

(
− c1
f1 − α

+
c2

f2 − α
+

c5
f5 − α

)
Z2

+

(
c1

f1 − α
− c2
f2 − α

− c6
f6 − α

+
c7

f7 − α

)
Z3 +

6∑
i=0

αiZi+4,

where Z4, · · · ,Z10 are i.i.d. uniform noise matrices. The
answer returned by each server to the master is ÃB̃ + Z̃.
The correctness and privacy are easily proved.
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