
Limited-Magnitude Error Correction for Probability
Vectors in DNA Storage

Wenkai Zhang, Zhen Chen, Zhiying Wang
Center for Pervasive Communications and Computing (CPCC)

University of California, Irvine, USA
{wenkaiz1, zhenc4, zhiying}@uci.edu

Abstract—DNA, with remarkable properties of high density
and stability, particularly for long-term data archiving, is one
of the most appealing storage media. Emerging DNA storage
technologies use composite DNA letters, where information is
represented by a probability vector, leading to higher information
density and lower synthesizing cost than single DNA letters.
However, it faces the problem of inevitable noise and information
corruption. This paper studies the channel of composite DNA
letters in DNA storage and block codes for symmetric limited-
magnitude errors on probability vectors. We provide outer and
inner bounds for limited-magnitude probability error correction
codes. Moreover, we propose code constructions where the
number of errors is bounded by t, the error magnitudes are
bounded by l, and the probability resolution is fixed as k. Our
constructions exploit the properties of the limited-magnitude
errors, and improve the performance in terms of complexity and
redundancy.

I. INTRODUCTION

In the recent decade, DNA-based data storage systems are
at the forefront of cutting-edge science and innovations. They
are particularly appealing due to the high information density,
in terms of physical volume, of DNA as compared to current
state of the art storage media. Storing digital information
on DNA involves encoding the information into a sequence
over the DNA alphabet (that is, A, C, G and T), producing
synthetic DNA molecules with the desired sequence, and
storing the synthetic biological material in storage vessels.
Reading the stored information requires sequencing of the
DNA and decoding to obtain the original digital information
[1]–[7].

However, DNA storage suffers from high cost, especially
during the synthesis process. In order to break through the
theoretical limit of 2 bits per synthesis cycle for single-
molecule DNA, the use of composite DNA letters was in-
troduced by Anavy et al. [8]. A composite DNA letter is
a representation of a position in a sequence that constitutes
a mixture of all four standard DNA nucleotides in pre-
determined (normalized) probabilities x = (xA, xC , xG, xT),
where xA, xC , xG, xT ∈ N, and k = xA + xC + xG + xT is
fixed to be the resolution parameter of the composite letter. For
example, x = (3, 3, 3, 3) represents a position in a composite
DNA sequence of resolution k = 12, in which there are
25%, 25%, 25% and 25% chances of seeing A, C, G and
T, respectively. Multiple copies of the composite sequence are
stored in order to realize the desired probabilities.

Writing a composite DNA letter in a given position of a
DNA sequence is equivalent to producing (synthesizing) mul-
tiple copies (oligonucleotides) of the sequence. Thus, in this
given position the different DNA nucleotides are distributed
across the synthesized copies according to the specification
of x. Reading a composite letter requires the sequencing of
multiple independent molecules representing the same com-
posite sequence and inferring the original probabilities or
composition from the observed base frequencies [8].

The inference at any fixed position is affected by the se-
quencing depth (number of times the position is read), as well
as sequencing and synthesis errors, resulting in the probability
change x = (xA, xC , xG, xT) → y = (yA, yC , yG, yT). The
observed probabilities y and the the original probabilities x are
usually close under correct operations and methods [8]. They
also share the common resolution k. For example, the original
probabilities are x = (3, 3, 3, 3), then after synthesising and
sequencing, the observed probabilities are x′ = (2, 4, 3, 3).
The probability xA is decreased by 1 and the probability
xC is increased by 1, keeping the sum k = 12. In general,
errors change the composite probabilities of DNA letters in
two directions (up or down) with limited magnitudes, called
limited-magnitude probability errors (LMPE). The illustration
is shown in Figure 1.

We study block codes that correct limited-magnitude prob-
ability errors. A symbol includes the probabilities of the four
standard DNA nucleotides. The errors are parameterized by
two integer parameters: t is the number of erroneous symbols
in a codeword, and l is the maximal magnitude of errors in
one direction in a symbol, more specifically, the magnitudes
of the upward changes and downward changes are both within
l.

These errors are related to asymmetric errors over the set
of integers modulo q. The case with binary alphabet is studied
in [9]–[11]. Asymmetric limited-magnitude error-correcting
codes are proposed in [12] for the case of correcting all
symbol errors within a codeword. In [13], the authors study q-
ary asymmetric limited-magnitude errors for multi-level flash.
Systematic coding schemes with minimum redundant symbols
for correcting q-ary asymmetric limited-magnitude errors are
shown in [14] [15]. The work of [16] designed asymmetric
Lee distance codes using binary encoding of the DNA alphabet
and correct errors arising in solid state nanopore sequencing
systems. To the best of our knowledge, the present work is

Data
0111110100...

Encoder

Composite DNA letter
(3,3,3,3), (1,3,4,4),...

Channel
(LMPE)

Composite DNA letter
(2,4,3,3), (1,4,3,4),...

Decoder

Data
0111110100...

Fig. 1: The illustration of composite DNA storage

the first to consider limited-magnitude probability errors.
The main contributions of the paper are as follows. We

model the errors in the composite DNA storage system as
limited-magnitude probability errors. Moreover, we present
the sphere packing bound and Gilbert-Varshamov bound for
the family of limited-magnitude probability error correction
codes. Code constructions are provided which first partition
the probability tuples into classes by taking advantage of the
error characteristics, and then protect the classes with non-
binary error correction codes. The resulting codes are over a
smaller finite field size compared to naive error correction on
the entire symbols, leading to lower computation complexity
(see, e.g., [17]).

Notation. Vectors are denoted by bold letters. For a positive
integer i, denote by [i] = {1, 2, . . . , i}. For two integers i ≤ j,
denote by [i, j] = {i, i + 1, . . . , j}. Ck

n denotes the binomial
coefficient n choose k. For positive integers i, j, write b = i
mod j as the remainder after i is divided by j, where 0 ≤
b ≤ j − 1. The notation b ≡ i mod j means that integers b
and i are congruent modulo j.

II. PROBLEM STATEMENT

We consider a problem of protecting information when
it faces the limited-magnitude probability errors. The word
x = (x1,x2, . . . ,xN) has N symbols, and each symbol or
probability tuple xi = (xi1, xi2, . . . , xim), i ∈ [N], has m
(normalized) probability values satisfying

0 ≤ xij ≤ k, j ∈ [m], (1)
m∑
j=1

xij = k, (2)

where k is the fixed resolution parameter to keep the summa-
tion of probabilities to 1, namely,

∑j=m
j=1

xij

k = 1. The set of
all words of length N satisfying (1) and (2) are denoted by
X . One can easily check that its size is |X | =

(
Cm−1

k+m−1
)N

.
Assume x ∈ X is the transmitted codeword. Denote by

y = (y1,y2, . . . ,yN) ∈ X the received word. Denote by
e = y − x = (e1, e2, . . . , eN) the error vector, and ei,j its

probability difference values, i ∈ [N], j ∈ [m]. It is apparent
that for all i ∈ [N],

m∑
j=1

ei,j = 0. (3)

The errors of interest are introduced in Definition 1.
Definition 1 (Limited-magnitude probability error (LMPE)):

A limited-magnitude probability error e is called an (l, t)
LMPE if the number of symbol errors is at most t, and the
error magnitude of each symbol is at most l. Formally,

|{i ∈ [N] : ei 6= 0}| ≤ t, (4)∑
j∈[m]:eij>0

eij ≤ l,∀i ∈ [N]. (5)

Equation (5) indicates that the upward error terms sum to at
most l. Due to (3), the downward error terms also sum to at
most l.

For this paper, we consider the case of m = 4, which fits
the composite DNA storage application.

For example, when k = 12, the transmitted word is
x=((3, 3, 3, 3), (2, 4, 3, 3), (1, 7, 2, 2)), the received word is
x′=((1, 3, 4, 4), (1, 5, 3, 3), (1, 7, 2, 2)). Here, the number of
errors is t = 2 and the error magnitude is l = 2.

For a particular symbol, an l-limited-magnitude error e =
(e1, e2, e3, e4) is defined similar to (5) as∑

j∈[4]:ej>0

ej ≤ l,
∑

j∈[4]:ej<0

|ej | ≤ l. (6)

Lemma 1: e = (e1, e2, e3, e4) is an l-limited-magnitude
error for one symbol, if and only if

4∑
j=1

|ej | ≤ 2l. (7)

Proof: First, note that
∑4

j=1 ej = 0. Equivalently,∑
j∈[4]:ej>0

ej =
∑

j∈[4]:ej<0

|ej |. (8)

If e is an l-limited-magnitude error, then summing up the
two inequalities in (6) gives (7).

If e is an error with magnitude more than l, then at least
one inequality in (6) is violated. Without loss of generality,
assume the first one is violated. Then,

l <
∑

j∈[4]:ej>0

ej =
∑

j∈[4]:ej<0

|ej |. (9)

Hence,
∑4

j=1 |ej | > 2l as desired.
An (l, t) LMPE correction code is defined as an encoding

function Enc : {0, 1}K → X and a decoding function
Dec : X → {0, 1}K . Here, K is the information length in
bits, and N is the codeword length in symbols. For any binary
information vector u of length K, and any (l, t) LMPE vector
e of length N , the functions should satisfy

Dec(Enc(u) + e) = u. (10)

III. BOUNDS ON LMPE CORRECTION CODES

In this section, we derive sphere packing bound and Gilbert-
Varshamov bound on the code size for correcting (l, t) LMPE.
To that end, we define a distance that captures the capability
of an LMPE correction code.

Definition 2 (Distance): Let l be a fixed integer. Consider a
graph whose vertices are the set of words in X . Two vertices
x, z are connected by an edge if their difference e = z−x is
an (l, t = 1) LMPE. The distance dl(x, z) of any two words
x, z is defined as the length of the shortest path between them.

The definition above is indeed the geodesic distance, which
is a distance metric.

Remark 1: Note that if a codeword x is transmitted and
an (l, t) LMPE occurs, then the received word y must satisfy
dl(x,y) ≤ t. On the other hand, if dl(x,y) = t, the error
may not be an (l, t) LMPE, because there can be less than t
symbol errors but some symbol error can have a magnitude
more than l.

The distance gives a sufficient condition for the number of
limited-magnitude symbol errors correctable by a code C, for
a fixed error magnitude l.

Proposition 1: A code C can correct an (l, t) LMPE if
dl(x, z) ≥ 2t+ 1 for all distinct x, z ∈ C.

Proof: Assume the code has minimum distance 2t + 1,
but an (l, t) LMPE is not correctable. Then there exist two
codewords x, z and a received word y such that dl(x,y) ≤
t, dl(z,y) ≤ t. Therefore, dl(x, z) ≤ dl(x,y)+dl(z,y) ≤ 2t,
which is a contradiction to the minimum distance 2t+ 1.

Let A(N, l, t), denote the maximum possible size of an
(l, t) LMPE correction code, whose codeword length is N .
The outer and inner bounds on the code size are given next.
Detailed derivations can be found in the full version [18].

Sphere packing bound. The sphere packing bound states
that the code size is upper bounded by the size of all words
X divided by the size of the error ball, which is the number
of possible received words for a codeword. If a probability
value is smaller than l (or larger than k − l), the downward
(or upward) error magnitude becomes smaller than l as well,
resulting in different error ball sizes. To accommodate the
issue, we relax the set of words to be

X = {x+ e : for all x ∈ X and (l, t) LMPE e}. (11)

As a result, a “probability” value in X can be negative or
more than k. The sphere packing bound, for k � l, can be
approximately represented as:

A(N, l, t) ≤
∑t

t′=0 C
t′

N (C3
k+3)

N−t′(2k2l)t
′∑t

t′=0 C
t′
N (103 l3 + 5l2 + 11

3 l)t′ + 1
. (12)

Gilbert-Varshamov bound. By Proposition 1, the distance
being at least 2t + 1 is a sufficient condition to correct (l, t)
LMPE. Therefore, Gilbert-Varshamov bound implies that the
code size is lower bounded by the size of X divided by the
size of a ball of radius 2t+1, where the ball is defined as the
set of words whose distance is at most 2t+1 from the center.
Note that this ball of radius d is larger than the error ball of

d LMPE used in the sphere packing bound. For sufficiently
large N and l� 3

2 , we can approximately obtain

A(N, l, t) >
(C3

k+3)
N

(2t+ 1)C2t+1
N

(
10
3

)2t+1
l3(2t+1)

. (13)

IV. CONSTRUCTIONS

In this section, we first use an example to illustrate the
coding problem and introduce the main idea of the code
constructions. Then we give the framework of the proposed
code for the limited-magnitude probability errors. Based on
the framework, we provide three code constructions.

Our first example makes use of Hamming codes, which are
perfect 1-error correcting codes. For the sake of completeness,
we briefly review q-ary Hamming code [19], [20] below.

Definition 3 (Hamming code): (q
r−1
q−1 , qr−1

q−1 − r) Hamming
code over GF (q) has codeword length qr−1

q−1 , information
length qr−1

q−1 −r and r redundant symbols. The Hamming code
is defined by its parity check matrix of size r × qr−1

q−1 , whose
columns are all non-zero columns of length r and pair-wise
independent.

Example 1: The design goal is to protect the probabilities
against (l = 1, t = 1) LMPE. The resolution parameter for
the DNA letters is set as k = 12. The symbol alphabet size is
C3

k+3 = 455. We have N symbols and each symbol has four
probability values in the range from 0 to k. For every symbol,
each probability value xj is divided by 2l + 1 = 3, and can
be represented by the quotient (aj) and remainder (bj), for
j ∈ [4].

xj = 3aj + bj , j ∈ [4]. (14)

When k = 12, the quotient tuple for a symbol is in the set
{(a1, a2, a3, a4) :

∑4
j=1 aj ≤ 4, aj ∈ [0, 4], j ∈ [4]}, and the

remainder tuple belongs to the set {(b1, b2, b3, b4) :
∑4

j=1 bj ∈
{0, 3, 6}, bj ∈ [0, 2], j ∈ [4]}.

When the errors occur, the remainders and the quotients
will be changed, but we can recover the transmitted symbol
based on the correct remainder tuple and the received symbol.
Consider the example in Figure 2, the second transmitted
symbol is (3, 3, 3, 3). Then (l = 1, t = 1) LMPE occurs, and
the received symbol is (2, 4, 3, 3), whose remainder tuple is
(2, 1, 0, 0). Based on the remainder correction codes which
will be introduced later, we can get the correct remainder
tuple (0, 0, 0, 0). Then we know that the first and second
probabilities (2, 4) have errors and should be corrected as
(3, 3) since the error magnitude is l = 1.

For the remainder tuples, we have 27 different possibilities,
shown as Table I. The remainder tuples are mapped arbitrarily
to elements in GF (27). So the remainder tuples can be
protected by a 27-ary Hamming code. Figure 2 uses the 27-ary
(28, 26) Hamming code with r = 2 parities. In the last two
symbols, the remainders are parities, and their quotients can
still be used as information.

We note that since k = 12, the quotients and the re-
mainders are not independent. When

∑4
j=1 bj = 6, we must

TABLE I: The mapping between remainders and GF (27). Each element of
GF (27) is denoted by an integer between 0 and 26.

remainder Element remainder Element remainder Element

0000 0 1110 1 2220 2
0111 3 1221 4 2001 5
0222 6 1002 7 2112 8
0012 9 1122 10 2202 11
0021 12 1101 13 2211 14
0210 15 1020 16 2100 17
0102 18 1212 19 2022 20
0201 21 1011 22 2121 23
0120 24 1200 25 2010 26

Map to GF(27)
Hamming Encode

 Map to Remainder

Trasmitted Codeword

Received Codeword
Received Remainder
Map to GF(27)

Hamming Decode
Correct Remainder
Correct Quotient

Quotient
Remainder ... 0,0,0,0 0,0,0,0 0,0,0,0

... 0 0 0

... 0 0 00 0
 ... 0,0,0,0 0,0,0,0 0,0,0,0 0,0,0,0 0,0,0,0

 ... 0,3,6,3 3,3,3,3 6,6,0,0 3,3,3,3 6,3,0,3
 ... 1,1,1,1 2,1,0,1

 ... 0,3,6,3 2,4,3,3 6,6,0,0 3,3,3,3 6,3,0,3
 ... 0,0,0,0 2,1,0,0 0,0,0,0 0,0,0,0 0,0,0,0

... 0 17 00 0

... 0 0 00 0

... 0,1,2,1 1,1,1,1 2,2,0,0
 ... 0,0,0,0 0,0,0,0 0,0,0,0

 ... 0,1,2,1 1,1,1,1 2,2,0,0

(1,1) LMPE Channel

1,1,1,1 2,1,0,1

Quotient

Fig. 2: An (l = 1, t = 1) LMPE correction code using the 27-ary (28, 26)
Hamming code. Assume (0, 0, 0, 0) is mapped to 0 in GF (27). The red
tuples are the information part, and the blue ones are the parities.

have
∑4

j=1 aj = 2. And in this case we have the least
number of possible quotient tuples, which is 10. Given the
first 26 information symbols, the last 2 parity remainder
tuples will be fixed. In order to accommodate the worst-case
scenario, we only allow 102 possible information messages
represented by the last two quotient tuples. For example, in
Figure 2, the last two quotient tuples (1, 1, 1, 1), (2, 1, 0, 1)
correspond to one of these 10 × 10 messages. The rate is
(26 log2 455 + log2 10

2)/(28 log2 455) = 0.955.
Our method of correcting errors only on the remainders is

inspired by [13], where the modulo operation was introduced
for limited magnitude errors on integers modulo q.

In this example, we view symbols with the same remainder
tuple as the same “class”. Hamming code is employed to
protect the classes. Motivated by the example, we design two-
layer codes to correct limited-magnitude probability errors,
shown in the following framework.

Construction 1 (Framework):
Symbol classification. Symbols are mapped to classes such

that the l-limited-magnitude symbol error always changes the
class of the symbol.

First layer. Construct a t-error correction code whose
codeword symbols are the class indices. Now the locations

of erroneous symbols can be identified.
Second layer. Construct a code such that given the correct

classes and the received symbols, the original symbols can be
recovered.

Based on this framework, we can provide different coding
schemes to protect the information in the limited-magnitude
probability error channel.

While any t-error correction code over the class alphabet
suffices for the first layer, we illustrate our ideas using the
well-known BCH codes. BCH codes include Hamming codes
as a special case. For a given field GF (q) and an integer m, q-
ary BCH code has codeword length qm−1, minimum distance
at least 2t+ 1, and at most 2mt parity check symbols.

The next construction is a generalization of Example 1.
Construction 2 (Remainder classes):
Reduce each probability value modulo (2l + 1), and then

classify a symbol by the remainder tuple. The number of
classes is (2l + 1)3, since the sum of the remainders must
be congruent to k modulo 2l + 1. Then we use BCH code
over a field of size at least (2l + 1)3 with distance 2t + 1 in
the first layer. The second layer is the identity code.

Noting that it is possible to include multiple remainder
tuples in the same class if the symbols cannot be converted
to each other by l-limited-magnitude errors. We propose a
classification with fewer classes and less complexity, for l ≤ 4.

Similar to Construction 2, we first reduce the probabilities
modulo (2l+1) and obtain (2l+1)3 possible remainder tuples.
Next, we will further partition them into (2l + 1)2 classes,
each with (2l + 1) remainder tuples. The valid classification
is required to satisfy two conditions:

C1. The difference of any two symbols in the same class is
not a l-limited magnitude error.

C2. Each of the (2l + 1)3 remainder tuples is included in
exactly one class.

Notations. For a remainder tuple b = (b1, b2, b3, b4) and an
integer i, we denote

ib = (ib1, ib2, ib3, ib4) mod (2l + 1) (15)

as the scaled remainder tuple. For two remainder tuples b, c,
we write

b+ c = b+ c mod (2l + 1) (16)

as the sum remainder tuple. For limited magnitude l, a
remainder tuple d, whose sum is 0 modulo 2l + 1, is said
to be a remainder error pattern if∑

j∈[4]:dj∈[0,l]

dj +
∑

j∈[4]:dj∈[l+1,2l]

(2l + 1− dj) ≤ 2l. (17)

Let b be a remainder tuple where b1 = 1,
∑4

j=1 bj mod (2l+
1) = 0, and ib is not a remainder error pattern for any i ∈ [2l].
Then b is called a critical tuple.

The following proposition provides a valid classification.
Proposition 2: If b is a critical pattern, then the classification

in Table II is valid.
Proof: We need to prove that Conditions C1 and C2 are

satisfied.

TABLE II: Classification for limited magnitude l. Column 0 lists all remainder
tuples where the first entry is 0 and the sum is 0 modulo 2l+1. In this table,
k mod (2l + 1) = 0. For other k, the last entry in each remainder tuple is
added by k modulo 2l + 1. For instance, if k = 14, l = 1, (0, 0, 1, 2l) in
Class 1 and Column 0 becomes (0, 0, 1, 2l + k) mod 3 = (0, 0, 1, 1).

Class Column 0 Column 1 ... Column 2l
0 (0, 0, 0, 0) b ... 2lb
1 (0, 0, 1, 2l) (0, 0, 1, 2l) + b ... (0, 0, 1, 2l) + 2lb
...

(2l + 1)2 (0, 2l, 2l, 2) (0, 2l, 2l, 2) + b ... (0, 2l, 2l, 2) + 2lb

TABLE III: Critical tuples for l ≤ 4.
l Critical tuple
1 (1, 1, 1, 0)
2 (1, 1, 2, 1)
3 (1, 2, 3, 1)
4 (1, 4, 6, 7)

C1. The remainder tuples in each class are in the form of
c + ib, 0 ≤ i ≤ 2l, where c is the tuple in Column 0 of
the table. Therefore, for two symbols in a class, the difference
of their remainder tuples must be ib, for some 0 ≤ i ≤ 2l.
Assume C1 does not hold. Then there exist two symbols in
the same class, such that their difference e = (e1, e2, e3, e4)
is an l-limited-magnitude error. Let ib = (d1, d2, d3, d4) be
the difference of their remainder tuples. It can be checked that
since |ej | ≤ l for j ∈ [4],

|ej | =

{
dj , if dj ∈ [0, l],

2l + 1− dj , if dj ∈ [l + 1, 2l].
(18)

Therefore, ∑
j∈[4]:dj∈[0,l]

dj +
∑

j∈[4]:dj∈[l+1,2l]

(2l + 1− dj) (19)

=

4∑
j=1

|ej | ≤ 2l, (20)

where the last inequality follows by Lemma 1. Now there is
a contradiction to the definition of the critical pattern, where
ib = (d1, d2, d3, d4) must not satisfy (17).

C2. Any tuple in the 0-th column sums to k modulo (2l+1).
Adding ib does not change the sum of the remainder tuple
modulo (2l+1). Therefore, all tuples listed in the table sums
to k modulo (2l + 1), as desired. Since the 0-th column lists
all remainder tuples where the first entry is 0, and the first
entry of b is 1, adding ib gives all remainder tuples where
the first entry is i in the i-th column, for 1 ≤ i ≤ 2l. Hence,
each remainder tuple is listed in exactly one class.

A critical tuple b is found by Algorithm 1 for l ≤ 4. We list
one critical tuple for each l, l ≤ 4, in Table III. As the error
magnitude l increases, the number of remainder error patterns
becomes larger. When l > 4, the proportion of remainder error
patterns in all the remainder tuples is higher than 50%. Hence,
the classification method is suitable when l ≤ 4.

Now we are ready to describe the code construction using
the above classification.

Construction 3 (Reduced classes, l ≤ 4):

Algorithm 1: Find a critical tuple.
Input: Error magnitude limit l
Output: A critical tuple b

1 for all b whose sum is 0 modulo 2l+ 1 and b1 = 1 do
2 for i = 1 to 2l do
3 if ib is a remainder error pattern then
4 break;

5 if b is found then
6 return;

For the first layer, calculate the remainder tuples of the
symbols and classify them as in Table II. Use BCH code with
distance 2t+1 over a field of size at least (2l+1)2 to protect
the class indices. Note that the erroneous symbols are now
identified and they can be treated as erasures. The first entry in
the remainder tuple determines the remainder tuple for a given
class. In the second layer, for the first entry of every remainder
tuple in the codeword, apply BCH code with distance t + 1
over a field of size at least 2l + 1 to correct t erasures.

The following construction is an improvement over Con-
struction 2 for (l = 1, t = 1) LMPE, inspired by the
work on efficient non-binary Hamming codes for limited-
magnitude errors on integers [21]. The main idea is that for
different transmitted remainder class indices in GF (27), their
erroneous class indices do not contain all possible elements in
GF (27), and their erroneous class indices are the same. Thus,
an improved Hamming code over GF (27) can be applied
to the class indices. The improved code benefits from a
larger codeword length while sharing the same redundancy as
Hamming code. Details of the parity check matrix construction
of the improved code is in the full version [18].

Construction 4 (Improved Hamming code, l = 1, t = 1):
For the first layer, map symbols according to the remainder

tuples to GF (27) in the same way as Construction 2. Given
the remainder error patterns for l = 1, the parity check matrix
of the improved Hamming code can be formed. One example
of systematic parity check matrix with r = 2 redundancies is
as below: [

0 1 ... 1 7 ... 7 1 0
7 1 ... 26 0 ... 26 0 1

]
, (21)

where the integers denote the exponent in the power represen-
tation of GF (27), and the primitive polynomial x3+2x+1 is
used to represent elements in GF (27). Thus we get a (56, 54)
Hamming code, which has a better rate than the original
(28, 26) Hamming code. In general, the codeword length is
N = 1

13 (27
r − 1), for redundancy r. The second layer is the

identity code.

V. COMPARISONS

In this section, different code constructions are compared.
As illustrative examples, we first consider the codes for
(l = 1, t = 1) LMPE. Then we compare the performance

TABLE IV: Comparison for the proposed constructions.
Method Error Field size Redundancy in bits

Naive Hamming code l = 1, t = 1 C3
k+1 log2

((
C3

k+3 − 1
)
N + 1

)
Hamming code with remainder classes l = 1, t = 1 27 log2(26N + 1)

Improved Hamming with remainder classes l = 1, t = 1 27 log2(13N + 1)
Hamming code with reduced classes l = 1, t = 1 9 log2(8N + 1) + log2(3)

BCH code with remainder classes l, t (2l + 1)3 2t log2(N + 1)
BCH code with reduced classes l ≤ 4, t (2l + 1)2 3t log2(N + 1)

when there are t errors. For the criteria, we compare the field
size and hence the computational complexity, as well as the
redundancy in bits with fixed codeword length N .

The results are in Table IV whose derivation is in [18]. In the
table, naive Hamming code refers to the single-error correction
code applied to the entire probability symbol, requiring a field
of size of at least C3

k+3.
The improved Hamming code has the least redundant bits

when there is a single error with limited magnitude l = 1.
When there are t errors with limited magnitude l ≤ 4, BCH
code with remainder classes has less redundancy than BCH
code with reduced classes. The reason is that the number of
redundant bits in BCH code remains the same irrespective of
the field size. But the reduced classes require an extra coding
in the second layer, leading to a worse code rate. However,
since the encoding/decoding operations are over smaller fields,
the reduced classes benefit from lower complexity.

VI. CONCLUSION

This paper proposes a new channel model motivated by
composite DNA storage. Different from traditional channels,
the symbols are probability vectors and the channel noise is
modeled as limited-magnitude errors. We develop a frame-
work of two-layer error correction codes, where symbols are
classified and then encoded. An attractive property of the
classification herein, is that it takes advantage of the error
characteristics, and hence reduces the computation complexity.
Other classification methods and codes for specific probability
error patterns are interesting future directions. Our model can
also be applied to other problems where the information can
be represented by probability distributions.

APPENDIX A
SPHERE PACKING BOUND

Here, we provide the derivation of the sphere packing
bound. Our discussion focuses on the case with large k, or a
large resolution. We will use the following two formulas: the
number of non-negative choices to have x1+x2+· · ·+xr = k
is Cr−1

k+r−1, and the number of positive choices to have
x1 + x2 + · · ·+ xr = k is Cr−1

k−1.
The actual set of possible symbols or probability vectors

is of size (C3
k+3), where each probability is between 0 and

k. To use the sphere packing bound, we adopt the extended
alphabet X as in (11), the virtual received probability is
corrupted by the limited-magnitude error and is assumed to be
in the arrange −l to k + l. We consider the extended symbol
alphabet {(x1, x2, x3, x4) + (e1, e2, e3, e4) : xj ∈ [0, k], j =

1, 2, 3, 4,
∑4

j=1 xj = 1,
∑4

i=1[ej]
+ ≤ l}. There are 3 cases

where the probabilities in a symbol can be negative (and more
than k).

(i) There is one negative probability −i, for i ∈ [l], and
the rest three non-negative probabilities sum up to k+ i. The
number of possibilities is

C1
4

l∑
i=1

C2
k+i+2. (22)

(ii) There are two negative probabilities whose sum is −i,
for i ∈ [l], and the rest two non-negative probabilities sum up
to k + i. The number of possibilities can be computed as:

C2
4

l∑
i=1

C1
i−1C

1
k+i+1 (23)

(iii) There are three negative probabilities whose sum is −i,
for i ∈ [l], and the remaining probability is k + i. Then The
number of possibilities can be expressed as

C3
4

l∑
i=1

C2
i−1. (24)

After summing up the three cases, the number of possibili-
ties for symbols with negative probabilities can be represented
as

2k2l + 3kl2 + 8kl + k + 5l3 + 13l2 − 3l + 13. (25)

When k � l, it can be approximated by

2k2l. (26)

We consider X such that there are at most t errors with
maximum magnitude l in words of length N , where negative
probabilities are allowed. There are at most t symbols with
negative probabilities, hence

|X | =
t∑

t′=0

Ct′

N (C3
k+3)

N−t′(2k2l)t
′

(27)

On the other hand, let E be the number of possible errors of
maximum magnitude l, then the error ball centered at a given
word is of size

|error ball| =
t∑

t′=0

Ct′

NEt′ + 1. (28)

Similar to the calculation of the extended alphabet size, the
expression of E includes three cases for 1, 2, or 3 positive

upward errors (correspondingly 3, 2, or 1 non-negative down-
ward errors, respectively), and

E =

l∑
i=1

(
C1

4C
2
i+2 + C2

4C
1
i−1C

1
i+1 + C3

4C
2
i−1
)
, (29)

=
10

3
l3 + 5l2 +

11

3
l. (30)

Here, i denotes the sum of the upward or downward error
magnitude.

Now the sphere packing bound approximately can be cal-
culated as follows.

A(N, l, t) ≤ |X |
|error ball|

(31)

≈
∑t

t′=0 C
t′

N (C3
k+3)

N−t′(2k2l)t
′∑t

t′=0 C
t′
NEt′ + 1

, (32)

where the approximation holds when k � l. For general k, l,
the bound can be calculated by using (25) for the extended
alphabet size.

Ignoring lower order terms, when N � k, the bound is in
the order of

1

6N−t

(
3

10

)t
k3N−t

l3t
. (33)

When N � k, meaning the resolution is higher than the
codeword length, the bound is in the order of

1

Ct
N

1

6N

(
3

10

)t
k3N

l3t
. (34)

In the latter case, the extended alphabet X has almost the same
size as the original alphabet X .

APPENDIX B
GILBERT-VARSHAMOV BOUND

In this section, we give the insight of Gilbert-Varshamov
bound. We consider the ball of radius d = 2t + 1 whose
center is a codeword. It is implicitly assumed that the distance
is defined for error magnitude l. This ball corresponds to d
different error cases. The i-th case is that i symbols have errors
whose sum maximum magnitude is dl, and each symbol error
maximum magnitude is a multiple of l.

When the magnitude of error l = l′ is fixed, the possible
error patterns E is to replace l with l′ in (30). When l′ � 3

2 ,
we approximate the possible error patterns as E ≈ 10

3 l′3. So
the volume of the i-th case (Vi) can be represented as:

Vi = Ci
N

∑
(l1,l2,...,li)

(
10

3

)i

l31...l
3
i , (35)

where the parameter lj is the maximum magnitude of the
j-th error, for j ∈ [i]. The summation is over all tuples
(l1, l2, . . . , li) such that each lj is a positive multiple of l,
and

∑i
j=1 lj = ld. The number of such tuples is Ci−1

d−1. Based

on the inequality of arithmetic and geometric means, we have
the following inequality:

(l1l2 . . . li) ≤
l1 + l2 + · · ·+ li

i
)i, (36)

with equality if and only if lr = lw, r 6= w, r, w ∈ [i]. Then
the upper bound of Vi, denoted by U(i) can be represented
as:

U(i) = Ci
NCi−1

d−1

(
10

3

)i(
dl

i

)3i

(37)

Next, we have another the inequality of lower bound.

l1l2 . . . li ≥ (d− i+ 1)li, (38)

with equality if and only if lj = l, j ∈ [i−1], li = (d−(i−1))l.
So the lower bound of Vi, denoted by L(i), is:

L(i) = Ci
NCi−1

d−1

(
10

3

)i

(d− i+ 1)3l3i. (39)

Then we consider the following ratio:

L(i+ 1)

U(i)
=

10

3

N − i

i(i+ 1)
(d− i)4l3

(
i

d

)3i

, (40)

where i ∈ [d − 1]. It can be seen that (40) is larger than 1,
when N is large, more specifically, when

N >
3

10l3
i(i+ 1)

(d− i)4

(
d

i

)3i

. (41)

Here, i(i+1)
(d−i)4 ≥ d2 − d with equality when i = d − 1. And(

d
i

)3i ≥ e(
3d
e) = 3.02d with equality when i = d

e . Thus, we
require that N = O(1

l3 d
23.02d). In this case, the volume of

the ball with radius d is upper bounded as

d∑
i=1

Vi < dVd = dCd
N

(
10

3

)d

l3d. (42)

In fact, if N � 1
l3 d

23.02d, the volume of the ball is dominant
by the term Vd, and all other terms can be neglected. This
means that the error ball is almost the same as the ball with
(l, t) LMPE, despite the difference between the LMPE and the
distance as in Remark 1.

So for N = O(1
l3 d

23.02d), l � 3
2 , the Gilbert-Varshamov

bound can be roughly expressed to be:

A(N, l, t) ≥ |X |
|ball of radius 2t+ 1|

(43)

>
(C3

k+3)
N

(2t+ 1)C2t+1
N

(
10
3

)2t+1
l3(2t+1)

. (44)

When l is small and N is sufficiently large, the above bound
can be modified by applying the exact formula of E in (30).
Ignoring the lower order terms, the bound is in the order of

(2t)!

N2t+1

1

6N

(
3

10

)2t+1
k3N

l3(2t+1)
(45)

APPENDIX C
IMPROVED HAMMING CODE

We provide the method of [21] to choose the parity check
matrix H for Hamming code when not all error patterns are
possible as in Construction 4.

Notations. The major element is defined as the leading non-
zero element in a column of the parity check matrix, shown
as red numbers on Figure 3. Major columns are defined as
the columns whose major element is 1. A minor column is
defined as a column whose major element is not 1. Note
that parity check matrix of Hamming code can be constructed
by including all major columns. Each element in GF (q) is
denoted by an integer between 0 and q− 1. For i, j ∈ GF (q),
we say i < j if the integer representation of i is smaller
than that of j. Let E be the set of possible error patterns. For
example, for (l = 1, t = 1) LMPE the remainder error patterns
are listed in Table V.

0
1

0
2

0
26

 ... 1
0

1
1

1
26

 ... 2
0

2
1

2
26

 ... 26
0

26
1

26
26

Fig. 3: Major elements in all possible columns for GF (27) and 2 parity check
symbols.

The following construction is the procedure to find the
parity check matrix of the improved Hamming code based
on [21]. The idea is to add columns to the parity check matrix
of Hamming code, so that the redundancy r is kept but the
codeword length N is enlarged. For the sake of completeness,
we prove its correctness in Proposition 3.

Construction 5 (Parity check matrix of the improved Ham-
ming code): Initialize the parity check matrix H by including
all major columns over GF (q) of length r. Initialize the set
I = {1}. For each i ∈ GF (q)\{0, 1}, append to H minor
columns with major element i if the following is satisfied: for
all e1, e2 ∈ E and j ∈ I,

ie1 6= je2. (46)

Add i to the set I.
Proposition 3: Construction 5 gives a code over GF (q) with

r redundant symbols that can correct a single error in E .
Proof: Let H be of size r × N . Consider a single-error

vector of length N that is either all zeros or contains a single
non-zero element from E . Note that the syndrome equals to
the product of H and the single-error vector. We will show
that the syndromes of such error vectors are distinct. Then the
decoder can correct the error from the syndrome.

It is apparent that only when no error occurs, the syndrome
is all zeros. So we consider the syndrome of two distinct
single-error vectors, which can be written as e1h′1, e2h

′
2. Here,

e1, e2 are elements of E representing the error values, and
h′1,h

′
2 are columns of the parity check matrix H representing

the error locations. Noticing that each column of H can be
viewed as a major column multiplied by some non-zero scalar

TABLE V: Remainder error patterns, for l = 1. The primitive polynomial of
GF (27) is chosen to be x3 + 2x+ 1. The 3 coefficients in the polynomial
representation correspond to the first 3 entries of the remainder tuple. Every
element in GF (27) is represented by an integer between 0 and 26, and in
particular, each non-zero element is denoted by the integer exponent in the
power representation plus 1.

Remainders Power Polynomial Integer
0,0,1,2 1 1 1
0,1,0,2 α α 2
2,0,0,1 α2 α2 3
0,1,2,0 α3 α+ 2 4
1,2,0,0 α4 α2 + 2α 5
1,0,2,0 α12 α2 + 2 13
0,0,2,1 α13 2 14
0,2,0,1 α14 2α 15
2,0,0,1 α15 α2 16
0,2,1,0 α16 2α+ 1 17
2,1,0,0 α17 2α2 + α 18
2,0,1,0 α25 2α2 + 1 26

from GF (q), we can rewrite h′1 = i1h1,h
′
2 = i2h2, where

h1,h2 are major columns, and i1, i2 ∈ I are the scalar
multipliers. From (46), we know

i1e1 6= i2e2. (47)

When h1 6= h2, since any two major columns in H are
not linearly dependent, we know i1e1h1 6= i2e2h2, or the
syndromes are different.

When h1 = h2, due to (47), we see i1e1h1 6= i2e2h2.
Now we apply Construction 5 to remainder classes

with (l = 1, t = 1) LMPE. From Table V, it is
seen that the set of remainder error patterns is E =
{1, 2, 3, 4, 5, 13, 14, 15, 16, 18, 26}. By the condition in (46),
H contains columns whose major elements are 1, 7.

For example, the systematic parity check matrix for r = 2
is shown as below.[

0 1 ... 1 7 ... 7 1 0
7 1 ... 26 0 ... 26 0 1

]
, (48)

In general, the codeword length is N = 2 qr−1
q−1 =

1
13 (27

r − 1), for redundancy r.

APPENDIX D
REDUNDANCY FOR THE CONSTRUCTIONS

We derive the redundancy for general (l, t) in Proposition 4,
and for (l = 1, t = 1) in Proposition 5. They are summarized
in Table IV. For simplicity, we assume that the required finite
field size, e.g., the number of classes, is a prime power.

Proposition 4: The redundancy in bits for Constructions
2 and 3 approaches 2t log2(N + 1), and 3t log2(N + 1),
respectively, when k/l is sufficiently large.

Proof: Similar to Figure 2, the parity symbols in the code-
word contains the parity remainder part and the information
quotient part. And the number of messages to be represented
by the quotient part in one symbol depends on the parity
remainders in the worst-case. One can show that the worst case
occurs when the remainders sums to 4l+2+(k mod (2l+1))
or 6l + 3 + (k mod (2l + 1)), depending on whether the
latter exceeds 8l. And the corresponding number of possible

information quotient tuples is C3
s+3, where s =

⌊
k

2l+1

⌋
−2 or⌊

k
2l+1

⌋
− 3.

Redundancy for Construction 2. BCH code has length
qm − 1 = N , for the field size q = (2l + 1)3. The number of
redundant symbols is no more than r = 2mt = 2t logq(N+1).
The total number of possible words is (C3

k+3)
N , the number of

information messages is (C3
k+3)

N−r(C3
s+3)

r, and the number
of redundant bits is

log2(C
3
k+3)

N − log2(C
3
k+3)

N−r(C3
s+3)

r (49)

= log2
(C3

k+3)
r

(C3
s+3)

r
(50)

≈r log2(2l + 1)3 (51)
=2t log2(N + 1). (52)

Here, (51) follows when k/l is large.
Redundancy for Construction 3. BCH code for the first

layer has length qm1
1 −1 = N , for the field size q1 = (2l+1)2.

The number of redundant symbols is no more than r1 =
2m1t = 2t logq1(N +1). Note that q1 is smaller than the field
size in Construction 2, and thus the redundancy is longer. BCH
code in the second layer has length qm2

2 − 1 = N , field size
q2 = 2l + 1, and distance t + 1. The number of redundant
symbols is r2 = m2t = r1. A symbol contains 3 parts: the
class index (coded by BCH code in the first layer), the first
entry of the remainder tuple (coded by BCH code in the second
layer), and the quotients (information). Since the redundancy
length is the same for both BCH codes, the r1 parity symbols
contain parity remainders and information quotients, and the
remaining N − r1 symbols contain only information. See
Figure 4 (a). Thus, the number of information messages is
(C3

k+3)
N−r1(C3

s+3)
r1 , and the number of redundant bits has

the same expression as (51) except that r is different:

r1 log2(2l + 1)3 (53)
=3t log2(N + 1). (54)

The proof is completed.
Remark 2: In Figure 2, the number of possible quotients in

the parity symbols are only 10, which was to accommodate
the worst-case. The proof of the above proposition (in par-
ticular, the approximation step in (51)) implies that when the
resolution k is large, we can ignore the loss for the number
of possible quotients in the parity symbols, and only consider
the redundancy in terms of the parity remainders.

Remark 3: Since the number of redundant symbols for
BCH codes in the two layers are the same in Construction
3, the code structure is similar to Construction 2. Namely,
the codeword can be divided into information symbols and
parity symbols, where only remainders in the parity symbols
are redundant.

Below we derive the redundancy for naive Hamming code
(applied to the entire symbols), Hamming code (applied to the
remainder classes as in Construction 2), improved Hamming
code (in Construction 4), and Hamming code with reduced
classes (in Construction 3), which are shown in Table IV.

info

info

info

parity

parity

info

class

1st entry

quotient

remainder

r1=r2

info

info

info

parity

info

info

r1-r2

parity

parity

info

r2 N-r1 N-r1

(a) (b)

Fig. 4: Code structures for Construction 3 with reduced classes. (a) BCH
code. (b) Hamming code.

Proposition 5: Let l = 1, t = 1. The redundancy in
bits for naive Hamming code, Hamming code, improved
Hamming code, and Hamming code with reduced classes is
log2

((
C3

k+3 − 1
)
N + 1

)
, log2(26N+1), log2(13N+1), and

log2(8N + 1) + log2(3), respectively, when k is sufficiently
large.

Proof: Similar to the proof of Proposition 4, for the parity
symbols, the number of possible information quotient tuples
is C3

s+3, where s =
⌊

k
2l+1

⌋
− 2.

Hamming code over GF (q) has length N = qr−1
q−1 , and the

number of redundant symbols is r = logq((q − 1)N + 1).
Redundancy for naive Hamming code. The naive Ham-

ming code requires a field size q = C3
k+3. The num-

ber of redundant symbols r can be represented as r =
logq

((
C3

k+3 − 1
)
N + 1

)
. The total number of possible words

is (C3
k+3)

N , and the number of information messages is
(C3

k+3)
N−r(C3

s+3)
r. Similar to (51), we can get the he number

of redundant bits is log2
((
C3

k+3 − 1
)
N + 1

)
.

Redundancy for Hamming code. The remainder classes
require a field size q = 27. The number of redundant symbols
is r = logq(26N+1). The number of information messages is
(C3

k+3)
N−r(C3

s+3)
r. Similar to (51), we can get the he number

of redundant bits is log2(26N + 1).
Redundancy for improved Hamming code. The improved

Hamming code has length N = 1
13 (27

r − 1), for the
field size q = 27. The number of redundant symbols is
r = logq(13N + 1). The number of information messages is
(C3

k+3)
N−r(C3

s+3)
r. Similar to (51), we can get the he number

of redundant bits is log2(13N + 1).
Redundancy for Hamming code with reduced classes.

The Hamming code for the first layer has the field size q1 = 9.
The number of redundant symbols is than r1 = logq1(8N+1).
The code in the second layer has the field size q2 = 3, and
distance t + 1 = 2, which is a single parity check code. The
number of redundant symbols is r2 = logq2(3) = 1. A symbol
contains 3 parts: the class index (9 possibilities) coded by the
Hamming code in the first layer, the first entry of the remainder
tuple (3 possibilities) coded by the single parity check code in
the second layer, and the information quotients. The first N −
r1 symbols are information, the next r1−r2 symbols contains
parity class indices, and the last r2 symbols contains parity
remainders, shown in Figure 4 (b). The number of possible
information messages is (C3

k+3)
N−r1(C3

s+3)
r13r1−r2 . Similar

to (51), we can approximate the the number of redundant bits

for large k, which is

log2(C
3
k+3)

N − log2((C
3
k+3)

N−r1(C3
s+3)

r13r1−r2)

≈r1 logq1(2l + 1)3 − (r1 − r2) log2(3)

= log2(8N + 1) + log2(3).

The proof is completed.

REFERENCES

[1] J. Cox, “Long-term data storage in DNA,” Trends in biotechnology,
vol. 19, pp. 247–50, 08 2001.

[2] V. Zhirnov, R. Zadegan, G. Sandhu, G. Church, and W. Hughes, “Nucleic
acid memory,” Nature Materials, vol. 15, pp. 366–370, 03 2016.

[3] S. M. H. Tabatabaei Yazdi, Y. Yuan, J. Ma, H. Zhao, and O. Milenkovic,
“A rewritable, random-access DNA-based storage system,” Scientific
Reports, vol. 5, 05 2015.

[4] H. Lee, R. Kalhor, N. Goela, J. Bolot, and G. Church, “Terminator-free
template-independent enzymatic DNA synthesis for digital information
storage,” Nature Communications, vol. 10, 06 2019.

[5] G. Church, Y. Gao, and S. Kosuri, “Next-generation digital information
storage in DNA,” Science (New York, N.Y.), vol. 337, p. 1628, 08 2012.

[6] N. Goldman, P. Bertone, S. Chen, C. Dessimoz, E. Leproust, B. Sipos,
and E. Birney, “Towards practical, high-capacity, low-maintenance in-
formation storage in synthesized DNA,” Nature, vol. 494, 01 2013.

[7] Y. Erlich and D. Zielinski, “DNA fountain enables a robust and efficient
storage architecture,” Science, vol. 355, pp. 950–954, 03 2017.

[8] L. Anavy, I. Vaknin, O. Atar, R. Amit, and Z. Yakhini, “Data storage in
DNA with fewer synthesis cycles using composite DNA letters,” Nature
Biotechnology, vol. 37, 10 2019.

[9] S. Al-Bassam and B. Bose, “Asymmetric/unidirectional error correcting
and detecting codes,” IEEE Transactions on Computers, vol. 43, no. 5,
pp. 590–597, 1994.

[10] M. Blaum and H. Van Tilborg, “On t-error correcting/all unidirectional
error detecting codes,” IEEE Transactions on Computers, vol. 38, no. 11,
pp. 1493–1501, 1989.

[11] Bose and D. J. Lin, “Systematic unidirectional error-detecting codes,”
IEEE Transactions on Computers, vol. C-34, no. 11, pp. 1026–1032,
1985.

[12] R. Ahlswede, H. Aydinian, and L. Khachatrian, “Unidirectional error
control codes and related combinatorial problems,” 01 2002.

[13] Y. Cassuto, M. Schwartz, V. Bohossian, and J. Bruck, “Codes for
asymmetric limited-magnitude errors with application to multilevel flash
memories,” IEEE Transactions on Information Theory, vol. 56, no. 4,
pp. 1582–1595, 2010.

[14] N. Elarief and B. Bose, “Limited magnitude error detecting codes over
Zq,” in 2009 Information Theory and Applications Workshop, 2009, pp.
29–33.

[15] ——, “Optimal, systematic, q-ary codes correcting all asymmetric
and symmetric errors of limited magnitude,” IEEE Transactions on
Information Theory, vol. 56, no. 3, pp. 979–983, 2010.

[16] R. Gabrys, H. M. Kiah, and O. Milenkovic, “Asymmetric Lee distance
codes for DNA-based storage,” IEEE Transactions on Information
Theory, vol. 63, no. 8, pp. 4982–4995, 2017.

[17] S. B. Gashkov and I. S. Sergeev, “Complexity of computation in finite
fields,” Journal of Mathematical Sciences, vol. 191, no. 5, pp. 661–685,
2013.

[18] W. Zhang and Z. Wang, “Limited-magnitude error cor-
rection for probability vectors in DNA storage,” 2021,
https://faculty.sites.uci.edu/zhiying/publications/.

[19] R. W. Hamming, “Error detecting and error correcting codes,” The Bell
System Technical Journal, vol. 29, no. 2, pp. 147–160, 1950.

[20] S. Lin and D. J. Costello, Error control coding, Second edition. USA:
Prentice-Hall, Inc., 2004.

[21] A. Das and N. A. Touba, “Efficient non-binary Hamming codes for
limited magnitude errors in MLC PCMs,” in 2018 IEEE International
Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology
Systems (DFT), 2018, pp. 1–6.

