
Communication-efficient Clock Synchronization
Peng Fei, Zhen Chen, Zhiying Wang, Syed A. Jafar

Center for Pervasive Communications and Computing (CPCC)
University of California, Irvine, USA
{pfei1, zhenc4, zhiying, syed}@uci.edu

Abstract—The problem of clock synchronization is studied in
an arbitrary network G = (V, E) with |V| server nodes and |E|
edges. Every pair of adjacent servers has a time discrepancy (edge
information) that is only known approximately to one or both of
the two adjacent servers. A master node aims to coordinate the
otherwise independent clocks of the servers by eliminating the
loop-wise offset surplus in the network. The goal is to minimize
the communication cost between server nodes and the master
node. Optimal schemes are found for the two cases where each
time discrepancy is known by 1) both adjacent servers, and 2)
only one of the adjacent servers. Notably, the scheme for the first
case is robust to a straggler (slow or failed server). An algorithm
that outperforms the natural (uncoded) baseline is proposed for
the general setting that is a mix of the two cases. Classes of such
mixed setting are identified where the algorithm represents the
optimal solution.

I. INTRODUCTION

Clock synchronization is broadly used in distributed sys-
tems for many network and database applications [1], [2].
Performance requirements of such applications these days
involve synchronization accuracy to within microsecond or
even nanosecond level [3]–[6]. As a result, there are increasing
demands on the speed and reliability of implementation of
synchronization techniques. In particular, the communication
overhead required for clock synchronization is one of the
limiting factors that can significantly affect the accuracy of
synchronization [3]. Motivated by this concern, in this work
we explore ways to reduce the communication cost of clock
synchronization.

The body of research on clock synchronization in distributed
systems largely focuses on two aspects: two-clock synchro-
nization, and multiple-clock synchronization for a whole graph
consensus. Two-clock synchronization studies ways to reduce
the one-way delay between two servers that may arise due to
various factors such as path length, temperature, and fluctua-
tions of switch times. Multiple-clock synchronization uses the
information from the whole network to generate approximate
global time [7] of the system [3], [8]–[11]. Our focus in this
work is on the multiple-clock synchronization problem.

Among the latest multiple-clock synchronization algo-
rithms, HUYGENS [3] enables delay-sensitive applications
in datacenters by achieving an accuracy of tens to hundreds
of nanoseconds. To obtain one-way delay, or clock time
discrepancy, between a pair of connected servers, HUYGENS

Peng Fei and Zhen Chen made equal contributions.

proposes a coded probe filter to purify the training data and
uses support vector machines (SVM) [12] to estimate the
synchronized time between two clocks. Then, it develops
a loop-wise algorithm to eliminate the asymmetric mistakes
between multiple loops.

To implement the HUYGENS algorithm, each server node
exchanges time information with its neighbouring nodes, and
then all server nodes send information to a master node who
runs the synchronization algorithm. As the clocks drift con-
stantly, it is essential to ensure timely communication between
the servers and the master to guarantee the synchronization
accuracy. In this work, we focus on optimizing, from a coding
perspective, the information transfer that is required by the
HUYGENS algorithm between the servers and the master
node.

For our purpose, the HUYGENS algorithm may be ab-
stracted as follows [3]: The network is described by the
graph G = (V, E), where V represents server nodes, and E
is the set of edges. Each edge is associated with a weight
representing the approximate time discrepancy, also called the
edge information. A node may know the edge information
of its incident edges or a subset thereof. A master wants to
collect all the edge information that is necessary to compute
a particular linear function of such information.

In this context, we identify an opportunity to improve
communication efficiency by coding, which leads to the
following question: assuming each server can linearly code
its edge information, what is the fundamental limit on the
communication cost from the servers to the master, and how
can this optimal cost be achieved?

The question falls under the broad umbrella of network
computing problems where source nodes generate independent
messages and a master node computes a target function of the
messages [13]–[18]. In general, network computing considers
arbitrary graphs and arbitrary target functions. The clock
synchronization problem can be regarded as a special case of
network computing that considers linear coding for the compu-
tation of a particular linear function over a particular graph. As
such, the clock synchronization problem is comprised of |E|
messages (corresponding to the |E| time discrepancies) that
originate at distinct source nodes and are made available to
|V| server nodes depending on the adjacency and knowledge
structure, and a master node that wishes to compute a linear
function (involving a pseudo-inverse) by downloading coded

information from the servers. The goal is to minimize the total
amount of information downloaded by the master node.

Our contributions consist of three parts. First, for the case
where each time discrepancy is known by both incident
servers, we propose a coding scheme that achieves the optimal
rate. Remarkably, the scheme can also tolerate a straggler
(slow or failed server) at no extra cost. Second, for the case
where each time discrepancy is known by only one of the
incident servers, we show that the optimal solution is the
trivial solution that entails sending all the time discrepancy
information to the master. Third, we design a general algorithm
for mixed scenarios where some edge discrepancies are known
by both incident servers while others are known only by one
of the incident servers. The algorithm outperforms the natural
baseline of uncoded transmission and is shown to be optimal
for some cases.

Notation: We use calligraphic characters to denote sets and
bold characters to denote matrices. For a positive integer N ,
[N] stands for the set {1, 2, . . . , N}. For a set S, |S| represents
its cardinality.

II. PROBLEM STATEMENT

We first review the HUYGENS algorithm [3] for clock syn-
chronization. Then, we introduce our communication model
for the algorithm.

A. Clock Synchronization

HUYGENS [3] first implements the pair-wise synchroniza-
tion algorithm between two neighboring server clocks. It then
builds a synchronization algorithm that considers the whole
network effect.

Let G = (V, E) be the server network with server nodes V
and communication links (edges) E . For convenience, every
edge has a predefined direction. The edge from Node U to
Node V is denoted as UV , for U, V ∈ V .

In the first step of HUYGENS, the edge information, or the
time discrepancy, is determined between every pair of adjacent
nodes. We assume the edge information is only known by
one or both of the two incident nodes. The edge information
for Edge UV is denoted as lUV . In Figure 1.a, for example,
Servers A and B both believe that B’s time is 20 time units
earlier than A and the time discrepancy lAB = 20 is only
known by Node A and/or Node B. In Figure 1.a, the original
time discrepancy vector

∆P = [lAB , lBC , lCA, lBD, lDA]
T = [20,−15, 5, 25,−15]T

(1)

corresponds to the time discrepancy on directed edges
AB,BC,CA,BD, and DA.

However, notice that in the loop A→ B → C → A, Server
C is 5 time units later than A and 15 time units later than
B. Then B should be only 10 time units earlier than A. This
means that there are 10 time units loop-wise offset surplus,
due to the inaccuracy of the clock measurement.

C

D

A B20

5 -15

-15 25

C

D

A B10

5 -15

-25 15

(a) (b)

Fig. 1. HUYGENS algorithm. The figure is redrawn from [3].

The second step of HUYGENS is to eliminate the loop-wise
offset surplus in the clock network. It calibrates the original
discrepancy vector ∆P to the final time discrepancy vector

∆F = [10,−15, 5, 15,−25]T (2)

as shown in Figure 1.b. The transformation from ∆P to ∆F

is explained below.
Remark. From the example above, we see that if the

graph G has several connected components, then the loop-wise
surplus can be eliminated for each component independently.
Moreover, if some nodes are not included in any loops, they
can be ignored during clock synchronization. Therefore, we
assume G is connected and all nodes are in loops without loss
of generality.

Given a server network graph G, denote A as the loop-
composition matrix. The columns of A are indexed by the
edges. The rows are indexed by the largest set of linearly
independent loops in G. If an edge occurs in a loop, directly or
reversed, the corresponding entry in A is 1 or −1; otherwise,
the entry equals 0. Since the loops are all linearly independent,
matrix A has full row rank. For a connected graph,

rank(A) = |E|+ |V| − 1. (3)

For example, in Figure 1, let the 5 columns of A be indexed
by edges AB,BC,CA,BD,DA. The three loops A→ B →
C → A, A → B → D → A, and A → C → B → D → A
can be denoted respectively by three rows. The last row (loop)
is dependent on the first two, and hence the loop-composition
matrix is

A =

(AB BC CA BD DA

1 1 1 0 0

1 0 0 1 1

)
. (4)

The vector Y = A∆P gives the original loop-wise surplus
in each independent loop of G. In order to apply the loop-
wise correction, we look for a vector N which also solves
Y = AN and posit the correction to be ∆F = ∆P −N. As
a result, the final loop-wise surplus vector is A∆F = 0. Now,
A has full row rank. Further, since the number of linearly
independent loops in G equals |E| − |V| + 1 which is less
than |E|, the equation Y = AN is under-determined and has
multiple solutions. We look for the minimum-norm solution
since this is most likely the best explanation of the errors in the
loop-wise surpluses: minN:Y=AN ||N||2. The pseudo-inverse
is well-known to give the minimum-norm solution [19]: N =

A−1rightY = AT (AAT)−1A∆P , where the A−1right is the right
pseudo-inverse of A [20]. HUYGENS can be concluded in the
following formula:

∆F = ∆P −N = (I−AT (AAT)−1A)∆P = B∆P , (5)

where I is an |E| × |E| identity matrix and

B = I−AT (AAT)−1A. (6)

Note that A, I, and hence B are determined by the known
graph structure. It can be easily checked that the final time
discrepancy in Figure 1.b satisfies (5).

B. Communication Model

As proposed by HUYGENS, the calculation of Equation
(5) is run on a master [3]. Assume each edge information is
known by one or both incident server nodes, and each server
node can linearly code its known edge information. We aim to
minimize the communication cost (CC), defined as the number
of symbols communicated from all the server nodes to the
master node, such that (5) can be calculated.

Trivial scheme. We can see that HUYGENS relies on ∆P

which is gathered from every pair of neighboring nodes. To
obtain ∆F , a trivial solution is for each edge, one of the
incident nodes should send the information to the master. In
this scenario, the communication cost is CC = |E| symbols.

To motivate the general communication scheme, let us
consider the matrix B in Figure 1’s example,

B =

0.5 −0.25 −0.25 −0.25 −0.25
−0.25 0.625 −0.375 0.125 0.125
−0.25 −0.375 0.625 0.125 0.125
−0.25 0.125 0.125 0.625 −0.375
−0.25 0.125 0.125 −0.375 0.625

 . (7)

In this case, rank(B) = 3. It means that the optimal
communication cost is not less than 3 symbols. If every
clock knows all the time discrepancies, it is obvious that the
communication cost CC = 3 because one node can calculate
3 (row) bases of B, denoted by B1,B2,B3, and send to
the master B1∆

P ,B2∆
P ,B3∆

P . The master can obtain
∆F = B∆P from B1∆

P ,B2∆
P ,B3∆

P .
However, each node only has the information of edges that

are connected with it. Then, is it still possible to achieve
the communication cost of rank(B)? We will answer this
question affirmatively if each edge information is known by
both of the incident nodes.

Next, we describe an equivalent matrix representation of any
linear communication scheme, and define the corresponding
communication cost. For any graph G = (V, E), consider a
matrix X′ ∈ R|V|×|E|, whose rows are indexed by the nodes
and columns are indexed by the edges. The entry in Row U ∈
V and Column e ∈ E equals 0 if Node U does not have the
time discrepancy information of Edge e. Otherwise, the entry
can be set as any value. Denote by xU the row corresponding
to Node U . If Node U transmits a symbol to the master, it must
be in the form of xU∆P . The overall transmitted symbols
must be in the form of X∆P , where rows of X are chosen
from rows of X′ (a row may be chosen multiple times but

the non-zero entries can be set differently). Finally, the master
obtains B∆P = MX∆P for some transformation matrix M.
The communication scheme consists of the matrices X and
M, such that B = MX. The communication cost equals the
number of rows in X.

III. COMMUNICATION-EFFICIENT CLOCK
SYNCHRONIZATION

In this section, we show our main results for the communi-
cation cost under three cases: the edge information is known
by 1) both incident nodes, 2) one incident node, and 3) either
one or two incident nodes.

For the first case, we claim that the communication cost
of rank(B) is achievable, and since we already established
that the communication cost cannot be less than rank(B),
the solution is optimal.

Theorem 1. For any connected graph G = (V, E), if every
node has all its edge information, there exists an optimal so-
lution where all but one node send one symbol, and the desired
B∆P is recovered at the master. The total communication cost
CC = rank(B) = |V| − 1.

For our purpose, in the matrix X′ ∈ R|V|×|E|, Row

xU , U ∈ V, (8)

is defined such that each column (edge) starting from U has
entry 1, each column going to U has entry −1, and the other
columns are 0.

We first demonstrate Theorem 1 using the example in Figure
1. It can be checked that the following communication scheme
satisfies B = MX.

M =

0.25 −0.25 0
−0.125 0.125 −0.5
−0.125 0.125 0.5
0.375 0.625 0.5
−0.625 −0.375 −0.5

 , (9)

X =

xA

xB

xC

 =

AB BC CA BD DA

1 0 −1 0 −1
−1 1 0 1 0

0 −1 1 0 0

. (10)

The transmitted symbols are X∆P . This means that we let Nodes
A,B,C send a linear combination of the time discrepancies of all
their neighbouring edges. In total, the communication cost is 3 =
|V| − 1 symbols which equals rank(B). After the master receives
these symbols, it can get ∆F = MX∆P = [10,−15, 5, 15,−25]T .

In fact, for [xA
T ,xB

T ,xD
T]T , [xA

T ,xC
T ,xD

T]T ,
[xB

T ,xC
T ,xD

T]T , we can also find the corresponding M. In
general, it is sufficient to have any |V| − 1 nodes send coded
information to the master. Therefore, this scheme tolerates 1
straggler.

The proof of Theorem 1 is broken into several steps. We first
show a rank condition in Lemma 1. Then we show the achievability
in Lemma 2 and the converse in Lemma 3.

Lemma 1. Let E ∈ Cm×n,F ∈ Cn×p be two matrices such that
EF = 0, and the null space of E lies in the column span of F. Then
rank(E) + rank(F) = n.

Proof. Since the null space of E is in the column span of F,

n− rank(E) ≤ rank(F). (11)

On the other hand, the rank of the product of E, F satisfies Sylvester
inequality:

0 = rank(EF) ≥ rank(E) + rank(F)− n. (12)

Combining (11) and (12) we see the lemma is proved.

Define a loop set to be a set of loops. We allow disjoint loops
as well as loops with common edges. Define the corresponding loop
vector y of length |E| to be a column vector that lists the number
of times (with signs) each edge appears in the loop set, which are
called the weights of the edges. A negative sign means that the edge
is in the reverse direction. For example, in Figure 1, {A → B →
C → A,A→ B → D → A} is a loop set. The loop vector is

AB BC CA BD DA
(2 1 1 1 1)T .

(13)

The weight of AB is 2, and the weight of BC is 1, etc. For each loop
vector, there can be multiple associated loop sets. By the definition
of the loop-composition matrix A, a loop vector is a vector in the
column span of AT .

Lemma 2. Let X be the matrix of size (|V| − 1) × |E|, and its
rows be any |V| − 1 rows from (8). Then B = MX, for M =
BXT (XXT)−1 = XT (XXT)−1.

Proof. We first show BT is in the column span of XT , and hence
B = MX for

M = BX−1
right, (14)

where X−1
right is the right preudo-inverse of X. Then we find the

formula for M.
Assume a is any column of AT , which corresponds to a loop.

Let xU be the row vector as in (8) for Node U , whose ±1 entries
correspond to all incident edges of Node U . If the loop does not pass
Node U , then there is no overlap between the edges in xU and a.
In this case, xUa = 0. Otherwise, every time the loop passes Node
U , exactly one edge goes into node U , and exactly one edge goes
out from node U . In this case, we also have xUa = 0. Therefore,
XAT = 0.

Now let us prove that the rows of X are linearly independent.
Consider a vector y in the null space of X, i.e., Xy = 0. We show
that y is a loop vector. Since xUy = 0, for any Node U , the sum
weight in y for Node U ’s incoming edges equals the sum weight
of its outgoing edges. By Veblen’s theorem [21], a directed graph
admits a decomposition into directed cycles if and only if the sum
weight of the incoming edges equals the sum weight of the outgoing
edges for every node. Therefore, y must be a loop vector, which is
in the column span of AT . Combining the facts that XAT = 0 and
rank(A) = |E|+ |V| − 1, we use Lemma 1 to conclude that

rank(X) = |E| − rank(A) = |V| − 1, (15)

which is equal to the number of rows in X.
Since matrix A of size (|E|− |V|+1)× |E| has full row rank, its

null space has dimension |V| − 1. Due to AXT = 0 and (15), we
known the null space of A equals the column span of XT . Moreover,

BAT = AT −AT (AAT)−1AAT = AT −AT = 0. (16)

Therefore, BT is in the null space of A, and hence is in the column
span of XT . Thus, Equation (14) holds.

Finally, since X is full rank and AXT = 0, we apply the pseudo-
inverse formula to get

M = (I−AT (AAT)−1A)XT (XXT)−1 = XT (XXT)−1. (17)

The proof is completed.

Lemma 3. rank(B) = |V| − 1.

Proof. We will show that the null space of BT is in the column span
of AT, and BTAT = 0 so as to use Lemma 1. In that case,

rank(B) = |E| − rank(A) = |V| − 1. (18)

First,

AB = A−AAT (AAT)−1A = A−A = 0, (19)

and thus BTAT = 0. Second, let y be any vector in the null space
of BT , namely, yTB = 0. Then

yT = yT I = yT
(
B + AT (AAT)−1A

)
=
(
yTAT (AAT)−1

)
·A, (20)

which belongs to the row span of A. Namely, y is in the column
span of AT .

Proof of Theorem 1. The scheme in Lemma 2 has a communication
cost of CC = rank(X) = |V| − 1, which is equal to rank(B)
according to Lemma 3. Theorem 1 is proved.

We note that in our optimal scheme, only |V| − 1 nodes transmit,
one symbol each, and we can tolerate 1 straggler.

Lemma 4. Let X′ contain all |V| rows as in (8). If the master obtains
X′∆P , then it can perform row operations to get B∆P . Moreover,
rank(X′) = rank(B) = |V| − 1.

Proof. From Lemma 2, it is obvious that X′, which includes all rows
of X, can be transformed into B by row operations.

By the same argument as Equation (15), one can show that
X′AT = 0, and the null space of X′ is in the column span of
AT . By Lemma 1 and Lemma 3,

rank(X′) = |E| − rank(A) = |V| − 1 = rank(B). (21)

The proof is completed.

While (21) holds for a connected graph, for G with n connected
components, since X′ is the incidence matrix, its rank is [22, Prop.
4.3]

rank(X′) = |V| − n. (22)

The above lemma indicates that the master’s desired information
B∆P can be equivalently represented by X′∆P . The desired
dimensions refers to either B or X′ interchangeably.

Next, we consider the cases where the edge information is known
by one or both of the incident nodes. We state in Lemma 5 a converse
of the communication cost, which directly follows from the min-cut
bound of linear network computing [16].

To that end, define E(U) as the set of the edges which are in E
and known by Node U , for U ∈ V . For a set of nodes U ⊆ V , define
E(U) as the set of the edges known by Nodes U . Denote matrix
X′E(U) as the sub-matrix of X′ obtained by choosing the columns
corresponding to the edges in E(U). It represents the master’s desired
dimensions restricted to information known by U . The matrix X′E(U)
is defined similarly. It can be easily seen that for any Node U ∈
V , X′E(U) always contains a diagonal matrix (after row and column
permutations) and is full rank rank(X′E(U)) = |E(U)|.

Lemma 5 (Min-cut bound). Let CCU denote the communication
cost from Server U . The total communication cost satisfies

CC ≥ min
∑
U∈V

CCU , (23)

s.t.
∑
U∈U

CCU ≥ rank(X′E(U)), for all U ⊆ V. (24)

Algorithm 1 Algorithm for graph G = (V, E), where some
edge information are singletons.

1: Send the singletons directly from the corresponding
servers. Let Es be the corresponding edges.

2: Let H be the graph (V, E\Es).
3: Let n be the number of connected components of H.
4: Let X′ be as in (8) for graph H. Let X be |V| − n rows

of X′ such that one row is excluded from X′ for each
connected component.

5: Let M = XT (XXT)−1.
6: Use the communication scheme X,M.
7: Combine the singletons and MX∆P to obtain B∆P .

For example, if we set U = V in (24), we get the aforementioned
communication cost bound CC ≥ min

∑
U∈V CCU ≥ rank(X′) =

rank(B).
The following theorem states that when each edge information is

known by only one node, the trivial scheme is optimal.

Theorem 2. For graph G = (V, E), if each edge information is
only known by one of its incident nodes, the optimal solution for the
master to obtain the desired B∆P is to send all the edge information
individually. The total communication cost is CC = |E|.

Proof. The achievability is obvious. We only need to show the
converse. The communication cost of any Node U must satisfy
CCU ≥ rank

(
X′E(U)

)
= |E(U)| based on the min-cut bound with

U = {U}. The total communication cost

CC ≥ min
∑
U∈V

CCU ≥
∑
U∈V

rank
(
X′E(U)

)
(25)

=
∑
U∈V

|E(U)| = |E|, (26)

where the last equality holds since each edge is only known by one
node.

Finally, let us consider the case where each edge information is
known by either one or both incident nodes. We say the time discrep-
ancy information on an edge is singleton if it is known by just one
node. We provide an achievable scheme in Algorithm 1. It trivially
sends singletons to the master, and removes the corresponding edges.
Call the remaining graph H. Then it solves the remaining desired
dimensions on graph H as in Lemma 2. The following lemma is
straightforward from the algorithm.

Lemma 6. Let m be the number of singletons. Let n be the
number of connected components of H. Algorithm 1 achieves the
communication cost of CC = |V| − n+m.

Algorithm 1 is optimal for certain cases. For example, in Fig-
ure 1, let E(A) = {AB,CA}, E(B) = {BD,BC}, E(C) =
{CA}, E(D) = {DA,BD}. There are m = 3 singletons, i.e.,
lAB , lDA, lBC . After removing the singleton edges, the graph H
consists of all the 4 nodes but only 2 edges CA and BD. Then H
contains n = 2 connected components, such that the first component
contains Nodes A,C, and the second component contains Nodes
B,D. The communication cost of Algorithm 1 is CC = |V| − n+
m = 5. On the other hand, set U = {A,C} and U = {B,D} in

(24),

X′E({A,C}) =

AB CA

A 1 −1
B −1 0

C 0 1

D 0 0

, (27)

X′E({B,D}) =

BC BD DA

A 0 0 −1
B 1 1 0

C −1 0 0

D 0 −1 1

. (28)

We obtain the lower bound

CCA + CCC ≥ rank
(
X′E({A,C})

)
= 2, (29)

CCB + CCD ≥ rank
(
X′E({B,D})

)
= 3, (30)

CC ≥ min
∑
U∈V

CCU ≥ 5. (31)

Therefore, the algorithm gives the optimal communication cost
in the example. In general, we have the following sufficient
condition for Algorithm 1 to be optimal.

Theorem 3. Algorithm 1 is optimal under the following
condition: H contains n ≥ 2 connected components, each
component has more than 1 nodes, every singleton edge is
between different components, and singleton edges known by
distinct nodes in one component are not connected.

Proof. We show that the cut-set bound matches the commu-
nication cost in Lemma 6. Let Vi, Ei be the nodes and edges
in the i-th connected component of H, and E ′i the singleton
edges known by Vi, 1 ≤ i ≤ n. Then, the set of edges known
by the i-th component is E(Vi) = Ei ∪ E ′i . Consider X′E(Vi),

X′E(Vi) =

(Ei E ′i
Vi X1 ∗
V\Vi 0 X2

)
, (32)

where we list rows (nodes) in the i-th component on the top.
The matrix ∗ is not of interest. Matrix X1 is the matrix X′

as in (8) for the graph (Vi, Ei), whose rank is rank(X1) =
|Vi|−1. Matrix X2 corresponds to the singletons known by the
i-th component. Due to the given condition on the singletons
in the theorem, the subgraph induced by edges E ′i is simply
several disconnected star graphs (one center node connected
to the other nodes), where nodes in the i-th component are
the centers. Hence, it can be seen that X2 is a diagonal block
matrix, and every block corresponds to one star. Since X2

does not include the rows corresponding to the center nodes
in Vi, by (22) each block is full rank, which is equal to the
number of vertices in the star minus 1, or the number of edges.
Overall, the diagonal block matrix satisfies rank(X2) = |E ′i |.

Therefore, the cut-set bound gives∑
U∈Vi

CCU ≥ rank(X′E(Vi)) (33)

=rank(X1) + rank(X2) = |Vi| − 1 + |E ′i |, (34)

CC ≥ min
∑
U∈V

CCU = min

n∑
i=1

∑
U∈Vi

CCU (35)

≥
n∑

i=1

(|Vi| − 1 + |E ′i |) = |V| − n+m. (36)

The proof is completed.

IV. DISCUSSION

Besides the clock synchronization, the idea of this work
may have other applications. For example, given pairwise
evaluations by customers for how much more one item is
worth than another, our method can give a communication-
efficient global evaluation of all values, subject to minimum
norm perturbation.

REFERENCES

[1] N. Van Tu, J. Hyun, G. Y. Kim, J.-H. Yoo, and J. W.-K. Hong,
“Intcollector: A high-performance collector for in-band network teleme-
try,” in 2018 14th International Conference on Network and Service
Management (CNSM). IEEE, 2018, pp. 10–18.

[2] A. Kemper and T. Neumann, “Hyper: A hybrid OLTP&OLAP main
memory database system based on virtual memory snapshots,” in 2011
IEEE 27th International Conference on Data Engineering. IEEE, 2011,
pp. 195–206.

[3] Y. Geng, S. Liu, Z. Yin, A. Naik, B. Prabhakar, M. Rosunblum, and
A. Vahdat, “Exploiting a natural network effect for scalable, fine-
grained clock synchronization,” in Proceedings of the 15th USENIX
Conference on Networked Systems Design and Implementation, ser.
NSDI’18. USENIX Association, 2018, p. 81–94.

[4] A. Giridhar and P. R. Kumar, “Distributed clock synchronization over
wireless networks: algorithms and analysis,” in Proceedings of the 45th
IEEE Conference on Decision and Control. IEEE, 2006, pp. 4915–
4920.

[5] Y. S. Patel, A. Page, M. Nagdev, A. Choubey, R. Misra, and S. K. Das,
“On demand clock synchronization for live VM migration in distributed
cloud data centers,” Journal of Parallel and Distributed Computing, vol.
138, pp. 15–31, 2020.

[6] Y. Li, G. Kumar, H. Hariharan, H. Wassel, P. Hochschild, D. Platt,
S. Sabato, M. Yu, N. Dukkipati, P. Chandra et al., “Sundial: fault-tolerant
clock synchronization for datacenters,” in 14th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 20), 2020, pp.
1171–1186.

[7] H. Kopetz and W. Ochsenreiter, “1987.” IEEE Transactions on Comput-
ers, vol. 100, no. 8, pp. 933–940, 1987.

[8] M. Leng and Y.-C. Wu, “Distributed clock synchronization for wireless
sensor networks using belief propagation,” IEEE Transactions on Signal
Processing, vol. 59, no. 11, pp. 5404–5414, 2011.

[9] M. K. Maggs, S. G. O’keefe, and D. V. Thiel, “Consensus clock
synchronization for wireless sensor networks,” IEEE sensors Journal,
vol. 12, no. 6, pp. 2269–2277, 2012.

[10] R. Solis, V. S. Borkar, and P. R. Kumar, “A new distributed time syn-
chronization protocol for multihop wireless networks,” in Proceedings
of the 45th IEEE Conference on Decision and Control. IEEE, 2006,
pp. 2734–2739.

[11] E. Mallada, X. Meng, M. Hack, L. Zhang, and A. Tang, “Skewless
network clock synchronization without discontinuity: convergence and
performance,” IEEE/ACM Transactions on Networking, vol. 23, no. 5,
pp. 1619–1633, 2014.

[12] W. S. Noble, “What is a support vector machine?” Nature biotechnology,
vol. 24, no. 12, pp. 1565–1567, 2006.

[13] R. Appuswamy, M. Franceschetti, N. Karamchandani, and K. Zeger,
“Network coding for computing: cut-set bounds,” IEEE Transactions on
Information Theory, vol. 57, no. 2, pp. 1015–1030, 2011.

[14] ——, “Linear codes, target function classes, and network computing
capacity,” IEEE Transactions on Information Theory, vol. 59, no. 9, pp.
5741–5753, 2013.

[15] J. Zhan, S. Y. Park, M. Gastpar, and A. Sahai, “Linear function compu-
tation in networks: duality and constant gap results,” IEEE Journal on
Selected Areas in Communications, vol. 31, no. 4, pp. 620–638, 2013.

[16] R. Appuswamy and M. Franceschetti, “Computing linear functions by
linear coding over networks,” IEEE Transactions on Information Theory,
vol. 60, no. 1, pp. 422–431, 2014.

[17] C. Huang, Z. Tan, S. Yang, and X. Guang, “Comments on cut-set bounds
on network function computation,” IEEE Transactions on Information
Theory, vol. 64, no. 9, pp. 6454–6459, 2018.

[18] X. Guang, R. W. Yeung, S. Yang, and C. Li, “Improved upper bound
on the network function computing capacity,” IEEE Transactions on
Information Theory, vol. 65, no. 6, pp. 3790–3811, 2019.

[19] R. Penrose, “A generalized inverse for matrices,” Mathematical Proceed-
ings of the Cambridge Philosophical Society, vol. 51, no. 3, p. 406–413,
1955.

[20] M. OpenCourseWare, “Left and right inverses; pseudoinverse,” Online.
http://ocw. mit. edu/courses/mathematics/18-06sc-linear-algebra-fall-
2011/positive-definite-matrices-and-applications/left-and-right-inverses-
pseudoinverse/MIT18 06SCF11 Ses3. 8sum. pdf. Accessed March,
2015.

[21] J. Bondy and U. Murty, Graph theory. Springer, 2008.
[22] N. Biggs, N. L. Biggs, and B. Norman, Algebraic graph theory.

Cambridge university press, 1993, no. 67.

