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Storage Codes with Flexible Number of Nodes

Weiqi Li, Zhiying Wang, Taiting Lu, and Hamid Jafarkhani

Abstract

This paper presents flexible storage codes, a class of error-correcting codes that can recover information

from a flexible number of storage nodes. As a result, one can make better use of the available storage nodes in

the presence of unpredictable node failures and reduce the data access latency. Assume a storage system encodes

kℓ information symbols over a finite field F into n nodes, each of size ℓ symbols. The code is parameterized

by a set of tuples {(Rj , ℓj) : 1 ≤ j ≤ a}, satisfying ℓ1 < ℓ2 < ... < ℓa = ℓ and R1 > R2 > · · · > Ra, such

that the information symbols can be reconstructed from any Rj nodes, each node accessing ℓj symbols, for any

1 ≤ j ≤ a. In other words, the code allows a flexible number of nodes for decoding to accommodate the variance

in the data access time of the nodes. Code constructions are presented for different storage scenarios, including

LRC (locally recoverable) codes, PMDS (partial MDS) codes, and MSR (minimum storage regenerating)

codes. We analyze the latency of accessing information and perform simulations on Amazon clusters to show

the efficiency of the presented codes.

I. INTRODUCTION

In distributed systems, error-correcting codes are ubiquitous to achieve high efficiency and reliability.

However, most of the codes have a fixed redundancy level, while in practical systems, the number of

failures varies over time. When the number of failures is smaller than the designed redundancy level,

the redundant storage nodes are not used efficiently. In this paper, we present flexible storage codes

that make it possible to recover the entire information through accessing a flexible number of nodes.

An (n, k, ℓ) (array) code over a finite field F is denoted by (C1, ..., Cn), Ci = (C1,i, . . . , Cℓ,i)
T ∈ Fℓ,

where n is the codeword length, k is the dimension, and ℓ is the size of each node (or codeword

symbol) and is called the sub-packetization size. For an (n, k, ℓ) code, assume we can recover the entire

information by downloading all the symbols from any R nodes. R is called the recovery threshold.

We define the download time of the slowest node among the R nodes as the data access latency. In
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practical systems, the number of available nodes might be different over time and the latency of each

node can be modelled as a random variable [2]. Waiting for downloading all ℓ symbols from exactly

R nodes may result in a large delay. Hence, it is desirable to be able to adjust R and ℓ according

to the number of failures. Motivated by reducing the data access latency, we propose flexible storage

codes below.

A flexible storage code is an (n, k, ℓ) code that is parameterized by a given integer a and a set of

tuples {(Rj, kj, ℓj) : 1 ≤ j ≤ a} that satisfies

kjℓj = kℓ, 1 ≤ j ≤ a, k1 > k2 > ... > ka = k, ℓa = ℓ, (1)

and if we take ℓj particular coordinates of each node, denoted by (Cm1,i, . . . , Cmℓj
,i)

T ∈ Fℓj , 1 ≤ i ≤ n,

we can recover the entire information from any Rj nodes. Here, kj can be viewed as the code dimension

when only ℓj coordinates are considered in each node.

For example, flexible maximum distance separable (MDS) codes are codes satisfying the singleton

bound for every 1 ≤ j ≤ a, namely, Rj = kj . Fig. 1 shows an example. It is easy to see that the

flexible code in the example has a better expected latency than that of a fixed code with either k = 2

or 3. In particular, each node can read and then send its three symbols one by one to the decoder (in

practice, each symbol can be viewed as, for example, several Megabytes when multiple copies of the

same code are applied). The flexible decoder can wait until 2 symbols from any 3 nodes, or 3 symbols

from any 2 nodes are delivered. Therefore, the latency of the flexible code is the minimum of the two

fixed codes.

Naively, the flexible (n, k, ℓ) MDS code can be achieved by an (nℓ, kℓ, 1) MDS code, where ℓ

codeword symbols are viewed as one node in the flexible (n, k, ℓ) MDS code. However, by doing

so, a large field with a size of at least nℓ is required. The complexity of such a code is more than

that of the codes that require smaller field sizes. While several works have attempted to improve the

computation over large fields [3]–[6], the large field size still significantly increases the memory and

the time complexity of encoding and decoding [7], [8] due to the need for large look-up tables. For

example, 64 KB of memory is required for a standard multiplication table in GF (28), while 8 GB

is required for GF (216). With limited look-up tables, the computing speed is much slower in large

fields [3]. Efforts to alleviate the high cost of memory and computing complexity in larger fields can

be seen in [3]–[6].

Several constructions of flexible MDS codes exist in the literature, though intended for different

application scenarios, including error-correcting codes [9], universally decodable matrices [10], [11],
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Fig. 1. Example of a (4, 2, 3) flexible MDS code over GF (5). C1,1, C1,2, C1,3, C2,1, C2,2, C2,3 are the 6 information symbols.

We set W1 = C1,1 + C1,2 + C1,3,W
′
1 = C1,1 + 2C1,2 + 3C1,3 as the parities for C1,1, C1,2, C1,3, and W2 = C2,1 + C2,2 +

C2,3,W
′
2 = C2,1 + 2C2,2 + 3C2,3 as the parities for C2,1, C2,2, C2,3. The accessed symbols in each scenario are marked as red.

W ′
3 = W ′

1 +W ′
2,W

′
4 = W ′

1 +2W ′
2 are the parities of W ′

1 and W ′
2. In Scenario 1, all the information symbols are accessed, we obtain

the entire information directly. In Scenario 2, W ′
1 and W ′

2 are also the parities in Rows 1 and 2, respectively. Thus, we obtain 3 symbols

in the first two rows, and the entire information can be decoded.

secrete sharing [12], and private information retrieval [13]. However, flexible constructions remain an

open problem for other important types of storage codes, such as codes that efficiently recover from

a single node failure, or codes that correct mixed types of node and symbol failures. Single failure

recovery is essential for efficient storage management of distributed systems [14], [15], while mixed

types of failures are common in solid-state drives [16]. In this paper, we provide a framework that

can produce flexible storage codes for different code families. The main contributions of the paper are

summarized below:

• A framework for flexible codes is proposed that can generate flexible storage codes given a

construction of fixed (non-flexible) storage code. The framework keeps the same code rate k/n as the

original fixed code. Therefore, if the original fixed code has an optimal code rate, our constructions are

also optimal. Furthermore, the application of our framework to the three types of codes listed below

provides optimal code rates and optimal recovery thresholds.

• Flexible LRC (locally recoverable) codes allow information reconstruction from a variable

number of available nodes while maintaining the locality property, providing efficient single node

recovery. For an (n, k, ℓ, r) flexible LRC code parametrized by {(Rj, kj, ℓj) : 1 ≤ j ≤ a} that satisfies

(1) and Rj = kj+
kj
r
−1, each single node failure can be recovered from a subset of r nodes, while the

total information is reconstructed by accessing ℓj symbols in Rj nodes. We provide code constructions

based on the optimal LRC code construction in [17].
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• Flexible PMDS (partial MDS) codes are designed to tolerate a flexible number of node failures

and a given number of extra symbol failures, desirable for solid-state drives due to the presence of

mixed types of failures. We provide an (n, k, ℓ, s) flexible PMDS code parameterized by {(Rj, kj, ℓj) :

1 ≤ j ≤ a} satisfying (1) and Rj = kj such that when ℓj symbols are accessed in each node, we can

tolerate n−Rj failures and s extra symbol failures. We construct flexible codes from the PMDS code

in [18].

• Flexible MSR (minimum storage regenerating) codes are a type of flexible MDS codes such

that a single node failure is recovered by downloading the minimum amount of information from the

available nodes. Both vector and scalar codes are obtained by applying our flexible code framework

to the MSR codes in [19] and [20].

• Latency analysis is carried out for flexible storage codes. It is demonstrated that our flexible

storage codes always have a lower latency compared to the corresponding fixed codes. Also, applying

our flexible codes to the matrix-vector multiplication scenario, we show simulation results from

Amazon clusters with 6% improvement in latency for n = 8, R1 = 5, R2 = 4, ℓ1 = 12, ℓ2 = 15

and matrix size of 1500× 1500.

Related work. The flexibility idea was first proposed in [21] to minimize a cost function such as

a linear combination of bandwidth, delay or the number of hops. Flexible MDS codes were proposed

in [9] to recover the entire information by downloading ℓj symbols from any kj nodes. However,

each of the kj nodes needs to first read all the ℓ symbols and then calculate and transmit the ℓj

symbols required for decoding. The aim of [9] is to reduce the bandwidth instead of the number of

accessed symbols. Universally decodable matrices (UDM) [10], [11] can also be used for the flexible

MDS problem. UDM is a generalization of the flexible MDS code where the decoder can obtain

different number of symbols from the nodes. In particular, from the first vi symbols of node Ci, for

any vi, 1 ≤ i ≤ n such that
n∑

i=1

vi ≥ kℓ, the entire information can be recovered. Flexibility problems

are also considered for secret sharing [12], [22]–[24] and private information retrieval [13], [25]–[29],

such that the number of available nodes is flexible. The constructions in [12] and [13] are equivalent

to each other and they achieve optimal decoding bandwidth while keeping secrecy or privacy from

other parties. When we remove the secrecy or privacy requirement, these constructions become flexible

MDS codes. The schemes in [9]–[13] achieve the optimal field size of |F| = n.

There are several works on latency and flexibility in the literature in distributed coded computing

[30]–[33]. Specifically, fixed MDS codes are well studied [30], [31], where the computing task is
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distributed to n server nodes and the task can be completed with the results from the fastest k nodes.

In [30], [31], the authors studied the optimal dimension k under exponential latency of each node.

Moreover, flexible MDS codes are applied to the distributed computing problem in [32], [34], [35].

However, it is assumed that we know the set of available nodes before we start computing, which is

not the case in our setup.

The paper is organized as follows: In Section II, we present the definition and the construction of

our flexible storage codes. We present the flexible LRC, PMDS, and MSR codes in Sections III-A,

III-B, and III-C, respectively. In Section IV, we analyze the latency of data access using our flexible

codes and compare it with that of fixed codes. Conclusion remarks are made in Section V.

Notation. For any integer a ≥ 1, [a] denotes the set {1, 2, . . . , a}. For a matrix A over a field F,

rank(A) denotes its rank. For a set of matrices A1, A2, . . . , An of size x × y, diag(A1, A2, . . . , An)

denotes the corresponding diagonal matrix of size nx× ny.

II. THE FRAMEWORK FOR FLEXIBLE CODES

In this section, we define flexible storage codes and provide the framework to convert a fixed (non-

flexible) code construction into a flexible one. For ease of exposition, ideas are illustrated through

flexible MDS code examples in this section. Other types of code constructions are shown in Section

III.

First, we define flexible storage codes. In our illustrations, the codeword is represented by an ℓ×n

array over F, denoted by C ∈
(
Fℓ
)n, where n is called the code length and ℓ is called the sub-

packetization. Each column corresponds to a storage node. We choose some fixed integers a > 0,

0 < ℓ1 < ℓ2 < · · · < ℓa = ℓ, and recovery thresholds Rj ∈ [n], for j ∈ [a]. Let the decoding columns

Rj ⊆ [n] be a subset of Rj columns and the decoding rows I1, I2, . . . , IRj
⊆ [ℓ] be subsets of rows,

each with size ℓj . Denote by C |Rj :I1,I2,...,IRj
, the ℓj ×Rj subarray of C that takes the rows I1 in the

first column of Rj , the rows I2 in the second column of Rj, . . . , and the rows IRj
in the last column

of Rj . The information will be reconstructed from this subarray.

The information consists of kℓ symbols. We choose k1 > k2 > · · · > ka = k such that kjℓj = kℓ for

all j ∈ [a]. Informally, kj represents the dimension of the code when C is limited to a sub-packetization

of ℓj . For flexible MDS codes, flexible MSR codes, and flexible PMDS codes, we have

Rj = kj.

and we simply omit the parameter Rj .



6

Since the minimum distance of LRC codes is lower bounded by n− kj −
⌈
kj
r

⌉
+ 2 [14], where r

is the locality, we require flexible LRC codes to be optimal and satisfy

Rj = kj +

⌈
kj
r

⌉
− 1.

Definition 1. The (n, k, ℓ) flexible storage code is parameterized by (Rj, kj, ℓj), j ∈ [a], for some

positive integer a, such that kjℓj = kℓ, 1 ≤ j ≤ a, k1 > k2 > ... > ka = k, ℓa = ℓ. It encodes kℓ

information symbols over a finite filed F into n nodes, each with ℓ symbols. The code satisfies the

following reconstruction condition for all j ∈ [a]: from any Rj nodes, each node accesses a set of ℓj

symbols and we can reconstruct all the information symbols. That is, the code is defined by

• an encoding function E :
(
Fℓ
)k → (

Fℓ
)n,

• decoding functions DRj
:
(
Fℓj

)Rj →
(
Fℓ
)k, for all Rj ⊆ [n], |Rj| = Rj , and

• decoding rows I1, I2, . . . , IRj
⊆ [ℓ], |I1| = |I2| = · · · = |IRj

| = ℓj , which are dependent on the

choice of the decoding columns Rj .

The functions are chosen such that any information U ∈
(
Fℓ
)k can be reconstructed from the nodes

in Rj:

DRj

(
E(U) |Rj :I1,I2,...,IRj

)
= U.

A flexible MDS code is defined as a flexible storage code as in Definition 1, such that Rj = kj .

In the rest of this section, we first prove in Lemma 1 that the the example in Fig. 1 is a flexible

MDS code. Then, the general flexible code framework is presented in Construction 1, based on which

Fig. 1 is designed. Afterwards, we prove in Theorem 1 that this framework can provide a flexible

MDS code for arbitrary parameters.

Lemma 1. Fig. 1 presents an (n, k, ℓ) = (4, 2, 3) flexible MDS code parameterized by (kj, ℓj) ∈

{(3, 2), (2, 3)}.

Proof: The encoding function is clear. We have encoded kℓ = 6 information symbols over F to

a code with n = 4, ℓ = 3, k = 2.

Then, we present the decoding. From any k1 = 3 nodes, each node accesses the first ℓ1 = 2 symbols:

The first 2 rows form a single parity-check (4, 3, 2) MDS code. We can easily get the information

symbols from any 3 out of 4 symbols in each row. From any k2 = 2 nodes, each node accesses all the

ℓ2 = 3 symbols: We can first decode W ′
1 and W ′

2 in the last row since the last row is a (4, 2, 1) MDS
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code. Then, (C1,1, C1,2, C1,3,W1,W
′
1) and (C2,1, C2,2, C2,3,W2,W

′
2) form two (5, 3, 1) MDS codes. We

can decode all information symbols from W ′
1,W

′
2 and any 2 columns of the first 2 rows.

Code overview. The main idea of the general code construction is similar to that of Fig. 1. The

construction is based on a set of (n + kj − ka, kj, ℓj − ℓj−1) codes, each code called a layer, such

that kjℓj = kℓ, j ∈ [a], k1 > k2 > ...ka = k, ℓa = ℓ, ℓ0 = 0. The first layer is encoded from the

original information symbols and the other layers are encoded from the “extra parities.” The intuition

for the flexible reconstruction is that after accessing symbols from some layers, we can decode the

corresponding information symbols, which are in turn extra parity symbols in an upper layer. Therefore,

the decoder can afford accessing less codeword symbols in the upper layer, resulting in a smaller

recovery threshold.

TABLE I

CONSTRUCTION OF MULTIPLE-LAYER CODES

Storage nodes Extra parities

C1,1 C1,2 · · · C1,n C′
1,1 · · · · · · · · · C′

1,k1−ka

C2,1 C2,2 · · · C2,n C′
2,1 · · · · · · C′

2,k2−ka

...
...

. . .
...

...
...

...

Ca−1,1 Ca−1,2 · · · Ca−1,n C′
a−1,1 · · · C′

a−1,ka−1−ka

Ca,1 Ca,2 · · · Ca,n

Construction 1. In Table I, we construct (n, k, ℓ) flexible storage codes with {(kj, ℓj) : 1 ≤ j ≤ a},

such that kjℓj = kℓ, k1 > k2 > ...ka = k, ℓa = ℓ.

Each column is a node. Note that only the first n columns called storage nodes are stored and the

extra parities are auxiliary. Let us set ℓ0 = 0. We have a layers and Layer j is an (n+kj −ka, kj, ℓj −

ℓj−1) code

[Cj,1, Cj,2, . . . , Cj,n, C
′
j,1, C

′
j,2, . . . , C

′
j,kj−ka ]

with j ∈ [a], where Cj,i = [Cj,1,i, Cj,2,i, ..., Cj,ℓj−ℓj−1,i]
T ∈ Fℓj−ℓj−1 , i ∈ [n], are actually stored and

C ′
j,i = [C ′

j,1,i, C
′
j,2,i, ..., C

′
j,ℓj−ℓj−1,i

]T ∈ Fℓj−ℓj−1 , i ∈ [kj − ka], are the auxiliary extra parities. The

(n + k1 − ka, k1, ℓ1) code in the first layer is encoded from the k1ℓ1 = kℓ information symbols over

F and the (n+ kj − ka, kj, ℓj − ℓj−1) code in Layer j, j ≥ 2, is encoded from extra parities C ′
j′,i, for
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j′ ∈ [j − 1], kj − ka + 1 ≤ i ≤ kj−1 − ka. As a sanity check,
j−1∑
j′=1

(kj−1 − kj)(ℓj′ − ℓj′−1) = (kj−1 − kj)(ℓj−1 − ℓ0) = kj(ℓj − ℓj−1)

extra parities over F are encoded into Layer j, which matches the code dimension of that layer. Here,

we used ℓ0 = 0 and kj−1ℓj−1 = kjℓj .

Remark 1. It can be seen that the code rate of our (n, k, ℓ) flexible code remains the same as the

original fixed (n, k, ℓ) code since the number of information symbols is k1ℓ1 = kaℓa = kℓ.

Construction 1 can be applied to different kinds of codes. We start with MDS codes to show how

to use Construction 1 with a family of storage codes.

The (n, k, ℓ) flexible MDS codes parametrized by {(Rj, kj, ℓj) : 1 ≤ j ≤ a} is constructed by

applying a set of (n + kj − ka, kj, ℓj − ℓj−1), j ∈ [a], ℓ0 = 0 MDS codes over F to Construction 1.

Namely, we encode the kℓ information symbols into an (n+ k1− ka, k1, ℓ1) MDS code and (n+ kj −

ka, kj, ℓj − ℓj−1), 2 ≤ j ≤ a MDS codes are encoded from the extra parities. Next, we prove that the

code satisfies Definition 1 and Rj = kj . That is, we can recover the entire information from any kj

nodes, each node accessing its first ℓj symbols.

Theorem 1. With a set of (n+ kj − ka, kj, ℓj − ℓj−1), j ∈ [a], ℓ0 = 0 MDS codes over F, Construction

1 is an (n, k, ℓ) flexible MDS code parametrized by {(Rj, kj, ℓj) : 1 ≤ j ≤ a} satisfying Definition 1

and Rj = kj .

Proof: Fix j ∈ [a]. Assume from any kj nodes, each node accesses its first ℓj symbols over F.

We want to show that all information symbols can be recovered.

We prove by induction that we are able to decode Layer j′ for all j′ = j, j − 1, . . . , 1. As a result,

after decoding Layer j′ = 1, we can recover all information symbols.

Base case: For Layer j, it is obvious since Layer j is an MDS code with dimension kj .

Induction step: Suppose that Layers j′+1, j′+2, ..., j are decoded. Then, for Layer j′, as shown in

Construction 1, from the decoded layers, we get kj′ −kj extra parities C ′
j′,i, kj −ka+1 ≤ i ≤ kj′ −ka.

Together with the kj nodes that we have accessed in Layer j′, we get enough dimensions to decode

Layer j′.

We note that one can choose any family of MDS codes for the above theorem, e.g., Reed-Solomon

codes [36] and vector codes [37]. In the case of vector codes, the codeword symbols of the MDS

codes are from a vector space rather than a finite field.
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III. CONSTRUCTIONS

In this section, we show how to apply Construction 1 to LRC (locally recoverable) codes, PMDS

(partial maximum distance separable) codes, and MSR (minimum storage regenerating) codes. These

codes have optimal code rate k/n and optimal recovery threshold R. They provide a flexible recon-

struction mechanism for the entire information, and either can reduce the single-failure repair cost, i.e.,

the number of helper nodes and the amount of transmitted information, or can tolerate mixed types of

failures. Applications include failure protection in distributed storage systems and in solid-state drives.

A. Flexible LRC

An (n, k, ℓ, r) LRC code is defined as a code with length n, dimension k, sub-packetization size ℓ,

and locality r. Locality here means that for any single node failure or erasure, there exists a group

of at most r available nodes (called helpers) such that the failure can be recovered from them [14],

[38]–[41]. The minimum Hamming distance of an (n, k, ℓ, r) LRC code is lower bounded in [14] as

dmin ≥ n− k −
⌈
k

r

⌉
+ 2, (2)

and LRC codes achieving the bound are called optimal LRC codes. For simplicity, we use (n, k, r)

LRC codes to present (n, k, ℓ, r) LRC codes with ℓ = 1. For k divisible by r, and n divisible by r+1,

Tamo and Barg [17] constructed optimal (n, k, r) LRC codes that encode the k information symbols

into

C = [C1,1, C1,2, . . . , C1,r+1, ..., C n
r+1

,1, C n
r+1

,2, ..., C n
r+1

,r+1].

Here, each group {Cm,i : i ∈ [r + 1]},m ∈ [ n
r+1

], is an MDS code with dimension r and the code

C has a minimum distance of n − k − k
r
+ 2, i.e., we can decode all information symbols from any

k+ k
r
− 1 nodes. If an optimal LRC code has the above structure with groups, we say it is an optimal

LRC code by groups.

We define the (n, k, ℓ, r) flexible LRC code parameterized by {(Rj, kj, ℓj) : 1 ≤ j ≤ a} as a flexible

storage code as in Definition 1, such that all the symbols of any node can be recovered by reading at

most r other nodes and

Rj = kj +

⌈
kj
r

⌉
− 1.

The above Rj matches the minimum distance lower bound (2). As a result, our definition of flexible

LRC code implies optimal minimum Hamming distance when we consider ℓj symbols at each node.
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In the following, we present flexible LRC codes in Construction 2. Then, Table II illustrates the

structure of our code. We prove in Theorem 2 that Construction 2 leads to flexible LRC codes. When

the specific LRC in [17] is applied to each layer, Table II is further explained in Example 1 at the

end of this subsection.

Code overview. The flexible LRC code is based on Construction 1, where each layer consists of

LRC codes. First, extra groups are generated in each row. Then, r extra parities are chosen from each

extra group and encoded into lower layers. During information reconstruction, extra parities and hence

extra groups are recovered from lower layers, leading to a smaller number of required accesses.

Construction 2. Let n be divisible by r + 1 and all kj, j ∈ [a] be divisible by r. We apply a set of

optimal LRC codes by groups over F with parameters (n+(kj−ka)
r+1
r
, kj, r), j ∈ [a] to Construction

1.

In Layer j, we apply an (n+(kj−ka)
r+1
r
, kj, r), j ∈ [a] optimal LRC code to each row. As described

in Construction 1, we encode the kℓ information symbols in the ℓ1 rows of Layer 1 and the remaining

rows are encoded from the extra parities.

Next, we show how to choose the n stored symbols and the kj−ka extra parities in each row. In the

(n+(kj − ka)
r+1
r
, kj, r) LRC code, we have n

r+1
+

kj−ka
r

groups. We first pick n
r+1

groups, containing

n symbols, as the stored symbols. Thus, the n stored symbols in each row form an (n, kj, r), j ∈ [a]

optimal LRC code. Then, in the remaining kj−ka
r

groups, we pick r nodes in each group, containing

kj − ka nodes, as extra parities.

Table II shows an example of (n = 12, k = 4, ℓ = 3, r = 2) flexible LRC code parameterized by

{(R1 = 8, k1 = 6, ℓ1 = 2), (R2 = 5, k2 = 4, ℓ2 = 3)}. In this code, Rows 1 and 2 are (n+(k1−k2)
r+1
r

=

15, k1 = 6, r = 2) LRC codes encoded from the information and one extra group is generated in each

row. We take 4 extra parities from the extra groups, which are encoded into the (n = 12, k2 = 4, r = 2)

LRC code in Row 3. In this code, we have 12 nodes and they are evenly divided into 4 groups. Any

single failed node can be recovered from the other 2 nodes in the same group. It will be seen in

Theorem 2 that to recover the entire information, we require either any R1 = 8 nodes, each accessing

the first ℓ1 = 2 symbols, or any R2 = 5 nodes, each accessing all ℓ2 = 3 symbols.

Theorem 2. Construction 2 results in an (n, k, ℓ, r) flexible LRC code parameterized by {(Rj, kj, ℓj) :

1 ≤ j ≤ a}. Moreover, when only the first ℓj symbols are considered at each node, any single node

failure can also be recovered from r helpers.
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TABLE II

CONSTRUCTION OF (n = 12, k = 4, ℓ = 3, r = 2) FLEXIBLE LRC CODE

group 1 · · · group 4 extra group

Layer 1
C1,1,1 C1,1,2 C1,1,3 · · · C1,1,10 C1,1,11 C1,1,12 C′

1,1,1 C′
1,1,2 C′

1,1,3

C1,2,1 C1,2,2 C1,2,3 · · · C1,2,10 C1,2,11 C1,2,12 C′
1,2,1 C′

1,2,2 C′
1,2,3

Layer 2 C2,1,1 C2,1,2 C2,1,3 · · · C2,1,10 C2,1,11 C2,1,12

Proof: We first prove the reconstruction of all information symbols from ℓj symbols of Rj =

kj +
kj
r
− 1 nodes, for any j ∈ [a]. Then we prove the locality.

Reconstruction: We prove by induction that for j′ = j, j − 1, . . . , 1, we can decode Layer j′.

Therefore, all information symbols can be recovered after decoding Layer j′ = 1.

Base case: From Layer j, since each row is part of the (n+(kj − ka)
r+1
r
, kj, r) optimal LRC code,

we can decode this layer from Rj nodes by the minimum Hamming distance property of the optimal

LRC codes.

Induction step: Suppose that Layers j′+1, j+2, . . . , j are decoded. We prove that Layer j′ can be

decoded. By the construction, kj′ −kj extra parities (from kj′−kj

r
extra groups) in each row of Layer j′

can be obtained from the decoded layers. By Construction 2, the extra parities in Layer j′ consist of r

parity symbols in each extra group. Thus, according to locality, the remaining symbol in each of the
kj′−kj

r
extra groups in each row of Layer j′ can be recovered. In total, we get additional (kj′ − kj)

r+1
r

symbols in each row of Layer j′ from the extra parities. Together with the Rj accessed symbols in

each row of Layer j′, we get Rj′ symbols and we are able to decode Layer j′.

Locality: Since each row is encoded as an LRC code with locality r, the code restricted to the first

ℓj rows also has locality r.

When applying the LRC codes in [17], our flexible LRC code requires a finite field of size at least

n + (k1 − ka)
r+1
r

. Below, we show the encoding, the reconstruction, and the locality for the code in

Table II using [17].

Example 1. We set (n, k, l, r) = (12, 4, 3, 2), (R1, k1, ℓ1) = (8, 6, 2), (R2, k2, ℓ2) = (5, 4, 3). The code

is defined over F = GF (24) = {0, 1, α, ..., α14}, where α is a primitive element of the field. Totally,

we have kℓ = 12 information symbols and we assume they are u1,0, u1,1, ..., u1,5, u2,0, u2,1, ..., u2,5. The

example is based on the optimal LRC code constructions in [17].
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The construction is shown below, each column is a node with 3 symbols:
C1,1,1 C1,1,2 · · · C1,1,12

C1,2,1 C1,2,2 · · · C1,2,12

C2,1,1 C2,1,2 · · · C2,1,12

 , (3)

where every entry in Row m will be constructed as fm(x) for some polynomial fm(·) and some

evaluation point x ∈ F as below, m = 1, 2, 3.

The evaluation points are divided into 4 groups as x ∈ A = ∪4
i=1Ai, for A1 = {1, α5, α10}, A2 =

{α, α6, α11}, A3 = {α2, α7, α12}, A4 = {α3, α8, α13}. We also set A5 = {α4, α9, α14} as the evaluation

points for the extra parities.

According to [17], we define g(x) = x3 and one can check that g(x) is a constant for each group

Ai, i ∈ [5]. Then, the first 2 rows are encoded with

fm(x) =
(
um,0 + um,1g(x) + um,2g

2(x)
)
+ x

(
um,3 + um,4g(x) + um,5g

2(x)
)
,m = 1, 2. (4)

The last row is encoded with

f3(x) =
(
f1(α

4) + f1(α
9)g(x)

)
+ x

(
f2(α

4) + f2(α
9)g(x)

)
. (5)

For each group, since g(x) is a constant, fm(x),m ∈ [3] can be viewed as a polynomial of degree

1. Any single failure can be recovered from the other 2 available nodes evaluated by the points in the

same group. The locality r = 2 is achieved.

Reconstruction with ℓ1 = 2, R1 = 8: Noticing that f1(x) and f2(x) are polynomials of degree 7, all

information symbols can be reconstructed from the first ℓ1 = 2 rows of any R1 = 8 available nodes.

Reconstruction with ℓ2 = 3, R2 = 5: Since f3(x) has degree 4, with R2 = 5 available nodes, we

can first decode f1(α
4), f1(α

9), f2(α
4), f2(α

9) in Row 3. Then, f1(α14), f2(α
14) can be decoded due

to the locality r = 2. At last, together with the R2 = 5 other evaluations of f1(x) and f2(x) obtained

in Rows 1 and 2, we are able to decode all information symbols.

B. Flexible PMDS codes

PMDS codes are first introduced in [16] to overcome mixed types of failures in Redundant Arrays

of Independent Disks (RAID) systems using solid-state drives. A code consisting of an ℓ× n array is

called an (n, k, ℓ, s) PMDS code if every row is an (n, k) MDS code and it can tolerate n− k node

or column failures and s additional arbitrary symbol failures in the code.
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Let ℓ0 = 0 and {(kj, ℓj) : 1 ≤ j ≤ a} satisfy (1). We define an (n, k, ℓ, s) flexible PMDS code

parameterized by {(kj, ℓj) : 1 ≤ j ≤ a} to be an ℓ× n array such that any row in the range ℓj−1 + 1

to ℓj is an (n, kj) MDS code, and from the first ℓj rows, we can reconstruct the entire information if

there are up to n − kj node failures and up to s additional arbitrary symbol failures, 1 ≤ j ≤ a. As

mentioned, for PMDS codes, Rj = kj . Note that different from Definition 1, the number of information

symbols for a flexible PMDS code is at most kℓ− s ≜ K.

Example 2. We demonstrate the information reconstruction requirement of the (5, 3, 4, 2) flexible

PMDS code with {(k1, ℓ1), (k2, ℓ2)} = {(4, 3), (3, 4)} in Table III. If we only have “∗” as failures,

we can use the first 4 nodes to decode, each node accessing the first 3 symbols. If both “∗” and “△”

are failures, we can decode from Nodes 1, 3, 4, each node accessing 4 symbols. In both cases, the

remaining K = kℓ − s = 10 symbols should be independent and sufficient to reconstruct the entire

information.

TABLE III

AN EXAMPLE OF (5, 3, 4, 2) FLEXIBLE PMDS CODE WITH {(k1, ℓ1), (k2, ℓ2)} = {(4, 3), (3, 4)}.

C1,1,1 △ C1,1,3 ∗ ∗

C1,2,1 △ C1,2,3 C1,2,4 ∗

C1,3,1 △ ∗ C1,3,4 ∗

C2,1,1 △ C2,1,3 C2,1,4 ∗

Code overview. To tolerate additional symbol failures, the fixed PMDS code in [18] uses Gabidulin

code to encode the information into auxiliary symbols, which are evenly allocated to each row. Then,

an MDS code is applied to the auxiliary symbols in each row, ensuring the protection against column

failures. Our flexible PMDS code also encodes the information using Gabidulin code into auxiliary

symbols, which are allocated to each layer according to kj, j ∈ [a]. MDS codes with different

dimensions are then applied to each row, thus ensuring flexible information reconstruction.

We first introduce the construction in [18] and then show how to apply it to flexible PMDS codes.

An (N,K) Gabidulin code over the finite field F = GF (qL), L ≥ N is defined by the polynomial

f(x) =
∑K−1

i=0 uix
qi , where ui ∈ F, i = 0, 1, ..., K − 1 are the information symbols. The N codeword

symbols are f(α1), f(α2), . . . , f(αN), where the N evaluation points {α1, ..., αN} are linearly inde-

pendent over GF (q). From any K independent evaluation points over GF (q), the information can be

recovered.
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In [18, Construction 1], the (n, k, ℓ, s) codeword is an ℓ×n matrix over F = GF (qkℓ) shown below:
C1,1 C1,2 · · · C1,n

C2,1 C2,2 · · · C2,n

...
... . . . ...

Cℓ,1 Cℓ,2 · · · Cℓ,n

 , (6)

where each column is a node. Set K = ℓk−s. Here, Cm,i ∈ F,m ∈ [ℓ], i ∈ [k] are the K+s codeword

symbols from a (K + s,K) Gabidulin code. For each row m, m ∈ [ℓ],

[Cm,k+1, ..., Cm,n] = [Cm,1, ..., Cm,k]GMDS, (7)

where GMDS is the k × (n− k) encoding matrix of an (n, k) systematic MDS code over GF (q) that

generates the parity.

It is proved in [18, Lemma 2] that tm symbols in Row m,m ∈ [ℓ], are equivalent to evaluations of

f(x) with
ℓ∑

m=1

min(tm, k) evaluation points that are linearly independent over GF (q). Thus, with any

n− k node failures and s symbol failures, we have tm ≤ k and
ℓ∑

m=1

min(tm, k) =
ℓ∑

m=1

tm = ℓk − s = K. (8)

Then, with the K linearly independent evaluations of f(x), we can decode all information symbols.

Next, we show how to construct flexible PMDS codes. Rather than generating extra parities as in

Construction 1, the main idea here is that we divide our code into multiple layers and each layer

applies a construction similar to that of (6) with a different dimension.

Construction 3. Fix (n, k, ℓ, s) and {(kj, ℓj) : 1 ≤ j ≤ a} satisfying (1). Assume there exists an

(N,K) Gabidulin code over GF (qN) and a set of (n, kj) systematic MDS codes over GF (q), where

N =
a∑

j=1

kj(ℓj − ℓj−1), ℓ0 = 0, K = ℓk − s. We construct a storage code over GF (qN) that encodes

K information symbols into an ℓ× n codeword array.

Denote Cj,mj ,i, j ∈ [a],mj ∈ [ℓj − ℓj−1], i ∈ [n] as the symbol in the mj-th row and the i-th column

of Layer j. We first encode the K information symbols using the (N,K) Gabidulin code. Then, for

each j ∈ [a],mj ∈ [ℓj − ℓj−1], we set the first kj codeword symbols in the mj-th row of Layer j as

the codeword symbols in the (N,K) Gabidulin code. The remaining n− kj codeword symbols in the

row are generated as

[Cj,mj ,kj+1, ..., Cj,mj ,n] = [Cj,mj ,1, ..., Cj,mj ,kj ]Gn,kj , (9)
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where Gn,kj is the encoding matrix (to generate the parity check symbols) of the (n, kj) systematic

MDS code over GF (q).

Theorem 3. Construction 3 results in an (n, k, ℓ, s) flexible PMDS code over GF (qN) parameterized

by {(kj, ℓj) : 1 ≤ j ≤ a} satisfying (1).

Proof: It is obvious that each row in Layer j is an (n, kj) MDS code due to (9). We will prove

that we can decode the information from any n−kj, j ∈ [a], failures by accessing the first ℓj rows (the

first j layers) from each node. The code structure in each layer is similar to the general PMDS code

in [18, Construction 1]. From [18, Lemma 2], we know that for a union of tmj′
symbols in Row mj′

of Layer j′, j′ ≤ j, they are equivalent to evaluations of f(x) with
j∑

j′=1

ℓj′−ℓj′−1∑
mj′=1

min(tmj′
, kj′) linearly

independent points over GF (q) in GF (qN). Thus, with n − kj node failures and s symbol failures,

we have tmj′
≤ kj ≤ kj′ for j′ ∈ [j], and

j∑
j′=1

ℓj′−ℓj′−1∑
mj′=1

min(tmj′
, kj′) =

j∑
j′=1

ℓj′−ℓj′−1∑
mj′=1

tmj′
= ℓjkj − s = K.

Then, the information symbols can be decoded from K linearly independent evaluations of f(x).

C. Flexible MSR codes

In this section, we study flexible MSR codes. In the following, the number of parity nodes is denoted

by r = n − k 1. The repair bandwidth is defined as the amount of transmission required to repair

a single node erasure, or failure, from all remaining nodes (called helper nodes), normalized by the

size of the node. For an (n, k) MDS code, the repair bandwidth is bounded by the minimum storage

regenerating (MSR) bound [15] as

b ≥ n− 1

n− k
. (10)

An MDS code achieving the MSR bound is called an MSR code. MSR vector codes are well studied

in [19], [42]–[48], where each symbol is a vector. As one of the most popular codes in practical

systems, Reed-Solomon (RS) codes and their repair are studied in [8], [20], [49]–[51], where each

symbol is a scalar.

We have shown in Theorem 1 that using a set of MDS codes, Construction 1 can recover the

information symbols by any pair (kj, ℓj), which means that for the first ℓj symbols in each node, our

1Notice that r was used for a different meaning (locality) in LRC codes.
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code is an (n, kj, ℓj) MDS code. In addition, we require the optimal repair bandwidth property for

flexible MSR codes. A flexible MSR code is defined to be a flexible storage code as in Definition 1,

such that Rj = kj and a single node failure is recovered using a repair bandwidth satisfying the MSR

bound (10) with equality.

Code overview. Our codes in this section are similar to Construction 1, with additional restrictions

on the parity check matrices and the extra parities. The key point here is that the extra parities and the

information symbols in lower layers are exactly the same and they also share the same parity check

sub-matrix. To repair the failed symbol with the minimum bandwidth, the extra parities are viewed as

additional helpers and the required information can be obtained for free from the repair of the lower

layers.

We will first show an illustrative example with 2 layers and then present our constructions based

on vector and scalar MSR codes.

Example 3. We construct an (n, k, ℓ) = (4, 2, 3) flexible MSR code parameterized by (k1, ℓ1) = (3, 2)

and (k2, ℓ2) = (2, 3).

Let F = GF (22) = {0, 1, β, β2 = 1+β}, where β is a primitive element of GF (22). Our construction

is based on the following (4, 2, 2) MSR vector code over F2 with parity check matrix

H =

h1,1 h1,2 h1,3 h1,4

h2,1 h2,2 h2,3 h2,4

 =


0 1 1 0 1 0 0 0

1 1 1 1 0 1 0 0

0 1 1 1 0 0 1 0

1 0 1 0 0 0 0 1

 , (11)

where each hi,j is a 2× 2 matrix over F. A codeword symbol ci is in F2, i = 1, 2, 3, 4, meaning ci is

a column vector of length 2 over F. The codeword [cT1 , c
T
2 , c

T
3 , c

T
4 ]

T ∈ (F2)4 is in the null space of H .

One can check that it is a (4, 2) MDS code, i.e., any two codeword symbols suffice to reconstruct the

entire information. The repair matrix is defined as

S1 =

1 0 0 0

0 0 0 1

 , S2 =

1 0 0 0

0 0 1 0

 , S3 =

1 0 1 0

0 1 1 0

 , S4 =

0 1 1 0

0 0 0 1

 . (12)

It is easy to check that

rank

S∗

h1,i

h2,i

 =

 2, i = ∗

1, i ̸= ∗
. (13)
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When node ∗ ∈ {1, 2, 3, 4} fails, we can repair node c∗ by equation S∗ ×H × [cT1 , c
T
2 , c

T
3 , c

T
4 ]

T = 0. In

particular, helper i, i ̸= ∗, transmits

S∗

h1,i

h2,i

 ci,

which is one symbol in F, achieving an optimal total repair bandwidth of 3 symbols in F.

For our flexible MSR code, every entry in the code array is a vector in F2. The code array is shown

below, each column being a node:
C1,1,1 C1,1,2 C1,1,3 C1,1,4

C1,2,1 C1,2,2 C1,2,3 C1,2,4

C2,1,1 C2,1,2 C2,1,3 C2,1,4

 . (14)

The code has 2 layers, where C1,m1,i ∈ F2 are in Layer 1 and C2,m2,i are in Layer 2 with i ∈ [4],

m1 = 1, 2,m2 = 1. Each Cj,mj ,i is the vector [cj,mj ,i,1, cj,mj ,i,2]
T with elements in F. The code totally

contains 48 bits with 24 information bits and each node contains 12 bits. We define the code with the

3 parity check matrices shown below. Let

H1 =

h1,1 h1,2 h1,3 h1,4 h1,1

h2,1 h2,2 h2,3 h2,4 βh2,1

 , (15)

H2 =

h1,1 h1,2 h1,3 h1,4 h1,2

h2,1 h2,2 h2,3 h2,4 βh2,2

 , (16)

H3 =

 h1,1 h1,2 h1,3 h1,4

βh2,1 βh2,2 h2,3 h2,4

 . (17)

The code is defined by

H1 × [CT
1,1,1, C

T
1,1,2, C

T
1,1,3, C

T
1,1,4, C

T
2,1,1]

T = 0, (18)

H2 × [CT
1,2,1, C

T
1,2,2, C

T
1,2,3, C

T
1,2,4, C

T
2,1,2]

T = 0, (19)

H3 × [CT
2,1,1, C

T
2,1,2, C

T
2,1,3, C

T
2,1,4]

T = 0. (20)

Next, we prove that it is an (n, k, ℓ) = (4, 2, 3) flexible MSR code parameterized by (kj, ℓj) chosen

from {(3, 2), (2, 3)}.

It is easy to check that the code defined by H1 or H2 is a (5, 3) MDS code and H3 defines a

(4, 2) MDS code. Thus, this code is the same as Construction 1 based on MDS codes and the flexible

reconstruction of the entire information is shown in Theorem 1.
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Let ∗ ∈ {1, 2, 3, 4} be the index of the failed node. For the repair, we first note that

rank

S∗

h1,i

h2,i

 = rank

S∗

 h1,i

βh2,i

 =

 2, i = ∗

1, i ̸= ∗
, (21)

for i = 1, 2.

Then, we use the repair matrix S∗ in (12) to repair the failed node ∗:

S∗ ×H1 × [CT
1,1,1, C

T
1,1,2, C

T
1,1,3, C

T
1,1,4, C

T
2,1,1]

T = 0, (22)

S∗ ×H2 × [CT
1,2,1, C

T
1,2,2, C

T
1,2,3, C

T
1,2,4, C

T
2,1,2]

T = 0, (23)

S∗ ×H3 × [CT
2,1,1, C

T
2,1,2, C

T
2,1,3, C

T
2,1,4]

T = 0. (24)

Helper i ∈ [4], i ̸= ∗, transmits

S∗

h1,i

h2,i

C1,1,i, (25)

S∗

h1,i

h2,i

C1,2,i, (26)

S∗

 h1,i

βh2,i

C2,1,i, (27)

where β = β if i = 1, 2 and β = 1 if i = 3, 4. Note that to repair the failed node, in Eq. (22) and

(23), we also require S∗

 h1,1

βh2,1

C2,1,1 and S∗

 h1,2

βh2,2

C2,1,2, which can be either obtained from (27)

or solved from Equation (24).

Then, from (13) and (21), it is clear that for any failed node, we only need one symbol from each

of the remaining Cj,mj ,i, which meets the MSR bound.

Remark. Notice that in this example, we do not require the codes in the first layer defined by

(15) and (16) to be MSR codes, thus resulting in a smaller field. However, the rank condition (21)

guarantees the optimal repair bandwidth for the entire code. Also, in our general constructions, we do

not require the codes in Layers 1 to a− 1 to be MSR codes.

In the following, we show that by applying Construction 1 to the vector MSR code [19] and the

RS MSR code [20], we can construct flexible MSR codes.
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1) Flexible MSR codes with parity check matrices: Below we present codes defined by parity check

matrices similar to Example 3. We show in Theorem 4 that with certain choices of the parity check

matrices, one obtains a flexible MSR code.

Construction 4. The code is defined in some FL parameterized by (kj, ℓj), j ∈ [a] such that kjℓj = kℓ,

k1 > k2 > ...ka = k, ℓa = ℓ. We define the parity check matrix for the mj-th row in Layer j ∈ [a] as:

Hj,mj
=

[
hj,mj ,1 · · · hj,mj ,n gj,mj ,1 · · · gj,mj ,kj−ka

]
, (28)

where each hj,mj ,i, gj,mj ,i is an rL × L matrix with elements in F. The (n + kj − ka, kj) MDS code

in the mj-th row of Layer j is defined by

Hj,mj
× [Cj,mj ,1

T , Cj,mj ,2
T , · · · , Cj,mj ,n

T , C ′
j,mj ,1

T
, · · · , C ′

j,mj ,kj−ka

T
]T = 0, (29)

where Cj,mj ,i are the stored codeword symbols and C ′
j,mj ,i

are the extra parities. In this construction,

when we encode the extra parities into lower layers, we set the codeword symbols and the correspond-

ing parity check matrix entries exactly the same. Specifically, for Layers j < j′ ≤ a, we set

gj,x,y = hj′,x′,y′ , (30)

C ′
j,x,y = Cj′,x′,y′ . (31)

Here, given j, x ∈ [lj − lj−1], y, we set j′ such that kj′ − ka + 1 ≤ y ≤ kj′−1 − ka, and set

x′ = ⌊x(kj
′−1 − kj′) + y

kj′
⌋, (32)

y′ = (x(kj′−1 − kj′) + y) mod kj′ , (33)

where “mod” denotes the modulo operation.

For instance, in Example 3, the 2 extra parities in Layer 1 are exactly the same as the first 2 symbols

in Layer 2 with C ′
1,1,1 = C2,1,1, g1,1,1 = h2,1,1 and C ′

1,2,1 = C2,1,2, g1,2,1 = h2,1,2.

Theorem 4. Assume the parity check matrices of Construction 4 in (28) satisfy

1). [MDS condition.] The codes defined by (28) are (n+ kj − ka, kj) MDS codes.

2). [Rank condition.] The same repair matrices S∗, ∗ ∈ [n] can be used for every parity check matrix

such that

rank(S∗hj,mj ,i) =

 L, i = ∗
L
r
, i ̸= ∗

, i ∈ [n]. (34)
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Then, the code defined by Construction 4 is a flexible MSR code.

Proof: 1). If the MDS property is satisfied, Construction 4 is the same as Construction 1 by defin-

ing the MDS codes with parity check matrices. The flexible reconstruction of the entire information

is presented in Theorem 1.

2). For repair, assume node ∗, ∗ ∈ [n], is failed. We use the repair matrix S∗ in each row to repair

it:

S∗ ×Hj,mj
× [Cj,mj ,1

T , Cj,mj ,2
T , · · · , Cj,mj ,n

T , C ′
j,mj ,1

T
, · · · , C ′

j,mj ,kj−ka

T
]T = 0. (35)

Notice that C ′
j,mj ,1

, · · · , C ′
j,mj ,kj−ka

are also the information symbols in the lower layers with the same

parity check sub-matrices, and the corresponding required information can be retrieved from the lower

layers. Thus, the failed node can be repaired from n− 1 helpers.

Clearly from (34), we only need L/r symbols from each helper and the optimal repair bandwidth

is achieved.

We will now take Ye and Barg’s construction [19] to show how to construct the flexible MSR codes

satisfying the conditions in Theorem 4. The code structure in one row is similar to [52].

Assume the field size |E| > rn and λi,j ∈ E, i ∈ [n], j = 0, 1, ..., r− 1 are rn distinct elements. The

parity check matrix for the (n, k) MSR code in [19] can be represented as:

H =


I I · · · I

A1 A2 · · · An

...
... . . . ...

Ar−1
1 Ar−1

2 · · · Ar−1
n

 , (36)

where I is the L × L identity matrix and Ai =
L−1∑
z=0

λi,ziezez
T . ez is a vector of length L = rn

with all zeros except the z-th element which is equal to 1. We write the r-ary expansion of z as

z = (zn, zn−1, . . . , z1), where 0 ≤ zi ≤ r − 1 is the i-th digit from the right and z =
r−1∑
i=0

zir
i. Clearly,

Ai is an L × L diagonal matrix with elements λi,zi . The L × rL repair matrix S∗, ∗ ∈ [n] are also

defined in [19] and [52, Sec. IV-A] as a diagonal block matrix:

S∗ = Diag(D∗, D∗, ..., D∗), (37)
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with L
r
× L matrix D∗. It is shown that

rank

S∗


I

Ai

...

Ar−1
i



 = rank


D∗

D∗Ai

...

D∗A
r−1
i

 =

 L, i = ∗
L
r
, i ̸= ∗

. (38)

Here, for 0 ≤ x ≤ rn−1 − 1, 0 ≤ y ≤ rn − 1, the (x, y)-th entry of D∗ is equal to 1 if the r-ary

expansion of x and y satisfies (xn−1, xn−1, . . . , x1) = (yn, yn−1, . . . , yi+1, yi−1, . . . , y1) and otherwise

it is equal to 0.

Consider an extended field F from E and denote F∗ ≜ F\{0}, E∗ ≜ E\{0}. Then, F∗ can be

partitioned to t ≜ |F∗|
|E∗| cosets: {β1E∗, β2E∗, ..., βtE∗}, for some elements β1, β2, . . . , βt in F [8, Lemma

1]. Now, we define for the storage nodes (the first n nodes)

hj,mj ,i =



I

βj,mj
Ai

β2
j,mj

A2
i

...

βr−1
j,mj

Ar−1
i


, (39)

where βj,mj
is chosen from {β1, β2, . . . , βt}. We say βj,mj

is the additional coefficient. Then, the extra

parity entries gj,mj ,i can be obtained accordingly from (32) and (33). Also, notice that Ai might appear

in Hj,mj
several times since the extra parity matrices are the same as the information symbols in lower

layers. We choose the additional coefficients as below.

Condition 1. In each Hj,mj
, the additional coefficients for the same Ai are distinct.

Corollary 1. With parity check matrices defined by (39) and Condition 1, Construction 4 is a flexible

MSR code.

Proof: We will prove the construction is flexible MSR using Theorem 4. We consider the mj-th

row in Layer j, j ∈ [a],mj ∈ [ℓj − ℓj−1].

1) [MDS condition.] For the codeword (cT1 , c
T
2 , ..., c

T
n+kj−ka

)T defined by the parity check matrix

Hj,mj
, we write each codeword symbol as ci = (ci,1, ci,2, ..., ci,L)

T . Since Ai is a diagonal matrix, for
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any z = 0, 1, ..., L− 1, we have
1 · · · 1 1 · · · 1

βj,mj
λ1,z1 · · · βj,mj

λn,zn α1γ1 · · · αkj−kaγkj−ka

... . . . ...
... . . . ...

(βj,mj
λ1,z1)

r−1 · · · (βj,mj
λn,zn)

r−1 (α1γ1)
r−1 · · · (αkj−kaγkj−ka)

r−1




c1,z

c2,z
...

cn+kj−ka,z

 = 0.

(40)

Here, βj,mj
, α1, α2, ..., αkj−ka are additional coefficients satisfying Condition 1. For y ∈ [kj − ka],

denote γy ≜ λy′,zy′
, corresponding to gj,mj ,y = hj′,x′,y′ , where x′, y′ are computed from (32) and

(33) with x = mj . Next, we show (40) corresponds to a Vandermonde matrix of full rank, i.e.,

(c1,z, c2,z, ..., cn+kj−ka,z)
T forms an (n+kj−ka, kj) Reed-Solomon code, which is MDS. We just need

to show that any two entries in the second row of the r×(n+kj−ka) matrix in (40) are distinct. Notice

that each entry is the product of an additional coefficient and a λ variable (or a γ variable). There

are three cases: (i) If the λ or the γ values are identical, by Condition 1, their additional coefficients

differ. So, these two entries are distinct. (ii) If the λ or the γ values are distinct and the additional

coefficients are identical, then the two entries are distinct. (iii) The λ or the γ values are distinct and

the additional coefficients are distinct. Noticing λ and γ belong to E∗, distinct additional coefficients

implies that the two entries are in distinct cosets.

After we combine z = 0, 1, . . . , L− 1 together, (cT1 , c
T
2 , ..., c

T
n+kj−ka

)T is an (n+ kj − ka, kj) MDS

vector code.

2) [Rank condition.] Multiplying the row of a matrix by a constant does not change the rank. So,

by (38) and (39),

rank(S∗hj,mj ,i) = rank


D∗

D∗βAi

...

D∗β
r−1Ar−1

i

 = rank


D∗

D∗Ai

...

D∗A
r−1
i

 =

 L, i = ∗
L
r
, i ̸= ∗

. (41)

Since the code satisfies the above two conditions, using Theorem 4, it is a flexible MSR code.

To calculate the required field size, we study how many additional coefficients are required for

our flexible MSR codes satisfying Condition 1. The required field size can be chosen as |F| ≥ t|E|,

where t is equal to the number of additional coefficients. In the following, we propose two possible

coefficient assignments. It should be noticed that one might find better assignments with smaller field

sizes.
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The simplest coefficient assignment sets different additional coefficients to different rows, i.e., βj,mj

to Row mj in Layer j for the storage nodes (the first n nodes). By doing so, the parity check matrix

βj,mj
Ai, j ∈ [a],mj ∈ [ℓj − ℓj−1], i ∈ [n] will show at most twice in Construction 4, i.e., in Layer j

corresponding to storage Node i and in Layer j′ corresponding to an extra parity, for some j > j′.

Hence, the same Ai will correspond to different additional coefficients in the same row and Condition

1 is satisfied. In this case, we need a field size of ℓ|E|.

In the second assignment, we assign different additional coefficients in different layers for the storage

nodes (the first n nodes), but for different rows in the same layer, we might use the same additional

coefficient. For a given row, the storage nodes will not conflict with the extra parities since the latter

correspond to the storage nodes in other layers. Also, the extra parities will not conflict with each

other if they correspond to the storage nodes in different layers. Then, we only need to check the extra

parities in the same row corresponding to storage nodes in the same layer. For the extra parities/storage

nodes gj,x,y = hj′,x′,y′ , given j, x, j′, y′, the additional coefficients should be different for different y.

In this case, kj′ −ka+1 ≤ y ≤ kj′−1−ka and there will be at most ⌈kj′−1−kj′

kj′
⌉ choices of y that make

y′ a constant in (33). As long as we assign ⌈kj′−1−kj′

kj′
⌉ number of β in Layer j′, j′ ≥ 2 (in Layer 1

we only need one β), Condition 1 is satisfied.

The total number of required additional coefficients is t = 1 +
a∑

j=2

⌈kj−1−kj
kj

⌉. Notice that (kj−1 −

kj)ℓj−1 = kj(ℓj − ℓj−1) and we have

t = 1 +
a∑

j=2

⌈kj−1 − kj
kj

⌉ = 1 +
a∑

j=2

⌈ℓj − ℓj−1

ℓj−1

⌉ ≤ 1 +
a∑

j=2

(ℓj − ℓj−1) ≤ ℓ. (42)

Moreover, in the best case when we have kj−1−kj ≤ kj for all j, the number of additional coefficients

is a while |F| ≥ a|E|.

Here, we briefly compare our construction with another flexible MSR construction in [9]. In our code,

each node is in Fℓ(n−k)n , where |F| ≥ t(n−k)n. Namely, each node requires ℓ(n−k)n log2(t(n−k)n)

bits. Tamo, Ye, and Barg also considered the optimal repair of flexible codes in [9] under their setting,

i.e., the downloaded symbols instead of the accessed symbols in each node is flexible to reconstruct

the entire information. Their nodes are elements in Fs(n−k)n , with |F| ≥ s(n− k)n, where s is defined

such that sj/s = ℓj/ℓ fraction of the information are downloaded in each node and s is the least

common multiple of s1, s2, ..., sa. Without loss of generality, we can choose ℓ = s in our construction.

Hence, for Eq. (42), the required field size of our construction is better than that of the construction

in [9].
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2) Flexible RS MSR codes: In this section, we introduce the construction of RS MSR codes.

An RS(n, k) code over the finite field F is defined as

RS(n, k) = {(f(α1), f(α2), . . . , f(αn)) : f ∈ F[x], deg(f) ≤ k − 1},

where the evaluation points are defined as {α1, α2, . . . , αn} ⊆ F, and deg() denotes the degree of

a polynomial. The encoding polynomial is f(x) = u0 + u1x + · · · + uk−1x
k−1, where ui ∈ F, i =

0, 1, . . . , k−1 are the information symbols. Every evaluation symbol f(αi), i ∈ [n] is called a codeword

symbol. RS codes are MDS codes, namely, from any k codeword symbols, the information can be

recovered.

Let B be the base field of F such that F = BL. For repairing RS codes, [49] and [8] show that any

linear repair scheme for a given RS(n, k) over the finite field F = BL is equivalent to finding a set

of repair polynomials {p∗,v(x), v ∈ [L]} such that for the failed node f(α∗), ∗ ∈ [n],

rankB({p∗,v(α∗) : v ∈ [L]}) = L, (43)

where the rank rankB({γ1, γ2, ..., γi}) is defined as the cardinality of a maximum subset of {γ1, γ2, ..., γi}

that is linearly independent over B.

The transmission from helper f(αi) is

TrF/B(p∗,v(αi)f(αi)), v ∈ [L], (44)

where the trace function TrF/B(x) is a linear function such that for all x ∈ F, TrF/B(x) ∈ B [53]. The

repair bandwidth for the i-th helper is

bi = rankB({p∗,v(αi) : v ∈ L}) (45)

symbols in B.

The flexible RS MSR code construction is similar to Construction 4 based on parity check matrices,

as presented below.

Construction 5. We define a code in F = GF (qL) with a set of pairs (kj, ℓj), j ∈ [a] such that

kjℓj = kℓ, k1 > k2 > ...ka = k, ℓa = ℓ, r = n − k. In the mj-th row in Layer j ∈ [a], the codeword

symbols Cj,mj ,i, i ∈ [n] are defined as:

Cj,mj ,i = fj,mj
(αj,mj ,i), (46)
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and the extra parities C ′
j,mj ,i

, i ∈ [kj − ka] are defined as

C ′
j,mj ,i

= fj,mj
(αj,mj ,i+n), (47)

where {fj,mj
(αj,mj ,i), i ∈ [n+ kj − ka]} is an RS(n+ kj − ka, kj) code. We next define the encoding

polynomial fj,mj
(x) and the evaluation point αj,mj ,i.

In this construction, we set the extra parities and the corresponding evaluation points exactly the

same as the information symbols in lower layers. We also arrange the extra parities the same way as

in Construction 4. Specifically, for C ′
j,x,y in Layer j, x ∈ [lj− lj−1], when kj−kj′−1+1 ≤ y ≤ kj−kj′

for j+1 ≤ j′ ≤ a, it is encoded to Layer j′ with αj,x,y+n = αj′,x′,y′ and C ′
j,x,y = Cj′,x′,y′ , with x′, y′ in

(32) (33). The encoding polynomial fj′,mj′
(x) ∈ F in Layer j′ is defined by the kj′ evaluation points

and the codeword symbols from the extra parities.

Theorem 5. Construction 5 is a flexible RS MSR code, if it satisfies:

1) [MDS condition.] In Row mj of Layer j, αj,mj ,i, i ∈ [n+ kj − ka] are distinct elements in F.

2) [Rank condition.] The same set of repair polynomials p∗,v(x), ∗ ∈ [n], v ∈ [L], can be used in

each row such that:

rankB({p∗,v(αj,mj ,∗) : v ∈ [L]}) = L, (48)

bi = rankB({p∗,v(αj,mj ,i) : v ∈ [L]}) = L

r
, i ∈ [n]\{∗}. (49)

Proof: 1). In the case when αj,mj ,i, i ∈ [n + kj − ka] are distinct elements in F, we have

{fj,mj
(αj,mj ,i), i ∈ [n+ kj − ka]} is RS(n+ kj − ka, kj). Moreover, Layer j′ is encoded from the kj′

extra parities in Layers 1, 2, . . . , j′ − 1. Thus, Construction 5 is the same as Construction 1 by using

the RS codes as the MDS codes. The flexible reconstruction property is shown in Theorem 1.

2). For the repair, since the extra parities share the same codeword symbols and evaluation points

with the storage nodes in lower layers, from (44) we know that the transmission for repair is also the

same. Thus, we only transmit information corresponding to the (n− 1) storage nodes.

From (49), we know that in each row, each helper transmits L/r symbols, which is optimal.

We take the construction in [8] as the RS(n+ kj − ka, kj), j ∈ [a] codes in Construction 5 to show

how to construct flexible RS MSR codes.

In [8, Theorem 5], the RS code is defined in F with evaluation points chosen from the subset

{β1αi, β2αi, ..., βtαi, i ∈ [n]} such that t = |F∗|
|E∗| for a subfield E = GF (qL) of F, and αi ∈ E, i ∈ [n].
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Here, β1, . . . , βt correspond to elements in F such that {β1E∗, . . . , βtE∗} forms a partition of F∗ [8,

Lemma 1]. For the repair polynomials p∗,v(x) in [8],

rankB({p∗,v(βαi) : v ∈ [L]}) =

 L, i = ∗,
L
r
, i ̸= ∗,

(50)

for all β chosen from {β1, ..., βt}. The required subfield size in [8] is |E| ≈ nn.

For Construction 5, we assign the evaluation points in the storage nodes as αj,mj ,i = βj,mj
αi ∈ F,

i ∈ [n], j ∈ [a],mj ∈ [ℓj−ℓj−1], where βj,mj
is chosen from {β1, . . . , βt}. The evaluation points of the

extra parities are given by the storage nodes as in (32) and (33). We assign the additional coefficient

β to satisfy Condition 1. Similar to Construction 4, we guarantee that in each row, the n + kj − ka

evaluation points are distinct and the total number of required β is t = 1 +
a∑

j=2

⌈kj−1−kj
kj

⌉. In the best

case when we have kj−1− kj ≤ kj for all j, the number of β we required is a. The required field size

is a|E|.

Corollary 2. With the RS code in [8], Construction 5 is a flexible RS MSR code.

Proof: We use Theorem 5 to prove that the code is a flexible RS MSR code.

1) [MDS condition.] We have assigned the evaluation points in each row as distinct elements in F.

2) [Rank condition.] We know from (50) that the rank condition in Theorem 5 is satisfied.

IV. LATENCY

In this section, we analyze the latency of obtaining the entire information using our codes with

flexible number of nodes.

One of the key properties of the flexible storage codes presented in this paper is that the decoding

rows are the first ℓj rows if we have Rj available nodes. As a result, the decoder can simply download

symbols one by one from each node and symbols of Layer j can be used for Layers j, j + 1, . . . , a.

For one pair of (Rj, ℓj), define a random variable Tj associated with the time for the first Rj nodes

transmitting the first ℓj symbols. Tj is called the latency for the j-th layer. Instead of predetermining a

fixed pair (R, ℓ) for the system, flexible storage codes allow us to use all possible pairs (Rj, ℓj), j ∈ [a].

The decoder downloads symbols from all n nodes and as long as it obtains ℓj symbols from Rj nodes,

the download is complete. For flexible codes with Layers 1, 2, ..., a, we use T1,2,...,a = min(Tj, j ∈ [a])

to represent the latency.
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It is obvious that for the fixed code with the same failure tolerance level, i.e., R = Ra, ℓ = ℓa, the

latency of the fixed code (Ta) is at least that of the flexible code:

T1,2,...,a = min(Tj, j ∈ [a]) ≤ Ta, (51)

and we reach the following remark.

Remark 2. Given the storage size per node ℓ, the number of nodes n, and recovery threshold R = Ra,

the flexible storage code can reduce the latency of obtaining the entire information compared to any

fixed array code.

Assume the probability density function (PDF) of Tj is pRj ,ℓj(t). We calculate the expected delay

as

E(Tj) =

∫ ∞

0

τjpRj ,ℓj(τj)dτj. (52)

If a fixed code is adopted, one can optimize the expected latency and get an optimal pair (R∗, ℓ∗)

for a given distribution [30], [31]. However, a flexible storage code still outperforms such an optimal

fixed code in latency due to Remark 2. Moreover, in practice the choice of (n, k,R, ℓ) depends on the

system size and the desired failure tolerance level and is not necessarily optimized for latency.

Next, we take the Hard Disk Drive (HDD) storage system as an example to calculate the latency

of our flexible storage codes and show how much we can save compared to a fixed MDS code. In

this part, we compute the overall latency of a flexible code with (R1, ℓ1), (R2, ℓ2), and length n. We

compare it with the latency of fixed codes with (n,R1, ℓ1) and (n,R2, ℓ2), respectively.

The HDD latency model is derived in [54], where the overall latency consists of the positioning

time and the data transfer time. The positioning time measures the latency to move the hard disk arm

to the desired cylinder and rotate the desired sector to the disk head. As the accessed physical address

for each node is arbitrary, we assume the positioning time is a random variable uniformly distributed,

denoted by U(0, tpos), where tpos is the maximum latency required to move through the entire disk.

The data transfer time is simply a linear function of the data size, and we assume the transfer time

for a single symbol in our code is ttrans. Therefore, the overall latency model is X + ℓ · ttrans, where

X ∼ U(0, tpos) and ℓ is the number of accessed symbols.

Consider an (n,R, ℓ) fixed code. When R nodes finish the transmission of ℓ symbols, we get all the

information. The corresponding latency is called the R-th order statistics. For n independent random
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variables satisfying U(0, tpos), the R-th order statistics for the positioning time, denoted by UR, satisfies

the beta distribution [55]:

UR ∼ Beta(R, n+ 1−R, 0, tpos), (53)

with expectation E[UR] =
R

n+1
tpos. For a random variable Y ∼ Beta(α, β, a, c), the probability density

function is defined as

f(Y = y;α, β, a, c) =
(y − a)α−1(c− y)β−1

(c− a)α+β−1B(α, β)
, (54)

where

B(α, β) =

∫ 1

0

tα−1(1− t)β−1dt (55)

is the Beta function.

The expectation of the overall latency for an (n,R1, ℓ1) fixed code, denoted by T1, is

E(T1) =
R1

n+ 1
tpos + ℓ1ttrans. (56)

Similarly, the expected overall latency E(T2) for the fixed (n,R2, ℓ2) code is

E(T2) =
R2

n+ 1
tpos + ℓ2ttrans. (57)

Now, consider our flexible code with two layers. The difference of the positioning times UR1 and

UR2 is

∆U = UR1 − UR2 ∼ Beta(R1 −R2, n+ 1− (R1 −R2), 0, tpos). (58)

Thus, we can get the expectation of the overall latency for our flexible code, denoted by T1,2, as

E(T1,2) = E(min(T1, T2))

= E(T1|T1 − T2 ≤ 0)P (T1 − T2 ≤ 0) + E(T2|T1 − T2 > 0)P (T1 − T2 > 0)

= E(T1)− E(T1 − T2|T1 − T2 > 0)P (T1 − T2 > 0)

=
R1

n+ 1
tpos + ℓ1ttrans −

∫ tpos

(ℓ2−ℓ1)ttrans

[∆U − (ℓ2 − ℓ1)ttrans]f(∆U)d∆U, (59)

where the last term is the saved latency compared to an (n,R1, ℓ1) code. The saved latency can be

calculated as:

E(T1 − T1,2) =

∫ tpos

(ℓ2−ℓ1)ttrans

[∆U − (ℓ2 − ℓ1)ttrans]f(∆U)d∆U (60)

=
atpos

a+ b
I1−x(b, a+ 1)− (ℓ2 − ℓ1)ttransI1−x(b, a),
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where x = ℓ2−ℓ1
tpos

ttrans, a = R1 −R2, b = n− (R1 −R2) + 1, and Ix(a, b) is the regularized incomplete

beta function:

Ix(a, b) =
B(x; a, b)

B(a, b)
, (61)

with incomplete beta function

B(x; a, b) =

∫ x

t=0

ta−1(1− t)b−1dt. (62)

Using the fact that Ix(b, a+ 1) = Ix(b, a) +
xb(1−x)a

aB(b,a)
, we have

E(T1 − T1,2) = (E(T1)− E(T2))I1−x(b, a) + tpos
R1 −R2

n+ 1

xa(1− x)b

aB(a, b)
. (63)

Similarly, the saved latency compared to an (n, k2, ℓ2) code is

E(T2 − T1,2) = (E(T2)− E(T1))Ix(a, b) + tpos
R1 −R2

n+ 1

xa(1− x)b

aB(a, b)
. (64)

From (56) and (57), we can see that the latency of a fixed MDS code is a function of n,R, ℓ, tpos,

and ttrans. One can optimize the code reconstruction threshold R∗ similar to [30] and [31] based on

the other parameters. However, the system parameters might change over time and one “optimal” R∗

cannot provide low latency in all situations. For example, with fixed n, ℓ, and the total information

size, a larger ttrans results in a larger R∗, while a larger tpos results in a smaller R∗. In our flexible

codes, we can always pick the best Rj over all j ∈ [a] and thus provide a lower latency.
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Fig. 2. Overall latency of fixed codes and flexible codes. n = 16, R1 = 15, R2 = 12, ℓ1 = 4, ℓ2 = 5.tpos = 1.
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Fig. 2 shows the overall latency of fixed codes and flexible recoverable codes. We fix the other

parameters and change the unit data transfer time ttrans. For fixed codes, a smaller R provides a lower

latency with a smaller ttrans and when ttrans grows, a larger R is preferred. However, our flexible code

always provides a smaller latency and can save 2% ∼ 5% compared to the better of the two fixed

codes.

Our flexible codes can also be applied to distributed computing systems for matrix-vector multipli-

cations [30]. The matrix is divided row-wisely and encoded to n servers using our codes. Each server

is assigned ℓ computation tasks. If any Rj servers complete ℓj tasks, we can obtain the final results.

Simulation is carried out on Amazon clusters with n = 8 servers (m1.small instances). And each task

is a multiplication of a square matrix and a vector. The results are shown in Fig. 3. We can see a

similar trend as that of Fig. 2. Our flexible code improves the latency by about 6% compared to the

better of the two fixed codes when the matrix size is 1500× 1500.
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Fig. 3. Overall latency of fixed codes and flexible codes for matrix-vector multiplication in Amazon cluster. n = 8, R1 = 5, R2 =

4, ℓ1 = 12, ℓ2 = 15.

V. CONCLUSION

In this paper, we proposed flexible storage codes and investigated the construction of such codes

under various settings. Our analysis shows the benefit of our codes in terms of latency. Open problems

include flexible codes for distributed computed problems other than matrix-vector multiplications, code
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constructions with a smaller finite field size and a smaller sub-packetization, and storage codes utilizing

partial data transmission from each node similar to universally decodable matrices [10].
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